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Figure 1: Two reconstruction examples (left and middle images) and display in virtual reality (right image). Our network

generates 3D sculptures from single RGB images. Results can be used in virtual reality applications such as virtual museum.

ABSTRACT

Acquiring the virtual equivalent of exhibits, such as sculptures, in

virtual reality (VR) museums, can be labour-intensive and some-

times infeasible. Deep learning based 3D reconstruction approaches

allow us to recover 3D shapes from 2D observations, among which

single-view-based approaches can reduce the need for human inter-

vention and specialised equipment in acquiring 3D sculptures for

VRmuseums. However, there exist two challenges when attempting

to use the well-researched human reconstruction methods: limited

data availability and domain shift. Considering sculptures are usu-

ally related to humans, we propose our unsupervised 3D domain

adaptation method for adapting a single-view 3D implicit recon-

struction model from the source (real-world humans) to the target

(sculptures) domain. We have compared the generated shapes with

other methods and conducted ablation studies as well as a user
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study to demonstrate the effectiveness of our adaptation method.

We also deploy our results in a VR application.
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modeling.
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1 INTRODUCTION

While virtual reality (VR) is an effective tool for implementing vir-

tual museums, the acquisition of the virtual equivalent of exhibits,

such as sculptures that we consider in this paper, can be labour-

intensive. Many exhibits are 3D in nature, such as sculptures, his-

torical objects and specimens. Typical solutions for acquiring 3D

surfaces such as 3D scanning generally require specific hardware

and potentially manual post-processing. A machine-learning-based,
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software solution that requires minimal human intervention is ben-

eficial for VR applications. This paper focuses on sculptures as they

have a wide variety of shape topology and are challenging due to

the general lack of texture.

Deep learning based 3D reconstruction has the potential of effec-

tively acquiring 3D models from 2D observations. View synthesis

approaches such as NeRF [23] can render new views, but may incur

inconsistency across views due to the lack of explicit 3D modelling.

General object reconstructions such as [26] may reconstruct a wide

variety of objects. However, due to the lack of prior knowledge on

the type of objects, reconstruction quality may not always be con-

sistent. We observe that sculptures generally resemble real-world

humans while having variations on body structure. This motivates

us to adapt the well-researched 3D human reconstruction methods

such as [33] to reconstruct sculptures.

To minimise the amount of human intervention and the use

of specialised equipment, implicit 3D human reconstruction from

a single RGB image is preferred. Previous single-view based hu-

man reconstruction methods can be categorized into three streams:

implicit reconstruction, parametric reconstruction, and their combi-

nation. The first one is to learn an implicit function such as signed

distance function [26] and occupancy probability [2]. The second

one builds upon various parametric human models such as SMPL

[19] and uses neural network to estimate a few parameters to de-

form the pre-defined parametric human models. The combination

[3] blends previous two streams to add surface details to parametric

human models. Compared with regular human shapes, sculptures

have more irregular topology. Parametric human models cannot

be deformed into another topology. To solve the irregular topology

of sculptures, we consider implicit models are more suitable than

parametric ones for our reconstruction problem.

There are two major challenges when adapting single-view im-

plicit 3D reconstruction for sculptures. First, obtaining 3D data are

labour-intensive and sometimes infeasible [2], which is particularly

true for sculptures as they may be of larger sizes and partially com-

bined together with the environment. Second, sculptures generally

consist of irregular topology, making it difficult to apply pre-trained

models for reconstruction. This is known as domain shift [40] in

machine learning.

Our insight is that the aforementioned challenges can be solved

by unsupervised domain adaptation of 3D human reconstruction

systems. To tackle the limitation of data, unsupervised learning

enables our system to acquire knowledge of 3D sculptures without

large well-labelled datasets [24]. To tackle domain shift, due to the

similarity of human-based shapes and sculptures, domain adapta-

tion on an implicit model can transfer knowledge learnt from one

domain into another [40] without retraining while allowing the

modelling of the different distribution of topology.

In this work, we propose a new method of unsupervised 3D do-

main adaptation for 3D sculpture reconstruction tasks. Our pipeline

utilises single RGB images as input and transfers a pre-trained im-

plicit model from source (real-world human) into target (sculpture)

domain in an unsupervised manner. We consider pre-trained PIFu

[33] is more suitable than other implicit models due to limited data

availability. To represent domain shift, we adapt multi-layer in-

termediate feature architecture and Maximum Mean Discrepancy

(MMD) into our problem of 3D unsupervised domain adaptation.

