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Abstract

Contemporary point cloud segmentation approaches
largely rely on richly annotated 3D training data. How-
ever, it is both time-consuming and challenging to obtain
consistently accurate annotations for such 3D scene data.
Moreover, there is still a lack of investigation into fully un-
supervised scene segmentation for point clouds, especially
for holistic 3D scenes. This paper presents U3DS3, as a
step towards completely unsupervised point cloud segmen-
tation for any holistic 3D scenes. To achieve this, U3DS3

leverages a generalized unsupervised segmentation method
for both object and background across both indoor and out-
door static 3D point clouds with no requirement for model
pre-training, by leveraging only the inherent information
of the point cloud to achieve full 3D scene segmentation.
The initial step of our proposed approach involves gener-
ating superpoints based on the geometric characteristics of
each scene. Subsequently, it undergoes a learning process
through a spatial clustering-based methodology, followed
by iterative training using pseudo-labels generated in ac-
cordance with the cluster centroids. Moreover, by leverag-
ing the invariance and equivariance of the volumetric repre-
sentations, we apply the geometric transformation on vox-
elized features to provide two sets of descriptors for robust
representation learning. Finally, our evaluation provides
state-of-the-art results on the ScanNet and SemanticKITTI,
and competitive results on the S3DIS, benchmark datasets.

1. Introduction
As a crucial task in 3D computer vision, there has been
increasing attention paid to point cloud segmentation in
recent years due to its broad applicability to many real-
world applications such as autonomous driving, virtual re-
ality, robotics, and human-computer interaction. However,
owing to the unordered and unstructured nature of point
clouds, it is a non-trivial exercise to undertake segmenta-
tion upon them. In recent years, supervised point cloud seg-
mentation approaches have made significant progress [1–7]
against several benchmark datasets [8–11]. However, these
approaches rely heavily on copious fully-annotated train-
ing data, in the form of labeled 3D point clouds. It is both
time-consuming and labour-intensive to obtain such annota-
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Figure 1. U3DS3 unsupervised point cloud semantic segmentation
(illustrated on S3DIS dataset [8]). Left to right: real scene, ground
truth and U3DS3 segmentation results for the full scene (upper),
for a single point cloud block input (lower).

tions accurately and consistently - especially for dense and
complex 3D scenes. An alternative body of work lever-
ages semi-supervised [12] and weakly-supervised [13–16]
approaches to mitigate the labelled data requirements, but
still require labour-intensive annotation at some level and
lack of being readily scalable and adaptable to new datasets.
Our work aims to characterize 3D features without any ex-
plicit guidance allowing it to learn from the intrinsic struc-
ture of the data, and offer independence from erroneous,
bias or inconsistent annotations, which significantly differ
from prior weakly-supervised methods. To date, there are
only a handful of prior works trying to address fully unsu-
pervised segmentation for point clouds [17–20]. However,
these approaches essentially focus on object-level segmen-
tation or co-segmentation and cannot recover the full 3D
scene labels without extra scene priors [18–20] and only
a recent work [17] has attempted to address fully unsu-
pervised semantic segmentation for 3D scenes. Our pro-
posed new U3DS3 approach performs full holistic segmen-
tation for the entire 3D scene in a scene-agnostic manner,
spanning both indoor and outdoor scenarios across differing
metric scales and achieving superior results on ScanNet [9]
and SemanticKITTI [11] when compared to [17].

Despite the growth of unsupervised learning on 2D im-
age segmentation [21–25], there is a lack of in-depth in-
vestigation into any 3D point cloud equivalent. Although
some achievements in unsupervised segmentation learning
have addressed 3D point cloud data via domain adapta-
tion [26, 27], our work does not rely upon transfer learn-
ing. OGC [19] leverages the dynamic motion pattern of a



(LiDAR derived) point cloud sequence to acquire dynamic
tracks and achieve competitive results for object-level seg-
mentation. Similarly, Yang et al. [18] successfully apply
unsupervised learning for object co-segmentation in point
clouds. [17] made the first attempt towards unsupervised 3D
semantic segmentation via region growing to generate high-
quality over-segmentation, but their method does not fully
leverage the intrinsic geometric information of the point
clouds and tends to predict over-smooth segmentations with
more background (e.g. floor, wall) and overlook detailed
object categories of the scene.

