
Copyright © 2007 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
VRST 2007, Newport Beach, California, November 5–7, 2007.
© 2007 ACM 978-1-59593-863-3/07/0011 $5.00

Simulating Competitive Interactions using Singly Captured Motions

Hubert P.H. Shum∗ Taku Komura†

Institute of Perception, Action and Behavior

School of Informatics

University of Edinburgh

Shuntaro Yamazaki‡

Digital Human Research Center

AIST, Japan

Figure 1: The outline of the proposed method to simulate competitive interactions: (left most) capture the motions of avatars individually
(left middle) generate the action level motion graph (right middle) evaluate the interaction by expanding the game tree (right most) simulate
the competition by physically-based animation

Abstract

It is difficult to create scenes where multiple avatars are fighting
/ competing with each other. Manually creating the motions of
avatars is time consuming due to the correlation of the movements
between the avatars. Capturing the motions of multiple avatars is
also difficult as it requires a huge amount of post-processing. In
this paper, we propose a new method to generate a realistic scene
of avatars densely interacting in a competitive environment. The
motions of the avatars are considered to be captured individually,
which will increase the easiness of obtaining the data. We propose a
new algorithm called the temporal expansion approach which maps
the continuous time action plan to a discrete space such that turn-
based evaluation methods can be used. As a result, many mature
algorithms in game such as the min-max search and α −β pruning
can be applied. Using our method, avatars will plan their strategies
taking into account the reaction of the opponent. Fighting scenes
with multiple avatars are generated to demonstrate the effectiveness
of our algorithm. The proposed method can also be applied to other
kinds of continuous activities that require strategy planning such as
sport games.

CR Categories: I.3.6 [Methodology and Techniques]: Three-
Dimensional Graphics and Realism—Animation;

Keywords: Human Simulation, Motion Planning, Motion Capture

1 Introduction

∗e-mail: hubert.shum@ed.ac.uk
†e-mail: tkomura@inf.ed.ac.uk
‡e-mail: shun-yamazaki@aist.go.jp

Scenes where multiple characters densely interact with each other
frequently appear in TV programs, movies and 3D computer games.
Currently, the cost and time required to create such scenes are enor-
mous. Such motions need to be created either manually or by using
the motion capture system.

Manually creating a scene of multiple avatars is time consuming as
each movement of the avatar is correlated with those of the others.
Even a small modification to the motion of a single avator results in
a number of updates in the scene. Suppose an animator is editing
a scene one avatar is knocking down another avatar. If the avatar
needs to edit the punching motion of the attacker, say, changing the
position and timing of the punch landing onto the opponent. The
animator then also needs to edit the motion of the opponent being
knocked down, by changing the way it gets hit and falls down onto
the ground. If the two avatars are repeatedly attacking / defensing,
the total amount of work becomes enormous.

Capturing the motions of multiple persons in the scene together us-
ing a motion capture system is another solution to create such an
animation; however, for scenes as fighting, this is difficult due to the
intrusiveness of the motion capture system, occlusions, and the in-
tensive interactions that affect the performance of capturing. Think
of using an optical motion capture system to capture two boxers
seriously sparring. In the beginning, they actually never seriously
hit each other as markers are attached to various parts of their bod-
ies. Athletes are sensitive to such an unusual condition and they
will avoid performing in the way they usually do. Although it is
difficult, suppose the boxers overcome such pressure and start to
spar at close distance seriously. Now a lot of markers are occluded
by the arms, head and torso of each boxer as they are hitting each
other in a very close distance. And finally it will be found out cap-
turing serious intense sparring is almost impossible as the markers
are flying away from their bodies when one fighter’s arm hits/rubs
the surface of the other fighter’s body. The situation will be similar
or even worse when magnetic / mechanical motion capture systems
are used, as they are even more intrusive than the optical system.

In this paper, a more practical approach is proposed; we capture
the motion data individually, and simulate the competitive interac-
tions by AI techniques used to control computer-based players in

65

strategy games such as chess. After the motions are captured, they
are segmented and classified into semantic groups such as “straight
punch”, “kick” or “parry” automatically. In order to control the
characters in an intelligent way, it is necessary to make the avatar
predict how the opponent will react to its action, and decide the
next action based on its benefits in the future. We propose a new
algorithm called the temporal expansion approach which maps the
continuous action planning to a discrete space so that turn-based
evaluation methods such as min-max algorithms and α −β pruning
can be used. The outline of the method is shown in Figure 1.