Multiple features in the encoder extract different patterns from low

to high levels. Our MMD is based on multiple levels of features

and aligns two domains. To refine geometry and surface details, we

propose neighbour aggregation and pseudo labels for our problem

of 3D unsupervised domain adaptation on 3D sculpture reconstruc-

tion. Guidance is designed to transmit from the source domain to

the target domain through aggregation and pseudo labels. During

the aggregation, we re-weight features that are used to define neigh-

bours by balancing the importance of pixel-aligned information

with depth values. To the best of our knowledge, we present the

first research on unsupervised 3D domain adaptation with implicit

models on the 3D reconstruction task.

Experiments show our network exceeds state-of-the-art on our

collected sculptures for evaluation. We have provided qualitative

results generated by various methods. As for quantitative compari-

son, we choose Chamfer distance and point-to-surface distance as

the two metrics - in both of which our methods achieve the best

results. We also conduct extra experiments on other alternative

domain adaptation methods to demonstrate the effectiveness of

our design. Additional ablation studies on proposed modules and

design choices have been implemented. In addition, we have also

invited 20 volunteers to participate in our user study. Finally, we

deploy the reconstructed sculptures in a VR application.

Our contributions are as follows, with source code available at

https://github.com/mrzzy2021/SculptureRecon:

• We propose an unsupervised method for domain adaptation

on sculpture reconstruction, solving the problem of creating

3D shapes with limited available data.

• We adapt multi-level features into our problem of unsuper-

vised 3D domain adaptation on a 3D reconstruction task.

• We propose to use a re-weighting and neighbourhood strat-

egy for better structural exploration of latent feature space.

2 RELATEDWORK

2.1 3D Reconstruction

3D reconstruction has been applied in recovering a variety of sub-

jects. Some approaches mainly focus on human reconstruction

[5, 36]. Others are specialized for objects [10, 12]. For example, [8]

is designed for humans while [25] focuses on reconstructing 3D

cars. There are also methods for arbitrary subjects such as NeRF

[23]. However, the reconstruction quality may not be consistent

due to the lack of prior knowledge. In our paper, we observe that

many sculptures are artistic interpretations of real world human

beings and thus, we focus more on human reconstruction to better

leverage domain knowledge and control computational cost.

Among 3D human reconstruction methods, they can be catego-

rized into single-view and multi-view human reconstruction [41].

Single-view methods can recover 3D shape from a single image

[33, 36]. Multi-view approaches make predictions based on several

images or videos that carry shape information from different angles

[5, 13]. While multi-view human reconstruction can achieve better

performance, it requires more information as input, which may not

be accessible due to limited data acquisition. On the contrary, single-

view reconstruction methods are more flexible and easy to operate

when data acquisition is difficult. As it may not be easy to collect

multi-view images for sculptures due to complex environmental

2
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restrictions, we are interested in single-view reconstruction. This

also makes our methodology favorable for practical deployment of

AR/VR applications among others, as it is easier to obtain a single

image of a sculpture when compared with multiple images.

There are three main streams of methods for reconstruction of

real-world humans. The first stream uses implicit models, which

is proposed in recent years and has become more and more popu-

lar. Implicit models rely on a learned function to describe surfaces

[41]. There are two popular implicit representations available for

implicit models. One is occupancy probability, which indicates the

probability of the queried 3D coordinate inside the 3D shape and

many studies have trained implicit functions to predict the proba-

bility [33, 34]. They focus on how to extract more representative

image features, by aligning pixel-wise features to coordinates or

iteratively extracting multi-level local features, to facilitate more ac-

curate classification on sampled locations. The other representation

is the signed distance function [18, 26]. Instead of using probability

to indicate different properties of 3D coordinates, signed distance

functions indicate the positive or negative distance from sampled

locations to the surface [39].

The second stream of methods for the reconstruction of real-

world humans uses parametricmodels. Thesemodels are pre-defined

manually and controlled by a few parameters. A large number of

parametric human models have been proposed such as SMPL [19],

MANO [31], SMPL-X [28] and STAR [27]. Earlier studies usually

estimate the corresponding parameters directly on the provided

images. To achieve better results, recent works tend to estimate

parameters in cooperation with other extra information. [1] makes

use of UV transformation to generate normals and displacements

and then applies them to SMPL models to get a clothed 3D human

body. [37] directly fits a SMPL model to silhouette and posture and

then refines the texture of the SMPL model by normal and skinning

maps. [42] assigns pre-defined semantic representation to every

estimated SMPL vertex and voxelises mesh to better refine shape

details. [8] proposes to use UV map to indicate occlusion and lever-

ages convolution kernels on 2D images to encode style features and

size features to model clothes which are then combined with SMPL

parameters for reconstruction.

The third stream is to combine parametric models with implicit

representations for more accurate modelling [41]. Although in the

second and third streams, parametric methods can reconstruct 3D

real-world humans, they cannot handle irregular topology because

of their pre-defined parametric models. Therefore, we consider

implicit methods are more suitable for our reconstruction problem.