Traditional clustering methods, like k-means [28] and
DBSCAN [29], can be beneficial in establishing unsuper-
vised semantic segmentation baselines. However, these
methods still exhibit notable drawbacks. k-means [28], for
instance, struggles to converge effectively with non-convex
datasets, exhibits weaknesses in handling uneven data dis-
tributions, and struggles to form coherent clusters in the
presence of outliers and data noise. Interestingly, some ex-
isting unsupervised approaches [17, 21] also incorporate k-
means as a component of their algorithms. On the other
hand, DBSCAN [29] encounters challenges when dealing
with categorical features, often fails to identify clusters
with varying densities, requires a drop in density to iden-
tify boundaries, and experiences decreased performance in
high-dimensional scenarios.

The goal of our approach is to enable a generalized
method that is able to perform semantic segmentation for
large-scale indoor and outdoor 3D scenes without utilizing
any human labels or dynamic information between LiDAR
frames. This paper takes a new step towards scene-level
unsupervised semantic segmentation with a novel strategy.
Specifically, we first apply voxel cloud connectivity seg-
mentation (VCCS) [30] to generate the initial superpoint
and merge them according to the distance and normals of
the superpoints. Following this, we propose the baseline
method by applying mini-batch k-means [31] on the fea-
tures of a 3D point cloud to generate and update the clus-
tering centroids, and subsequently calculate the distance be-
tween features and clustering centroids to assign labels for
each point as pseudo-labels under the guidance of the su-
perpoint. After that, we train the network with the pseudo-
labels to provide new network parameters for the next itera-
tion of clustering. Subsequently, we apply a non-parametric
classifier that operates solely on the feature space distance.
Finally, by leveraging the invariance and equivariance of the
volumetric representations, we are able to apply differing
volumetric transformations on the point cloud input and a
subsequent voxelized reverse geometric transformation on
these feature representations.

In this manner, our network is capable of producing
several variant feature representations from the same data
source. This transformation operation is derived from a very

intuitive sense that the same inputs should result in similar
predictions even under geometric transformation due to the
principle of invariance. Fundamentally, we learn a feature
representation that maximizes the effective semantic class
separation. We provide two pathways to enforce color in-
variance and geometric equivariance that each provide our
underlying inductive bias for semantic consistency and geo-
metric structure by way of consistent clustering assignment
across the two pathways. This is performed via iterative
optimization of the clustering loss, which enforces a dis-
criminative feature space capable of high-level visual sim-
ilarity disambiguation. Finally, we train our voxel-based
method in an end-to-end manner. Furthermore, our evalua-
tion illustrates promising results across both indoor and out-
door datasets, S3DIS [8], ScanNet [9] and SemanticKITTI
[11], demonstrating the effectiveness and practicality of our
method and providing an initial reference performance for
completely unsupervised 3D semantic scene segmentation.
Overall, we propose a simple yet effective framework that
makes the new approach towards the task of unsupervised
point cloud segmentation for holistic 3D scenes, named
U3DS3. Fig. 1 illustrates an initial qualitative result of our
approach. Our key contributions are summarized as:

• We propose a novel unsupervised semantic segmenta-
tion method to leverage the invariance and equivari-
ance through geometric transformation for both 3D in-
door and outdoor holistic scenes.

• We analyze and compare existing clustering ap-
proaches and the concurrent state-of-the-art, demon-
strating the advantages and superiority of our method
for efficient unsupervised learning on large-scale point
clouds of holistic 3D scenes with faster convergence.

• We conduct extensive experiments and ablation studies
to demonstrate significant improvement over standard
baselines, across the S3DIS [8] ScanNet [9] and Se-
manticKITTI [11] benchmark datasets, and illustrate
both the practicability of the proposed framework and
justify the intuition behind our design.

2. Related Work
In this section, we briefly summarize the prior literature
on 3D Semantic Segmentation (Sec. 2.1) and Unsupervised
Segmentation Learning (Sec. 2.2).

2.1. 3D Semantic Segmentation

To learn per-point semantics for 3D point clouds, many
deep learning based approaches tackle 3D point cloud se-
mantic segmentation tasks. PointNet [1] is a pioneering
work and the first one to leverage the point-based encod-
ing strategy, which is able to directly learn point features
from the raw points and extract local information embed-
ded in the neighbouring points. Following this work, more
point-based methods [2–4] have been proposed. KPConv
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Figure 2. The illustration of the proposed unsupervised semantic segmentation method. Each input point cloud is assigned to two pathways
and gives two groups of clustering centroids and labels for training. The point cloud is initially calculated to form a superpoint. This
superpoint is then merged to produce a refined superpoint, which guides the generation of pseudo-labels. The pink part of the volumetric
feature here denotes reverse the input tensor along the z axis.