In order to simulate realistic interactions of the avatars, we pro-
pose to use a table that pairs actions [Lin et al. 2005]. In this table,
the appropriate actions that need to be launched when the opponent
avatar is undergoing some specific actions are listed. For exam-
ple, for each entry of the attack, the appropriate defense motions
together with the best timing to launch them are listed. If the an-
imator wants to associate a certain attack with a certain defense,
he/she can add such entries into the table.

The users can easily specify how the scene should appear by tuning
parameters. Every avatar is guided by an objective function, and
it is possible to set up a scenario of the competition, or control the
way the avatar competes by tuning the parameters of its objective
function. For example, in case of fighting, it is possible to simulate
various fighting styles, such as being more passive, aggressive, or
preferring kicks than punches by changing the scores given to the
avatars when they successfully attack or defend. By giving higher
scores to both avatars when they follow a path while fighting, both
the avatars will tend to do so.

We have simulated various competitive interactions of the avatars
to show the effectiveness of our method. We have created examples
of boxing matches. The strength of each fighter can be adjusted
by changing the depth of the game tree expanded. We also adjust
the parameters of the avatars to simulate different styles of fights,
including outboxing and infighting. Our method can also be used
for other competitive scenes such as chasing or playing sports.

2 Related Work

Motion editing and synthesis has become a huge research area
which has many applications in computer graphics, robotics and
biomechanics. Recently, a lot of data-driven techniques to edit /
retarget [Gleicher 1998; Lee and Shin 1999; Abe et al. 2004] or
synthesize a new sequence of character’s motion using precaptured
motion data [Arikan and Forsyth 2002; Lee et al. 2002; Kovar et al.
2002; Kovar and Gleicher 2004; Mukai and Kuriyama 2005; Sa-
fonova and Hodgins 2007] are proposed. The Motion Graph ap-
proach [Arikan and Forsyth 2002; Lee et al. 2002; Kovar et al.
2002] is a method to interactively reproduce continuous motions
of characters based on a graph that is automatically generated from
captured motion data. Since the Motion Graph produces a lot of
edges and nodes without any context, it becomes difficult to con-
trol the character as the user wishes. Recently, therefore, works to
resolve such problems by introducing a hierarchical structure are
proposed [Lau and Kuffner 2005; Kwon and Shin 2005].

Most of these researches handle characters in the scene individually,
and need extensions to handle dense interactions, such as pushing or
pulling, among several characters. For such kind of effects, meth-
ods that combine simulations and motion capture data are known to
be effective [Arikan et al. 2005; Zordan et al. 2005; Komura et al.
2005b; Komura et al. 2005a]. In case of fighting scenes, however,
the offended characters must not just be pushed away, but need to
defend and counterattack.

Although there is a lot of research work for motion editing and

synthesis, less work has been done on simulating scenes in which
more than two characters continuously interact with each other.

Liu et al. [Liu et al. 2006] creates such scenes by alternately com-
puting the motions of individual character by using spacetime con-
straints. This method is effective for creating animation that in-
cludes sustained constraints such as a parent pulling the hand of
a child. However, for events that have many interactions such as
fighting, this method cannot be used.

Lau et al. [Lau and Kuffner 2006] precomputes the optimal mo-
tions to move to locations around the avatar based on a finite state
machine; they simulated the motions of avoiding each other when
running or walking in an open space. The interactions between
avatars that can be simulated are limited by such an approach and
they cannot handle simulations of dense interactions such as fights.

Lee et al. [Lee and Lee 2004] simulates a scene of two boxers fight-
ing with each other by using a precomputing approach. The boxers
are trained by reinforcement learning so that they know the optimal
way to approach and hit the target. The boxers are trained alone
to find the optimal motions to approach and make a hit. There is
no concept of continuous interactions during the training stage, al-
though this is one of the most important issues for activities of mul-
tiple avatars. For example, there is no context for defense motions,
and therefore, the fighters will only try to approach and hit without
taking into account the opponent’s action. Graepel et al. [Graepel
et al. 2004] also uses reinforcement learning to train the computer-
based player of fighting games. The system observes how the play-
ers fight with the computer-based players and learns the optimal
policy to fight. The system requires many hours of training to learn
the optimal policy, and such policy needs to be trained again when
the style of the fight is changed.