2.2 Domain Adaptation

There are three types of domain adaptationmethods. The first one is

supervised domain adaptation [17] and requires that both the source

and target domains are well-labelled. The second category is semi-

supervised domain adaptation [6] where partial target data are well-

labelled. The third one is unsupervised domain adaptation [40] and

does not rely on target labels to transfer the learnt knowledge from

the source domain to the target domain. Considering the limited

data acquisition, we believe unsupervised domain adaptation is

more suitable to solve our problem.

Unsupervised domain adaptation has been widely used on 2D

or 2.5D tasks. Previous researches on 2D can be categorised into

two groups. One is based on learning domain-invariant features

and the other is to use a network to directly learn the mapping.

The former category [15] minimises domain shifts by reducing

the difference between feature distributions in feature space. The

latter group [4] models the mapping by training a network such

as CycleGAN [43]. For 2.5D, [35] utilises contrastive learning to

maintain geometries with depth images. For these different inputs,

there are a number of popular methods such as pseudo-labeling

[32], and batch normalization tailored for domain adaptation [22].

Though lots of effort has been made on 2D images or depth maps,

fewworks have been proposed for 3D reconstruction. Unsupervised

domain adaptation for 3D reconstruction was introduced by [29].

[16] assumes their data are from the same object category and

proposes a method that performs translations between 3D and 2D

representations, which in other words are two domains. It focuses

more on training networks by unpaired images and shapes. [38]

fills the domain gap in 3D reconstruction between synthetic images

and real images by extracting domain-invariant image features.

This work utilises graph neural network for mesh generation and

proposes DDA to extends the network to solve the synthetic-to-

real difference [21, 30]. Instead of synthetic-to-real differences, our

research focuses on the topology shift and we propose our domain

adaptation methods to solve the sculpture reconstruction problem

as a transferring problem.

3 3D SCULPTURE RECONSTRUCTION

Figure 2: Overview of our proposed unsupervised domain

adaptation on 3D sculpture reconstruction.

Reconstructing 3D sculptures from single RGB images has two

main challenges. First, the difficulty on data acquisition leads to

limited labels and training data. It is infeasible to obtain other

auxiliary information such as surface normals, prohibiting the use

of some reconstruction modules [34]. The other challenge is the

domain shift of topology. The irregular topology of 3D sculptures

makes domain transferring non-linear. The ideal 3D representation

used in the reconstruction module should be flexible enough to

cover various potential 3D shapes.

To solve the aforementioned challenges, we choose PIFu [33] that

is pre-trained on real-world humans and propose our unsupervised

domain adaptation (UDA) pipeline. Using a human reconstruction

network aids the unsupervised domain adaptation. We observe that

3
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sculptures are usually artistic interpretations of humans. To alle-

viate the difficulty of transferring, we leverage the already-learnt

knowledge on real-world human shapes as a solid starting point.

PIFu is a single-view reconstruction method and only requires a sin-

gle RGB image as input, mitigating the difficulty on data acquisition.

Meanwhile, PIFu is based on implicit representation that learns a

function to approximate the surface. Compared with parametric

representation, PIFu is not restricted by the pre-defined canonical

models and is flexible enough to learn irregular topology of 3D

sculptures. We also design our domain adaptation to be unsuper-

vised to transfer knowledge of real-world humans into sculptures

without requiring labels in the target domain.

3.1 Problem Definition

Considering the challenges, our goal is to propose an unsupervised

domain adaptation (UDA) method for PIFu to solve the problem

of reconstructing 3D sculptures from single RGB images. We will

first briefly introduce the pre-trained PIFu used in our domain

adaptation process. Then, we will discuss our unsupervised domain

adaptation settings. The pipeline of PIFu is shown in Figure 3. PIFu

Figure 3: Domain definition. Our source and target domains

are composed of pixel-aligned features for each queried point.

The target domain only has features 𝑓 𝑡 from sculptures and

does not have ground truth 𝑦𝑡 .

predicts the occupancy probability for any queried point in space.