[3] designs a kernel function for operating convolution in
3D space to tackle local geometric structures. RandLA-
Net [4] proposes a more efficient framework by replacing
a complicated point selection strategy with random sam-
pling. On the other hand, voxel-based approaches [32, 33]
typically employ a 3D convolutional neural network by con-
verting the point cloud from uneven distribution to regular
voxel grids. Some works [34, 35] explore the more effi-
cient voxel-based method by conducting sparse convolu-
tion. PVCNN [36] proposes a point-voxel corporate method
and utilizes trilinear de-voxelization for voxelized features
for fine-grained feature extraction. Our method also lever-
ages a 3D convolutional neural network and follows the tri-
linear de-voxelization approach from [36] to avoid extract-
ing identical features for the points that lie in the same voxel
grid. Moreover, [37,38] bring in graph convolutions to learn
point features. However, all of these fully supervised meth-
ods require richly annotated training data, which are time-
consuming and labour-expensive to obtain. To address the
issue, Jiang et al. [12] propose a semi-supervised contrastive
learning method for alleviating the tedious labelling cost.
Zhang et al. [13] utilizes perturbed self-distillation to em-
ploy a weakly supervised method for point cloud semantic
segmentation and reducing human annotations. In terms of
unsupervised manner, KMeans [28] and DBSCAN [29] are
classic methods and have no requirement for labelled data.
However, these methods can only deal with simple object-
level segmentation and lack of robustness under non-convex
and uneven data distribution.

2.2. Unsupervised Segmentation Learning

The exploration of unsupervised 2D semantic segmentation
shows more maturity compared to 3D. DeepCluster [39]
clusters the feature vector of the entire dataset using k-
means [28] to assign pseudo-labels and subsequently trains

its encoder. Our method shares the common idea that iter-
ative optimization of clustering can improve feature repre-
sentation learning. Abdal et al. [25] propose an unsuper-
vised segmentation framework that enables foreground and
background separation for raw input images and segments
class-specific Style-GAN images. Liu et al. [40] study the
segmentation for object parts by means of semantic con-
sistency of object parts, where the segmentation regions of
the same part should be semantically consistent across ob-
ject instances and robust to appearance and shape changes.
Gansbeke et al. [24] put forward a two-step framework that
adopts a predetermined mid-level prior in a contrastive op-
timization objective to learn pixel embedding for semantic
segmentation. PICIE [21] notably proposes a pixel-level se-
mantic segmentation method that can incorporate geomet-
ric consistency as an inductive bias to learn invariance and
equivariance for photometric and geometric variations.

As for the 3D domain, some work already shows no-
table performance on unsupervised segmentation, but not
especially for scene-level semantic segmentation. Yang et
al. [18] employs object sampler and background sampler to
tackle unsupervised point cloud co-segmentation for object-
level segmentation by co-contrastive learning and mutual
attention sampling. However, the co-segmentation method
only works for objects and it is limited by the groups of
common 3D objects. Some other works [26, 27] focus on
unsupervised domain adaptation for point cloud semantic
segmentation. OGC [19] can simultaneously identify mul-
tiple 3D objects in a single forward pass, without any hu-
man annotations, which leverages the dynamic motion pat-
terns over (LiDAR captured) sequential point clouds as su-
pervision signals to automatically discover rigid objects.
However, OGC [19] needs the dynamic information of con-
tinuous point cloud frames as an input prior. Poux et
al. [41] leverages the region growing method for indoor



unsupervised object-level segmentation, but the segmen-
tation is only for generating larger object segment parts.
GrowSP [17] is the only unsupervised 3D semantic segmen-
tation that employs a progressively region-growing scheme
to generate high-quality over-segmentation, however, their
method does not fully leverage the intrinsic geometric infor-
mation of the point clouds and tends to predict over-smooth
segmentation and lose accuracy in intricate scenes. In con-
trast, our work aims to investigate unsupervised 3D seman-
tic segmentation leveraging the intrinsic geometric informa-
tion of the point clouds for holistic 3D scenes without any
dynamic information or transfer learning prior.

3. U3DS3 Methodology
This work formulates the task of unsupervised point cloud
semantic segmentation as point-level segmentation, where
every point within the point cloud needs to be assigned a
label of a fixed number of semantic class labels.

To state formally, given a point cloud set P without la-
bels, let c = {ci} and f = {fi} denote the point coor-
dinates and the corresponding features from P ∈ RN×3,
F ∈ RN×d, where N is the number of points of the in-
put point cloud, and d denotes the feature size, which con-
tains coordinates, colours, and normalized positional infor-
mation. Hence, the goal of this work is to learn a semantic
segmentation function gθ, which is able to predict per-point
labels in an unsupervised way for P using only c and f .