Park et al.[Park et al. 2004] synthesizes a scene of avatars dancing
and playing Taekwondo based on captured data. They capture the
motions of multiple persons and generate a Hidden Markov Model
based on the statistics of the motions. Since the motions of several
people have to be captured together, the difficulty of capturing the
motions of dense interaction limits the availability of the data, and
as a result, the interaction that can be synthesized is limited in such
an approach. In this research, since we simulate the interactions of
the characters, we do not have limitations due to the capturing.

3 Data Acquisition and Analysis

Here we explain the process that we capture the motions of actors
individually, segment them into shorter semantic actions, classify
them into different categories, and finally compose a data structure
called action-level motion graph.

Firstly we capture the motions of boxers and kickboxers shadow
boxing alone. Here we define the term “motion” as the raw-
captured data, and the term “action” as a semantic segment of the
motion we captured. In the field of fighting, an action can be an
attack (such as a “left straight”, “jab” or a “right kick”), a defense
(such as “parries”, “blocking” or “ducking”) , a transition (such as
“stepping to the left”, “stepping forward” or “back step”), or reac-
tive motions when hit / pushed away, or the combination of these.

We have developed an automatic motion analyzer to segment and
classify rawmotions into actions. This is done by first partitioning a
long motion sequence into segments at the center of double support
phase. However, in case the sum of squares of the acceleration of
the joints is large, we do not segment the motion at that moment
as it can be expected that the body is going through a continuous
action. Finally, we classify the actions according to the trajectories
of the joints with large acceleration.

66

We build a Motion Graph [Arikan and Forsyth 2002; Lee et al.
2002; Kovar et al. 2002] in the action level rather than the frame
level, as in [Gleicher et al. 2003; Lau and Kuffner 2005; Kwon
and Shin 2005]. This is done by extracting the starting poses and
the ending poses of the actions and grouping similar poses together.
Let us call this data structure the action-level Motion Graph. Figure
2 illustrates the action level Motion Graph. Planning based on the
action level Motion Graph is similar to the human way of thinking,
as people also use attack/defense/transition actions as the building
blocks when fighting.

Figure 2: An action level motion graph that is generated from the
boxing motion.

4 Evaluating the Actions

In order to evaluate the actions, we propose an objective function
that can be used for various competitive interactions including fight-
ing, chasing and sports. We evaluate the following three factors: (1)
its relative position with the opponent or global position / orienta-
tion (location function), (2) the immediate gain and loss caused
by the launch of that action (scoring function), and (3) the quality
of the action from the viewer’s point of view, such as the duration
of the action and the frequency of usage (control function). The
objective function can change according to the individuality of the
avatar or the style of fighting.

The location function is designed so that the avatar’s relative dis-
tance / facing angle with the opponent is within the preferred range,
and its global location / orientation is following the scenario given
by the user. In boxing, an infighter prefers to keep short distance
with the opponent. In that case, higher scores are given to actions
that bring the avatar closer to its enemy. On the contrary, for an out-
boxer or a passive fighter who prefers to escape from the opponent,
high scores are given to actions that increase the distance between
them. Regarding the orientation, for competitive environments, it is
always preferable that the avatar faces the opponent. Therefore, we
evaluate the action using the direction of the head at the last frame
of the action. Finally, sometimes the user prefers the avatars to fol-
low some paths based on the scenario of scene. We can add such
terms into the location function so that the avatar is given higher
scores for actions that bring it to the desired location. The location
function can be written as

F loc = wθ θ 2+wr(r− rd)
2+worient(θo−θd)

2+wl(p− pd)
2 (1)

where θ ,r are the relative orientation and distance from the oppo-
nent, respectively, rd is the preferred distance of the avatar from the
opponent, θo is the orientation of the avatar around the vertical axis
in the world coordinate system, θd is its desired value, p is the lo-
cation in the world coordinate system, pd is its desired value, and
wθ ,wr,worient ,wl are the weight constants for each term.

The scoring function evaluates how effective the action is to com-
pete with the opponent. It is the weighted sum of the damage the
avatar gives to the opponent and that the avatar receives from the
opponent by selecting that action. It can be written as

Fscore = w+
DD

+ −w−DD
− (2)

where D+ is the damage that the fighter gives the opponent, D−

is the damage received, and w+
D ,w−D are positive weight constants

for each term. The weight constants are changed according to the
competing style of the avatar. D+ and D− are proportional to the
velocity of the attacking segment at the moment it is landing to the
opponent. For boxing, in case the fighter is an outboxer who is less
aggressive, w+

D is set smaller and w
−
D is set larger. In case a fighter

is running out of time and is losing the fight, it has to fight more
aggressively regardless of the risk of being hit; in that case, w+

D is

increased and w−D is decreased.