It focuses on learning an implicit function 𝑓 𝑢𝑛𝑐 (𝑝, 𝐼, 𝑀) for a query

point 𝑝 = (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧) ∈ R
3, which is formulated as:

𝑓 𝑢𝑛𝑐 (𝑝, 𝐼, 𝑀) = 𝑔(𝜑 (𝑝𝑥 , 𝑝𝑦, 𝐼 , 𝑀), 𝑝𝑧) = 𝑜 ∈ [0, 1], (1)

where 𝐼 and 𝑀 are an image and its mask, 𝜑 and 𝑔 are encoder

and decoder, respectively, 𝑜 is the predicted occupancy probability

for the queried point 𝑝 . The pixel-aligned feature 𝑓 in PIFu for

the queried point 𝑝 = (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧) is formed by two concatenated

parts: a feature based on bilinear interpolation with (𝑝𝑥 , 𝑝𝑦) and
the corresponding depth value 𝑝𝑧 . The learned shape S is extracted

using marching cubes:

S = {𝑝 ∈ R3 |𝑜 = 0.5}. (2)

Our 3D unsupervised domain adaptation (UDA) settings are

based on the pixel-aligned features extracted by the PIFu encoder.

For our UDA with implicit reconstruction models, we have access

to the labeled source domain that consists of 𝑛𝑠 queried points for

each real-world human mesh. The PIFu encoder then converts these

queried points into their corresponding pixel-aligned features. As

we use multi-level architecture (to be explained in Section 3.2), we

define our source domain as D𝑠 = {𝑓 𝑠,𝑙𝑖 , 𝑦𝑠𝑖 } for 𝑖 = 1, ..., 𝑛𝑠 and

𝑙 = 1, ..., 𝐿 where the source labels 𝑦𝑠𝑖 are defined as:

𝑦𝑠𝑖 =

{
1 𝑝𝑠𝑖 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑚𝑒𝑠ℎ 𝑠𝑢𝑟 𝑓 𝑎𝑐𝑒,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(3)

and 𝑛𝑠 is the number of pixel-aligned features. Similarly, the target

domain for the 𝑙-th layer is defined as D𝑡,𝑙 = {𝑓 𝑡,𝑙𝑖 } for 𝑖 = 1, ..., 𝑛𝑡 ,
which consist of 𝑛𝑡 features and the target labels are unknown.

Our aim is to estimate their corresponding occupancy probability

𝑜𝑡,𝑙 ∈ Y𝑡,𝑙 through our UDAmethod. Note that𝑦 in Eq.3 represents

the ground truth label, which is only possibly 1 or 0. On the contrary,

𝑜 in Eq.1 means the predictions of our neural network, which is

within the range from 0 to 1.

3.2 Multi-level Features

Figure 4: We propose to adapt multi-level pixel-aligned fea-

tures to solve our unsupervised domain adaptation problem.

We propose to adapt the multi-level pixel-aligned features into

our UDA method for the sculpture reconstruction problem, as

shown in Figure 4. The latent features from different encoder layers

are usually sensitive to a subset of input patterns. This facilitates

our UDA to better measure domain shifts using comprehensive

information from low to high network levels.

We also propose to process the multi-level features layer by

layer dynamically. Instead of mixing them up, our design processes

these features layer by layer. In this way, the relative information

of occupancy within each layer can be maintained and perceived

by our adaptation method.

The multi-level pixel-aligned features come from image features

extracted by the PIFu encoder. We choose four output layers of

the stacked hourglass network in the PIFu encoder to obtain the

pixel-aligned features. As shown in Figure 4, we first extract the

multiple image features by different layers of PIFu encoder and then

we assign the pixel-aligned features to each queried point according

to their pixel-aligned 2D locations. After obtaining features, we

form a number of source-target latent spaces with features from

4
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the same layers. Multi-layer features {𝑓 𝑙 }𝐿
𝑙=1 are extracted when

given a point 𝑝 and layer 𝑙 .

3.3 Domain Alignment

We propose our domain alignment method to align features from

the source (real-world humans) and the target (sculpture) domains

for our reconstruction task. Our domain alignment has two compo-

nents, minimising discrepancy and maintaining accuracy.

Figure 5: Our domain alignment utilises MaximumMean Dis-

crepancy and maintains the accuracy in the source domain.

For the first component, we propose to adapt Maximum Mean

Discrepancy (MMD) [11] on pixel-aligned features from each layer

to mix up the source and target domains for 3D reconstruction.

MMD is a predefined kernel metric to quantify the similarity be-

tween two distributions. It leverages kernel functions to map pixel-

aligned features from two domains into a latent space where the

similarity can be calculated.

Compared to other learning-based methods, MMD is more suit-

able due to the limited data availability. As discussed in Section

3.1, data acquisition is a challenge that leads to limited training

data without labels. Under this problem scenario, we choose to use

this predefined measurement instead of learnt-based methods such

as discriminators in adversarial training. Although learnt-based

methods are more flexible, they require abundant training data to

extract knowledge for obtaining appropriate representations. For

example, discriminators trained on our small dataset cannot acquire

enough knowledge to provide guidance for adversarial learning,

which we will show results for in Section 4. By decreasing the dis-

tribution difference, the encoder is forced to pay more attention to

occupancy-related features.