As shown in Fig. 2, for each input point region, we first
apply two different colour transformations and afterwards
convert them to the volumetric domain. For pathway-1 in
the top row, we implement a geometric transformation be-
fore the voxelized features are fed into the model. After the
forward pass, we operate a corresponding inverse geometric
transformation to the output features to ensure this represen-
tation shares the same properties with the non-transformed
pathway-2. Subsequently, we cluster features from the dif-
ferent point cloud blocks and produce two groups of clus-
tering centroids and labels, which can be used for further
training and loss assembled from different pathways.

3.1. Superpoint

For all point clouds P1, P2, P3, . . . within a point cloud set
P , we adhere to the VCCS [30] method to obtain initial
superpoints for each point cloud. These can be denoted
as

{{
SP 1

1 , SP
2
1 , SP

3
1 , . . .

}
,
{
SP 1

2 , SP
2
2 , SP

3
2 , . . .

}
, . . .

}
,

where SP i
j represents the i-th superpoint in the j-th point

cloud. The initial superpoints may vary across differ-
ent point clouds. Subsequently, we employ a straightfor-
ward strategy to merge the superpoints within each scene:
1) Identify the smallest superpoint SP i along with its
two closest neighboring superpoints SP k1, SP k2; 2) Com-
pute the vector addition of points within each superpoint
and calculate the cosine similarity, here simply noted as

cos[SP i, SP k1]; 3) Merge the smallest superpoint with the
one that exhibits higher cosine similarity; 4) Repeatedly ex-
ecute the above three steps until the superpoints reach a pre-
determined number. This simplistic approach is based on
the principle that similar semantic objects possess compa-
rable normals. Ultimately, the updated superpoints become{{

SPn1
1 , SPn2

1 , . . .
}
,
{
SPn1

2 , SPn2
2 , . . .

}
, . . .

}
, ensuring

that the points within the same superpoint are assigned iden-
tical labels. We define the final superpoint count as a param-
eter, represented by γsp. For all datasets, the optimal value
is empirically found as γsp = 40.

3.2. Voxelization and Devoxelization

We produce different representations for the input point
cloud via the geometric transformation on the volumet-
ric domain, where a voxel-based architecture is naturally
adopted for such representation. Here, using voxeliza-
tion and devoxelization in the pipeline, we present a sim-
ple yet effective network which contains only 3D convo-
lutional layers with batch normalization without any addi-
tional component (details in Sec. 3.3).

Given the input points coordinate c with corresponding
features f in the input blocks, we normalize the coordinates
c before voxelizing the original points to gain scale invari-
ance. Specifically, we normalize the coordinate c into [0,1]
and denoted by c∗ = {c∗i }. In this process, the point fea-
tures (including the coordinates) do not change, and the nor-
malized coordinates are only used for converting the feature
to the proper volumetric space.

When transferring the features f with normalized coor-
dinates c∗ = {x∗,y∗, z∗} into the voxel grids {V m,p,q},
the interpolated feature fi for the voxel grid is calculated as
the mean value of the features of points located in the grid.

V m,p,q =
1

Km,p,q

n∑
i=1

I[floor(x∗
i × r) = m,

floor(y∗i × r) = p, floor(z∗i × r) = q]× fi

(1)

where r denotes the voxel resolution and I is an indicator
function that indicates whether coordinates ci belong to the
voxel grid {m, p, q}. Km,p,q represents the count of points
falling within the grid {m, p, q}, and floor(·) is floor func-
tion that outputs the greatest integer less than or equal to the
input.

In terms of the per-point clustering, we need to devox-
elize the voxel-based features output from the model gθ to
point-based features. We follow the trilinear interpolation
of PVCNN [36] instead of the traditional nearest neighbor
interpolation to ensure that nearby points are not assigned
identical features.

3.3. Baseline: Clustering and Iteration

U3DS3 applies a clustering-based method iteratively to gen-
erate pseudo-labels and train our baseline method, as in-



spired by DeepCluster [39]. Adapting [39] to the 3D do-
main is non-trivial due to the irregular nature and vary-
ing sparsity of point clouds. We present a simple yet
effective strategy: switching between generating pseudo-
labels via clustering with the current feature representa-
tions, and training new feature representations with the gen-
erated pseudo-labels. Different from [21, 39], the segmen-
tation function gθ should be able to produce per-point fea-
tures, and we replace the parametric classifier with a non-
parametric distance metric. Specifically, we denote the vox-
elization and devoxelization operations as Z and Z−1. The
voxelized feature is v = {vi} = {Z(fi, c