The control function (Fcontrol) can be designed according to the
application. If the designer prefers some specific good looking mo-
tions, they can favor those by giving higher marks to them when
they are successful. We have tuned it to favor short and seldom
used actions, as shorter motions will risk the body less, and seldom
used actions will enhance the visual effect.

The outputs of the three criteria are combined together by calculat-
ing their sum. As a result, the objective function J can be written in
the following form:

J = F loc+F score+Fcontrol. (3)

This objective function can be used for various competitive interac-
tions such as fighting, chasing, and sports. For simulating interac-
tions such as chasing, we can increase the preferred distance for the
avatar running away, and shorten it for the chaser. For other sports,
for example basketball, we can set up a scoring function that lets the
avatar shoot more when the probability to get a score is higher (for
example, when there is no opponent in front of it), a location func-
tion that guides the avatar to the sweet spot, and a control function
that makes the avatar select the action that appears more impressive.

5 Temporal Expansion Approach

In this section, the method called temporal expansion approach is
explained. This is a method to control the avatars intelligently by
expanding the game tree. Once each avatar’s motion data are pre-
pared, their interactions are simulated. Using this method, we can
(1) simulate different level of intelligence by changing the depth
of the expansion, and (2) balance the computational load and the
intelligence requirement.

5.1 Game Tree Expansion

For controlling the avatars, we adopt methods used for AI players
in strategy games such as chess. If we want to control them intel-
ligently, only considering the immediate benefit is not enough. For
example, in chess, a movement that shows the greatest effect in one
ply (such as taking a valuable piece like a castle or a bishop) is not
necessarily the best choice for winning at the end. AI algorithms
expand the game tree and evaluate the static position after a few
plies, to make a choice that benefits the player in long term. Here
we apply the same approach. The difference between chess and
fighting is that the choices made by the players are not alternate,
and they depend on the duration of the action done by each player.
An example of such a game tree is shown in Figure 3.

In this game tree, we assume that the depth along the vertical axis
represents the time passed. The red and blue circles represent the

67

Figure 3: An expanded game tree of fighting. The distance along
the vertical axis represents time. The white and black circle nodes
represent the moments fighter A and B launch new actions, respec-
tively. Each edge represents the action that has been selected by the
fighter and the square represents the end of each action

moment fighter A and B launch new actions, respectively. Each
edge represents the action that has been selected by the fighter, and
the square represents the moment that the action ends. The square is
omitted and replaced with a circle node in case a successive motion
is started by the same fighter.

After an avatar launches an action, if this action is short enough, the
avatar might be able to launch another action before the opponent
ends the current action. In such a case, the actions are not going
to be alternate, but two series of actions are consecutively launched
by the same avatar.

In some cases, the fighter’s action might be interrupted by the oppo-
nent by being punched or kicked. In such a case, the fighter might
be either knocked down onto the ground immediately, or just lose
balance and walk a few steps to recover the balance and resume the
fight. In either case, the response motion will be decided based on
the current state of the body and the impulse added to the body.
Since we assume the avatar being hit does not have a choice for the
action, there is only one edge going out from the node when such
response motion is launched.

When expanding the game tree, it is necessary to specify the time
up to when we make the prediction. Here we limit by the num-
ber of plies. Once we reach this limit, we stop expanding the tree
and evaluate the sequence of motions to proceed to the min-max
algorithm.

5.2 Min-Max Selection

Once the game tree is expanded, we use the min-max algorithm
to select the best motion that maximizes the avatar’s chance to win.
The min-max algorithm gives the optimal move for zero-sum games
such as tic-tac-toe, chess and go, and is also suitable for competi-
tions in this research.