Following our multi-layer architecture, our MMD is imposed

to pixel-aligned features for each layer and we use the average

value as our similarity loss for the adaptation process. Each pixel-

aligned feature is projected into the Reproducing Kernel Hilbert

Space (RKHS). The empirical expectation is computed for two do-

mains and the difference can also be computed. As there are several

MMD values from multiple layers, we use the average value of the

computed MMD values across layers as the similarity loss. It can

be formulated as:

L𝑠𝑖𝑚 =
1

𝐿

𝐿∑
𝑙=1

L𝑙
𝑚𝑚𝑑 ,

=
1

𝐿

𝐿∑
𝑙=1

| |
1

𝑛𝑠

∑
𝑓 𝑠,𝑙 ∈D𝑠,𝑙

𝑓 𝑠,𝑙 −
1

𝑛𝑡

∑
𝑓 𝑡,𝑙 ∈D𝑡,𝑙

𝑓 𝑡,𝑙 | |2
H
,

(4)

where H corresponds to the Reproducing Kernel Hilbert Space

(RKHS) with Gaussian kernel.

The second component is designed to keep accuracy on predic-

tions in the source domain. The domain aligning operation changes

pixel-aligned features to achieve domain invariance. As only the

similarity is considered in MMD values, we propose to keep the ac-

curacy of occupancy prediction in source domain where points are

well-labelled. We regulate the aligned features to be meaningful by

leveraging the mean square error (MSE) to maintain classification

accuracy with labels 𝑦𝑠 ∈ {0, 1}:

L𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑀𝑆𝐸 (𝑔(𝑓 𝑠,𝑙 ), 𝑦𝑠 ) . (5)

3.4 Latent Structural Exploration

Due to the lack of target labels, we propose our method to explore

the spatial structure of latent feature space with guidance from the

source domain labels. Our exploration consists of two components,

neighbour aggregation and diversity maintenance.

As shown in Figure 6, the first component, neighbour aggrega-

tion, is designed to describe region density by averaging source

neighbour labels and updating the target domain with pseudo la-

bels. Generally, the higher region density a particular label has, the

higher possibility that a point in this region should have the same

label. Considering the noise of target predictions, we treat the top-K

nearest features from only the source domain as neighbours. The

averaged source neighbour label has been used to combine with the

target predictions as the pseudo labels. This combination transmits

the density clue provided by source labels to the target domain.

We empirically propose to increase the importance of depth

value in features within neighbour aggregation. As single-view 3D

reconstruction is an ill-posed problem and usually suffers from

depth ambiguity, we hereby increase the importance of depth value

in queried point coordinates when searching neighbours. Specifi-

cally, we re-weight pixel-aligned features by multiplying a scaling

factor to the depth value which we empirically set as 256. The re-

weighted features can better reveal structure and relationship when

measured by Euclidean distance.

Figure 6: We propose to use the averaged labels from source

neighbours as the indication of regional density.
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As we are using a multi-layer architecture, we calculate the

neighbourhood information for each layer. Concretely, we use the

averaged labels over source domain neighbours to represent the re-

gion density for target domain points. The aggregated information

for point-feature 𝑓 𝑡,𝑙 from the 𝑙-th layer is defined as:

𝑦𝑡,𝑙 =
1

|N
𝑠,𝑙
𝑘

|

∑
𝑓 𝑠,𝑙 ∈N𝑠,𝑙

𝑘

𝑦𝑠,𝑙 , (6)

where 𝑦𝑡,𝑙 is the aggregated information for the target intermediate

feature 𝑓 𝑡,𝑙 in 𝑙-th layer and N
𝑠,𝑙
𝑘

is the set of top-K nearest source

features to 𝑓 𝑡,𝑙 in the latent space.

Our pseudo labels are designed to combine source regional den-

sity and target domain predictions. Instead of directly assigning

the computed neighbourhood information as the pseudo labels for

target domain points, we consider the characteristics of target struc-

ture. A momentum is used to balance the combination of target and

source structural information. The aggregated result 𝑦𝑡,𝑙 is used for
assigning pseudo-labels to target feature points. These labels con-

vey information regarding the surroundings of a feature point and

thus can provide guidance on target domain learning. The assigned

pseudo-label can be calculated by balancing the self-momentum

and its neighbourhood information:

𝑦𝑡,𝑙 ←𝑚 × 𝑜𝑡,𝑙 + (1 −𝑚) × 𝑦𝑡,𝑙 , (7)

where 𝑜𝑡,𝑙 is original prediction for target domain, 𝑚 is the self-

momentum and increases as𝑚 = 𝑒𝑝𝑜𝑐ℎ−𝑠𝑡𝑎𝑟𝑡_𝑒𝑝𝑜𝑐ℎ
𝑒𝑝𝑜𝑐ℎ_𝑡𝑜𝑡𝑎𝑙 where we set

𝑠𝑡𝑎𝑟𝑡_𝑒𝑝𝑜𝑐ℎ = 30 and 𝑒𝑝𝑜𝑐ℎ_𝑡𝑜𝑡𝑎𝑙 = 60 due to larger noise for self-

predictions at the beginning of the process. The assigned pseudo-

label is then used in MSE loss on the target domain:

L𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑀𝑆𝐸 (𝑔(𝑓 𝑡,𝑙 )), 𝑦𝑡,𝑙 ). (8)

The second component is concerned with prediction diversity

of the target domain by maximizing the mutual information loss.

As discussed in Section 3.2, implicit-based reconstruction requires

to sample points from the entire space to represent a 3D shape. As

we are moving point-features in high-dimensional latent space, the

diversity is maintained to avoid the potential overly-concentration

in a small area. Therefore, we compute the entropy-based loss as

our diversity measurement:

L𝑚𝑖 = 𝐻 (Y𝑡,𝑙 ) − 𝐻 (Y𝑡,𝑙 |D𝑡,𝑙 ),

= ℎ(E𝑓 𝑡,𝑙 ∈D𝑡 (𝑔(𝑓 𝑡,𝑙 ))) − E𝑓 𝑡,𝑙 ∈D𝑡 (ℎ(𝑔(𝑓 𝑡,𝑙 ))),
(9)

whereE is the expectation over point-features andℎ(𝑥) = −
∑
𝑖 𝑥𝑙𝑜𝑔𝑥

is the conditional entropy.

Combining the aforementioned losses, we design the overall loss

as a weighted sum:

L = 𝑤1L𝑠𝑖𝑚 +𝑤2L𝑠𝑜𝑢𝑟𝑐𝑒 +𝑤3L𝑡𝑎𝑟𝑔𝑒𝑡 +𝑤4L𝑚𝑖 , (10)

where {𝑤𝑖 }
4
𝑖=1 are weights for different loss elements and are em-

pirically set to 𝑤1 = 5, 𝑤2 = 2. We use dynamical values for 𝑤3

and𝑤4 as
𝑒𝑝𝑜𝑐ℎ−𝑠𝑡𝑎𝑟𝑡_𝑒𝑝𝑜𝑐ℎ

𝑒𝑝𝑜𝑐ℎ_𝑡𝑜𝑡𝑎𝑙 where we define 𝑠𝑡𝑎𝑟𝑡_𝑒𝑝𝑜𝑐ℎ = 30 and

𝑒𝑝𝑜𝑐ℎ_𝑡𝑜𝑡𝑎𝑙 = 60. This is because L𝑡𝑎𝑟𝑔𝑒𝑡 will be inaccurate and

diversity will be less important at the beginning of training.

4 EXPERIMENTS

4.1 Implementation Details

As previously mentioned, obtaining 3D data of sculptures is non-

trivial and we want to figure out whether our method can work

with limited data size. We collected 28 sculpture meshes from the

website ScanTheWorld and split them into a training set (20 meshes)

and a testing set (8 meshes). The testing set has been hidden from

all methods, including supervised and unsupervised ones, in their

training process. We report quantitative performance on the testing

set. As for real-world humans, we keep the same setting of what

PIFu uses. We found that using only 3 real-world human meshes

works for our method as we want to reduce the dependence on

large amounts of labelled data required in our domain adaptation.

As the collected sculptures do not have colour, we assign random

colours to each vertex. Both sculptures and real-world humans are

processed to obtain RGB images and corresponding masks under

the same rendering settings as used in PIFu [33].

We use the point-to-surface distance (P2S) and chamfer distance

(CD) for the quantitative performance evaluation. The former cap-

tures the surface details by computing the distance between points

in the reconstructed surface and their nearest surface of ground

truth. The latter metric captures the overall similarity of global

shapes by computing the distance between points from the recon-

structed shape and ground truth. The smaller both metrics are, the

higher the quality is.

We run our code on one TITANXPGPU. The training can be com-

pleted within approximately 2 days. We use the Marching Cubes

algorithm [20] to extract the 0.5-level surface as the mesh shape.

We filter isolated parts, rescale meshes into a unit bounding box,

and place the mesh in the origin of the coordinate system.