∗
i )}, and the out-

put voxelized feature of the 3D convolutional function is
vout = gθ(v). Finally, the features for clustering can be
denoted as f

′
=

{
f

′

i

}
=

{
Z−1(vouti , c∗i )

}
. The main

procedure can be separated as two parts:
(1) Using the current embeddings and k-means to cluster

the points with superpoints guidance in the point cloud:

min
l,µ

∑
i

∥∥∥f ′

i − µlspi

∥∥∥2 (2)

where lspi denotes the cluster label of point ci with the con-
straint of superpoint, and µk denotes the k-th cluster cen-
troid. Note the features f

′

i and the centroids µk have the
same dimension.

(2) Using the class labels as pseudo-labels, we train a
classifier via cross-entropy loss, which is shown in the point
cloud setting as:

min
θ,W

∑
i

LCE

(
gW (f

′

i ), l
sp
i ,µ

)
(3)

where gW denotes the parametric classifier. Under the unsu-
pervised setting, it will be very challenging to train a clas-
sifier jointly with constantly changing pseudo-labels. We
therefore choose to label points only based on their cosine
distance from to the clustering centroids in feature space.
Specifically, the loss function shows the following format:

min
θ

∑
i

Lcluster

(
f

′

i , l
sp
i ,µ

)
(4)

Lcluster

(
f

′

i , l
sp
i ,µ

)
= −log

 e
−d(f

′
i ,µl

sp
i

)∑
t e

−d(f
′
i ,µt)

 (5)

where d(·, ·) denotes the cosine distance.

3.4. Volumetric Transformations

To improve robustness in the unsupervised setting under
different scenarios, we leverage the invariance and equiv-
ariance of volumetric representations of point clouds. In-
variance means that the labelling should not change after

applying different transformations such as colour jittering.
Equivariance in the volumetric domain means when we ap-
ply a geometric transformation to the point cloud, the cor-
responding 3D convolutional feature should be similarly
transformed, and the corresponding labels are also wrapped
according to this transformation.

For simplicity, we name the two pipelines processing the
two representations as pathway-1 and pathway-2. To pro-
duce two different representations for an individual input
block, we apply a geometric transformation before volu-
metric feature extraction and then perform a corresponding
inverse transformation on the final voxelized features.

Specifically, let G and G−1 denote the voxelized feature
geometric transformation and its reverse transformation re-
spectively, and O is the colour transformation. For point c
with its feature f , we apply different colour transformations
for original features f :

f1 = O1(f),f2 = O2(f) (6)

Next, we transform these two features into the voxel grid,
noting that c∗1 is actually equal to c∗2:

v1 = Z(f1, c
∗
1),v2 = Z(f2, c

∗
2) (7)

After that, the voxelized feature transformations are applied
to the volumetric domain: only the features of pathway-1
are transformed whilst the other remains unchanged. The
geometric transformations operate on the voxelized feature
v and the corresponding reverse geometric transformations
operate on the output voxel feature vout:

vout
1 = G−1 {gθ[G(v1)]} ,vout

2 = gθ(v2) (8)

Subsequently, we perform de-voxelization to get the fea-
tures for clustering:

f
′

1 = Z−1(vout
1 , c∗1),f

′

2 = Z−1(vout
2 , c∗2) (9)

3.5. Losses and Labelling Scheme

Given input clouds c with features f , according to
the colour and geometric transformations introduced in
Sec. 3.3, two different feature representations, f

′

1,f
′

2, can
be produced. By leveraging these two features, we cluster
the two representations separately to get two groups of cen-
troids and pseudo-labels:

l(1), µ(1) = argmin
l,µ

∑
i

∥∥∥f ′

1i − µlspi

∥∥∥2 (10)

l(2), µ(2) = argmin
l,µ

∑
i

∥∥∥f ′

2i − µlspi

∥∥∥2 (11)



!"#$%&&&&&&&&&&&&&&&&&&&&&&&&&&&&'(&&&&&&&&&&&&&&&&&&&&&&&&&&)*+,-.&&&&&&&&&&&&&&&&&&&&&&&/012"3&&&&&&&&&&&&&&&&&&&&&&'456+7& 8$43&&&&&&&&
!"##$$$$$$$$$$$$$$$$$$$%#&&'$$$$$$$$$$$$$$$$$$$

()*+,'-$$$$$$$$$$$$$$$$$$$*&,.+-'$$$$$$$$$$$$$$$$$$$

*"/).-+$$$$$$$$$$$$$$$$$$$/-0$$$$$$$$$$$$$$$$$$$

0-12$$$$$$$$$$$$$$$$$$$*,'+").$$$$$$$$$$$$$$$$$$$

*3")'$$$$$$$$$$$$$$$$$$$

'-%')4-'"+&'$$$$$$$$$$$$$$$$$$$

+"/#-$$$$$$$$$$$$$$$$$$$

+&)#-+$$$$$$$$$$$$$$$$$$$

!).0&!$$$$$$$$$$$$$$$$$$$

/"+3+,/$$$$$$$$$$$$$$$$$$

)4.&'-$$$$$$$$$$$$$$$$$$$

1&%"$$$$$$$$$$$$$$$$$$$

0&&'$$$$$$$$$$$$$$$$$$$

1).2$$$$$$$$$$$$$$$$$$$

/&&213-#%$$$$$$$$$$$$$$$$$$$

&+3-'$$$$$$$$$$$$$$$$$$$

13&!-'$
*,'+").$$$$$$$$$$$$$$$$$$$

Figure 3. Qualitative results on ScanNet [9]. Each class label is assigned a colour (as per legend, right). This illustration shows superior
segmentation performance compared to the baselines.

We then set two loss functions. Firstly, the feature rep-
resentation should match the pseudo-labels produced by the
same pathway:

L1 =
∑
i

Lcluster

(
f

′

1i, l
sp(1)
i ,µ(1)

)
+

∑
i

Lcluster

(
f

′

2i, l
sp(2)
i ,µ(2)

) (12)

Similarly, the feature representation should whilst match the
pseudo-labels produced by the different pathway:

L2 =
∑
i

Lcluster

(
f

′

1i, l
sp(2)
i ,µ(2)

)
+

∑
i

Lcluster

(
f

′

2i, l
sp(1)
i ,µ(1)

) (13)

The final training objective is their summation:

Lfinal = L1 + L2 (14)

The loss encourages the feature from one pathway to ad-
here to labels generated by another pathway, which encour-
ages the network to label similarly to feature representations
from different pathways.

Hungarian Algorithm: To match the clustering labels
with the real labels, we utilize the Hungarian algorithm [42]
accross the whole dataset every epoch. Specifically, where
C is categories, P is the predicted set and G is the ground
truth (GT) set. SC×C is the matching matrix, where Sij

denotes the matching degree between ith predicted category
and jth GT category. Criterion: finding bijection f :i → j
to maximize

∑C
i=1 Si,f(i).

4. Experiments
Implementation Details: We implement a simple yet ef-
fective framework with 8 layers 3D convolution, where each

Method Level of Supervision mIoU mAcc oAcc
KMeans [28] unsupervised 3.4 10.4 10.2
DBSCAN [29] unsupervised 6.1 10.1 15.3
GrowSP [17] unsupervised 25.4 44.2 57.3
U3DS3 (ours) unsupervised 27.3 46.8 60.1

Table 1. Semantic segmentation results on ScanNet dataset. We
evaluate 20 categories on validation set

layer employs a 3D batch normalization and leaky rectified
linear activation function (ReLU). The input point cloud
contains 12D features, i.e., the point coordinates (x, y, z)
in the normalized block coordinate system, colour informa-
tion (R,G,B), per-point normals and normalized raw co-
ordinates in the original scene coordinate system. Note that
no colour information is provided in SemanticKITTI [11].

Training: We use a batch size of 4 with 4096 points per
batch for all datasets. The chosen optimizer is stochastic
gradient descent (SGD) with a learning rate of 1e− 4 and a
weight decay of 1e−5. We train our network for 10 epochs.
For the geometric transformation in the volumetric domain,
we reverse the order of tensors along the given x, y and
z-axis respectively. The colour transformation comprises
random contrast and random brightness adjustment. The
output feature dimension from the model and the clustering
feature dimension is set to 128. The resolution of the voxel
grid is set to 32. Besides, we use the FAISS library [43]
on GPU to compute the cluster centroids via employing a
mini-batch k-means approach [31].

Evaluation: For evaluation and comparison with other
methods, we choose two classical unsupervised clustering
methods, k-means [28], DBSCAN [29], and the only un-
supervised semantic segmentation method GrowSP [17] as
baselines. Our method is evaluated with three metrics: over-
all accuracy (oAcc), mean accuracy (mAcc) and the mean
intersection of union (mIoU) on all datasets. All exper-
iments are performed on a single NVIDIA RTX 2080Ti
GPU.
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Figure 4. Qualitative results on SemanticKITTI [11] (top 2 rows) and S3DIS [8] (bottom row). Our method draws more versatile results
compared with DBSCAN [29] and is more stable than k-means [28], which shows promising segmentation results.