4.2 Quantitative and Qualitative Comparisons

We firstly compare our method with untrained PIFu [33] and un-

trained PIFuHD [34] as baseline. Both PIFu and PIFuHD are pre-

trained on real-world humans and our method is learnt from our

training set in an unsupervised manner. All the three compared

methods are not exposed to 3D ground truth. The quantitative per-

formance is reported on our testing set as shown in Table 1. Our

method surpasses the other two methods in both metrics. The qual-

itative comparison is shown in Figure 7. Our method reconstructs

complete shapes and corrects surface details. When trained with

the shape of real-world humans, the model only learns a canonical

human shape. Therefore, the model attempts to imitate the shape

of a real-world human body for 3D reconstruction. As shown in

Figure 8, PIFu and PIFuHD tend to recover two legs and feet that

are usually observed in the lower part of the real-world human

shapes while the sculpture has a base instead of human legs and

feet. Such a topology change can be handled by our method.

We then compare our method with alternative unsupervised

adaptation methods to validate our unsupervised design. As no

previous study is conducted on unsupervised domain adaptation

for 3D reconstruction with implicit models, we reimplement two

adaptation methods: contrastive learning (Contra) based on [7] and

adversarial learning with gradient reversal layer (GRL) based on

[9]. We train them with PIFu (denoted as PIFu + Contra and PIFu

+ GRL) on our training set in an unsupervised way. Table 1 and
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Figure 7: Qualitative comparison. DAREC produces point clouds and we transfer them into meshes.

Figure 8: An example of topology change. Both PIFu and

PIFuHD tend to mimic the real-world human shape distribu-

tion, such as trying to reconstruct two legs and feet.

Table 1: Quantitative comparison between different methods.

All methods compared here do not have access to 3D ground

truth of sculptures. We use † to denote a method fails on

some results after filtering.

Methods P2S CD

PIFuHD [34] 0.084† 0.099†

PIFu [33] 0.044 0.048

PIFu [33] + Contra [7] 0.080 0.057

PIFu [33] + GRL [9] 0.06† 0.069†

DAREC [29] 0.106 0.087

Ours 0.038 0.047

Figure 7 show the quantitative and qualitative results, respectively.

We also implement DAREC [29]. PIFu + GRL does not perform well

because the discriminator cannot provide correct guidance due to

the limited dataset size. [29] proposes a domain adaptation method,

DAREC, to solve synthetic-to-real 3D object reconstruction. Their

method leverages a 3D shape autoencoder that is pretrained on a

large amount of well-labelled 3D shapes. Then an image encoder

is trained with two discriminators to achieve domain confusion

between extracted features from images and keep extracted fea-

tures lying on the shape manifold. There are two main differences

between [29] and ours. The first one is that [29] manipulates the

single global shape-features to learn canonical human shapes for

domain confusion while ours uses a set of point-features to learn

occupancy probability for domain confusion. The second one is that

[29] relies on discriminators for domain confusion while ours is

based on predefined MMD. The two differences enable our method

to complete the domain adaptation in our research while [29] does

not perform well. The manifold formed by shape-features is based

on whether discriminators consider reasonable and thus, cannot

handle topology changes. Our point-features form the manifold

determined by whether the point is inside or not. This provides

flexibility on topology changes. Similar with PIFu + GRL, the dis-

criminators in DAREC for domain confusion require a large amount

of training data and cannot provide correct guidance due to the

limited dataset size. On the contrary, our predefined MMD-based

method can achieve domain confusion. PIFu + Contra does not

perform well because implicit models rely on samples around 0.5

to approximate where the 0.5-level surface is. Contrastive learning

reduces the distance of the similar samples in the latent space. The

concentration to some particular values leads to large uncertainty

around 0.5-level surface as shown in Figure 9.
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Figure 9: Explanation for ‘PIFu + Contra’ on its over-

concentrated feature space.

We compare our unsupervised method with two supervised

PIFu methods. We train the two supervised methods, denoted as

retrained PIFu and fine-tuned PIFu, with 3D labels in our training

set. The two supervised methods directly learn with 3D ground

truth labels in our training set. The testing set is hidden during

training. These unseen data are used to report the quantitative

performance in this experiment. Table 2 shows quantitative results.

Our method achieves the best P2S but does not in CD. However,

CD is not completely consistent with visual quality [14] and thus,

we provide a qualitative comparison in Figure 10. We find out that

both retrained PIFu and fine-tuned PIFu recover noisy surface.

Table 2: Quantitative comparison between our unsupervised

method with two supervised methods.

Methods P2S CD

Retrained PIFu 0.048 0.039

Fine-tuned PIFu 0.046 0.039

Ours 0.038 0.047

The two supervised methods have a severe generalization issue

and, as a result, they cannot be used in real-world applications.

Figure 10 shows they do not perform well on testing data although

their CD is better than ours. As pointed out by [14], this is because

CD is relatively insensitive to visual artifacts such as poor surface

quality. This is also the reason that we use P2S to capture surface

quality and visualize the reconstructed results. This generalization

problem is caused by insufficiency of the training data and thus,

retraining or fine-tuning is incapable of learning surface.

4.3 Ablation study

Our ablation study validates four modules (indicated by loss term)

used in domain adaptation. We provide results under different mod-

ules used in domain adaptation in Table 3.

We also provide a quantitative comparison by disabling two

design choices: the multi-level features and the rescaling factor.

Without a multi-level architecture for unsupervised adaptation, our

performance drops a lot on both metrics. This indicates that multi-

level features provide more comprehensive clues for our unsuper-

vised domain adaptation. We also find that performance improves

when we use a rescaling factor to balance the importance of depth

value and pixel-aligned features. With this rescaling factor, our

Figure 10: Qualitative comparison with supervised methods,

retrained PIFu and fine-tuned PIFu. The two methods they

severely struggle with surfaces.

Table 3: Ablation study. ‡means amethod fails to reconstruct

meshes after filtering.

Methods P2S CD

Ours w/o L𝑚𝑚𝑑 0.053 0.052

Ours w/o L𝑠𝑜𝑢𝑟𝑐𝑒 ‡ ‡

Ours w/o L𝑡𝑎𝑟𝑔𝑒𝑡 0.041 0.049

Ours w/o L𝑚𝑖 0.041 0.047

Ours w/o multi-level features 0.056 0.052

Ours w/o rescaling 0.043 0.05

Ours 0.038 0.047

adaptation leverages the latent structure in feature space better. As

shown in Table 3, by applying two choices, our method can achieve

the best performance.

4.4 User study

To evaluate the results from the users’ perspective, we design a

user study. We invited 20 participants (10 males and 10 females, the

mean age is 34.75 and the standard deviation is 16.98) coming from

different educational/occupational backgrounds. Each participant

was presented with one 3D shape and a corresponding RGB image

at a time. To avoid bias, the results from various methods are mixed,

unlabelled and shown in random order. We asked each participant

to give a score from 1 to 5 (the higher, the better) based on the

similarity of the 3D shape and RGB image. The results are presented

in Figure 11. Our method achieves the highest score.

4.5 VR Applications

We also display our results on a commercial VR headset. With

VR equipment, users can place, move and observe the generated

sculptures from all directions as shown in Figure 12.
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Figure 11: User study on results. We calculate the averaged

score for results generated by each method.

Figure 12: VR displaying of our results. (Top image) Seeing

the generated sculpture. (Bottom image) Locating the result.

5 CONCLUSION

In conclusion, we are the first to apply unsupervised domain adap-

tation into implicit models to solve the problem of reconstructing

3D sculptures from single-view RGB images, and our method can

be deployed in creating various content for VR/AR applications.

Our method addresses two critical challenges. The first one is the

limited data acquisition, leading to inadequate data for supervised

learning and incomplete shape information. The second one is the

domain shift of irregular topology. We propose our unsupervised

domain adaptation based on multi-level features with distribution

alignment and neighbourhood information to transfer pre-trained

PIFu to solve the problem of single-view sculpture reconstruction.

Our adaptation method makes use of features from multiple layers

of PIFu, combining and processingmeaningful information from dif-

ferent levels. With multi-layer features, our adaptation explores the

underlying structure of latent feature space and leverages pseudo

labels to gradually obtain correct predictions on the target domain.

Experiments have shown that our domain adaptation method can

be successfully applied into PIFu. Compared with other methods

without 3D ground truth, our method provides better performance

measured by P2S and CD. Compared with supervised methods, our

method generalizes better and our training does not require 3D

ground truth. We find out that supervised methods are suffering

with limited datasets. They cannot handle diverse surfaces. Our

ablation studies validate the necessity of our proposed modules.

Finally, we invited participants for a user study.

Figure 13: One challenging case in experiment. The network

is not able to obtain the correct shapes for overweight people.

In the future, we will focus on three potential directions. One po-

tential research direction is to apply our method on artistic human

paintings. Considering our adaptation network does not require

labels, it is highly feasible to operate on artworks where only a

2D image is accessible and 3D ground truth is not available at all.

We intend to be able to handle more highly abstract human shapes

such as Picasso paintings. It potentially is difficult for our adap-

tation method to find an appropriate mapping relationship. The

other direction is treating challenging cases as shown in Figure 13.

This may be because knowledge transfer is largely influenced by

the pre-trained models. We will explore deeper structures of sculp-

ture features to minimize such influence in the future. Our domain

adaptation has potential to be applied into other pretrained implicit-

function models with point-features and no extra inputs. Generally,

our method can be applied to a pretrained explicit reconstruction

model. We will leave such attempts for future work.
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