Method Level of Supervision mIoU mAcc oAcc
KMeans [28] unsupervised 2.5 8.1 8.2
DBSCAN [29] unsupervised 6.8 7.5 17.8
GrowSP [17] unsupervised 13.2 19.7 38.3
U3DS3 (ours) unsupervised 14.2 23.1 34.8

Table 2. Semantic segmentation results on SemanticKITTI
dataset. We evaluate 19 categories on validation set

4.1. Datasets

We evaluate U3DS3 on two indoor and one outdoor bench-
mark: S3DIS [8], ScanNet [9] and SemanticKITTI [11].

S3DIS [8] is a large-scale indoor scenes dataset which
consists of 271 point cloud rooms in six areas. The anno-
tations of each point in the point cloud scene belong to 13
semantic categories. We train the model in areas 1, 2, 3,
4, 6 and test it in area 5 following [1, 3, 44]. We exclude
clutter and test with 12 classes for a fair comparison with
GrowSP [17], nevertheless, we also test with 13 categories
to compare with the existing supervised, weakly, and semi-
supervised methods.

ScanNet-v2 [9] is an RGB-D real-world indoor dataset.
It contains 1201 scenes for training, 312 for validation, and
100 for online testing. For scene semantic segmentation, it
has 40 classes and one unlabelled class for training and 20
classes and for testing. We compare with existing clustering
and unsupervised methods on the validation set.

SemanticKITTI [11]: is a large-scale outdoor dataset
that is based on the KITTI Vision Odometry Benchmark.
For the semantic segmentation task, it provides 22 se-
quences with point-wise annotation of 19 classes. Each se-
quence contains a number of scene scans collected by the
complete 360 field-of-view of the employed automotive LI-
DAR, where sequences 11-21 are used for online testing, 08

Method Level of Supervision mIoU mAcc oAcc
PTv2 [46] fully supervised 72.6 78.0 91.6
KPConv [3] fully supervised 67.1 72.8 -
SSP+SPG [47] fully supervised 61.7 68.2 87.9
PointNet [1] fully supervised 41.4 - -

Jiang et al. [12] semi-supervised (10%) 57.7 - 69.1
MT [48] weakly supervised (1pt) 44.4 - -
Zhang et al. [13] weakly supervised (1pt) 48.2 - -

KMeans [28] unsupervised 9.4 21.2 22.1
DBSCAN [29] unsupervised 9.2 19.8 17.5
GrowSP(12) [17] unsupervised 44.6 57.2 78.4
U3DS3 (ours)(12) unsupervised 42.8 55.8 75.5
U3DS3 (ours) unsupervised 40.1 52.9 72.3

Table 3. Semantic segmentation results on S3DIS Area-5 are
compared using mIoU, mAcc and oAcc across various methods.
Where (12) indicates the exclusion of clutter, while the results
without (12) are tested with 13 classes.

is the validation set and the others are training sets.
Data Preparation: For all datasets, we choose γsp = 40

as the superpoint number for each scene. We first apply uni-
form downsampling to S3DIS [8] and ScanNet [9] with the
sub-grid size 0.03 and subsequently follow PointCNN [44]
to sample point clouds into blocks to ensure that each data
sample in the batch has the same number of points. For
S3DIS [8] and ScanNet [9], the block size is 1.5 × 1.5 on
xy plane, and each block contains 4096 points. For Se-
manticKITTI [11], we set each block size as 5 × 5 on xy
plane with 4096 points. For each point cloud, we utilize
VCCS [30] to derive the initial superpoint. This is then
merged for enhanced segmentation, as detailed in Sec. 3.1.
Furthermore, due to the characteristics and predominance
of roads in outdoor SemanticKITTI [11] datasets, we apply
RANSAC [45] to fit a plane as the road for improved gener-
ation of superpoints. Note this process will not be utilized
elsewhere.



4.2. Results and Comparison on Benchmarks

To thoroughly evaluate our U3DS3, we test our methods
on the indoor S3DIS [8], ScanNet [9] and outdoor Se-
manticKITTI [11] benchmarks. Tabs. 1 to 3 respectively
shows the semantic segmentation results on the ScanNet,
SemanticKITTI and S3DIS dataset. Not surprisingly, fully
supervised methods provide the best performance. From
Tab. 3, our method significantly outperforms the existing
clustering methods, where it achieves 75.5% overall accu-
racy and 42.8 mIoU on the S3DIS dataset. Moreover, our
method is even close to the performance reported by the
fully supervised method [1] and some up-to-date weakly su-
pervised methods [48, 49], which is a big step forward for
unsupervised semantic 3D scene segmentation.

Moreover, we outperform GrowSP [17] on both the
ScanNet and SemanticKITTI datasets. Specifically, as dis-
played in Tab. 1, our method achieves a superiority of +1.9
mIoU and +2.6 mAcc over their results. Additionally, Tab. 2
demonstrates that our method achieves 1 mIoU and 3.4
mAcc higher than GrowSP [17], despite having a slightly
lower oAcc. Fig. 3 shows the qualitative comparison on
S3DIS, which further demonstrates the superiority of our
method.

4.3. Ablation Study

To showcase the effectiveness of each module and the dif-
ferent volumetric transformations. We conduct eight groups
of experiments on the S3DIS [8] dataset: (1) the baseline
approach proposed in Sec. 3.3, (2) adding colour transfor-
mation on the basis of the control group (1), (3) adding
voxelized feature transformation on the basis of the control
group (1), and (4) full model without prior superpoint, (5)-
(8) different final prior superpoints as guidance. As shown
in Tab. 4, our full model clearly outperforms the baseline
on all of the evaluation metrics, benefiting from the deli-
cate volumetric transformation design and superpoint prior.
Groups (3) and (4) outperform by +5 mIoU and 8 OA com-
pared to the baseline. More interestingly, the improvement
of adding the geometric transformation for equivariance is
more significant than that of the invariance transformations,
which is different from prior unsupervised learning work in
the 2D domain [24, 25, 40]. It is known that point clouds
essentially present much stronger geometric priors than 2D
images with explicit 3D structures, which we believe can
significantly help the 3D representations to be more robust
and consistent cross-view and less sensitive to light changes
and jittering. Moreover, the employment of superpoints
can significantly enhance the overall performance. This en-
hancement is a result of the more abundant information of
superpoints, which facilitates the pre-segmentation of the
scene into higher-level semantic classes. Additional results
are available in the supplementary material.

Baseline Eqv Inv γsp mIoU mAcc oAcc
✓ 29.8 42.5 55.3
✓ ✓ 30.7 43.5 57.2
✓ ✓ 33.9 45.9 61.4
✓ ✓ ✓ 34.8 46.3 63.2
✓ ✓ ✓ 80 38.8 49.7 68.7
✓ ✓ ✓ 60 41.0 52.6 72.4
✓ ✓ ✓ 40 42.8 55.8 75.5
✓ ✓ ✓ 20 41.9 53.9 74.3

Table 4. Ablation study on S3DIS Area-5: Eqv denotes equivari-
ant voxelized feature transformation; Inv denotes invariant colour
transformation. γsp denotes the final superpoint number.

4.4. Analysis

Our U3DS3 approach demonstrates a promising level of
performance on both indoor and outdoor datasets when
compared to existing baselines. In contrast to GrowSP
[17], our method achieves superior results on ScanNet [17]
and SemanticKITTI [11]. As the scene complexity in-
creases, the quality of GrowSP [17] superpoints tends to
degrade. In contrast, our approach not only incorporates
pre-segmentation but also employs a two-pathways training
algorithm, leveraging the concepts of invariance and equiv-
ariance.

Nonetheless, slight performance degradation can occur
in practical scenarios. To address this, we have imple-
mented three strategies: (i) splitting the largest cluster when
another cluster in the set reaches zero entities; (ii) apply-
ing mild centroid perturbation during updates; and (iii) re-
weighting for loss balancing using per-class pseudo-label
ratios at each epoch. Additionally, our two-pathways ap-
proach expedites the convergence time during training. For
instance, while training with only one pathway necessitates
around 8 epochs to achieve convergence, the two-pathways
approach accomplishes convergence in just 2-3 epochs.

5. Conclusion and Discussion

We propose a novel generalized unsupervised semantic seg-
mentation method for both indoor and outdoor 3D scenes
with objects and the background. Our method leverages a
simple yet effective framework via clustering and iterative
generation leveraging the invariance and equivariance of
the volumetric representations with the assistance of super-
point. Experiments show promising performance on S3DIS,
ScanNet and SemanticKITTI datasets which proves the su-
periority of our approach beyond all the existing baselines.
This work aims to provide more insight for 3D unsupervised
learning. Future work will explore improved point sampling
strategies and an extension to point- or graph-based rep-
resentations, benefiting other areas related to unsupervised
learning, metric learning and 3D representation learning.
Acknowledgement: EPSRC NortHFutures (ref:
EP/X031012/1).
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