When using min-max algorithm, we need to define a zero-sum static
function that evaluates the leaf nodes of the game tree. In order
to define such zero-sum function for the leaf nodes, we first need
to evaluate every transition from one node to another in a zero-
sum manner according to Equation 3. Say the positive score of
the evaluation function represents the benefits of fighter A and the
negative score represents the benefits of fighter B. Then, a function
fz that evaluates the transition can be defined by

fz(e) = JeA−J
e
B. (4)

where JeA is the result of evaluating transition e by Equation 3 from
avatar A’s point of view, and JeB is that from avatar B’s point of view.
Say we want to evaluate a leaf node Ln of the game tree, which can
be reached from the root by descending a route defined by l (Figure
4, left). The zero-sum evaluation of the leaf node is then defined as

Figure 4: Evaluation of the end node is done by summing the score
of all the edges from the root to the leaf node. Then the score of the
internal nodes are computed by using min-max method from the leaf
nodes toward the root.

follows:

VLn = ∑
i

fz(e
l
i) (5)

where eli is the i-th edge from the root when descending l.

Now, we recursively evaluate the internal nodes of the game tree
starting from the leaf nodes and moving up towards the root
node using the min-max algorithm (Figure 4, right). Suppose
we are to evaluate the score of an internal node which is m lev-
els deep from the root node, and we know the scores of all the
nodes at level m+ 1. Let us represent this node by Nm, and

its children by Nm+1
1 , ...,Nm+1

k , and their scores by S(Nm) and

S(Nm+1
1

), ...,S(Nm+1
k), respectively. We can compute S(Nm) us-

ing S(Nm+1
1

), ...,S(Nm+1
k) as follows:

S(Nm) =

{

max{S(Nm+1
1), ...,S(Nm+1

k)} if Nm is A’s node

min{S(Nm+1
1), ...,S(Nm+1

k)} if Nm is B’s node
(6)

As the scores of all the leaf nodes are already computed by Equa-
tion 5, we can recursively compute the scores of the internal nodes
towards the root. The score of the root node can be calculated by
recursively applying Equation 6.

5.3 Pruning Non-Plausible Choices

In order to reduce the computational cost and avoid non-plausible
interactions to appear, we prune the mal choices when expanding
the game tree. Although there are a huge number of combinations
of the actions of the two fighters, many of them never happen as
they obviously cause disadvantages to the avatar. Such mal combi-
nations of actions are listed below:

• Attacks out of distance : there is no meaning to launch an at-
tack if the opponent is farther away than the reaching distance.
(Figure 5(a))

• Defending when the opponent is not attacking : in case the
opponent is neither attacking nor showing any sign of attack,
defense motion must not be launched(Figure 5(b))

68

• Actions of penetrating the opponent : collisions of the fight-
ers are examined and in case they end up brutally overlapping
with each other, such pairs of actions are invalid. (Figure 5(c))

These combinations are excluded from consideration unless there
is no other action to choose, as the resulting animation will appear
unnatural. We take advantage of the above mentioned features to re-
duce the computational cost of strategy making. According to our
experimental results, we can prune half of the available choices in
average using these pruning policies. This would reduce the com-

putational cost by O((12m)n), where m is the number of available
actions and n is the depth of the of the game tree.

(a) (b) (c)

Figure 5: The combinations which are considered invalid. (a)
Attacks out of distance, (b) defending when there is no attack, and
(c) the bodies penetrating each other too much

5.4 Creating the Offense / Defense Table

In this section the offense / defense table [Lin et al. 2005] is ex-
plained, which pairs the offense and defense motions to let the
avatar effectively launch the appropriate defense motion to coun-
teract the attack by the opponent. This table illustrates the spa-
tiotemporal relationship of attacks and dodges, to incorporate tacti-
cal maneuvers of defense into the scene.

The table (1) enables to take into account subtle factors of
fights/interactions which cannot be expressed by Equation 3, and
(2) provides interface to animators who want to pair specific attacks
with defenses.

Regarding (1), it is known in boxing that sway back motion is ef-
fective for avoiding upper cuts and hooks, and head slip is good
for avoiding straight punches. There are various factors such as the
direction the punch is approaching from, and whether the defender
can see the attacker all through the motion, that support these ba-
sic techniques. Such kind of subtle factors cannot be evaluated by
Equation 3. By using the offense/defense table, we will be able to
see more effective defense motions to deal with the attacks, as those
appearing in real matches.

Regarding (2), by using the offense/defense table, the animator has
an interface to embed manually designed plausible close-contact
interactions into the scene. By pairing special attacks with spe-
cial defenses, it is possible to make such interactions appear which
might be difficult to show in case the actions are evaluated purely
by Equation 3.

In our implementation, the attacks and defenses are initially
matched based on two attributes: the height and directions. Every
attack and defense is classified into three categories “high”, “mid-
dle”, and “low” according to the height it is attacking / defending.
They are further classified into categories “left”, “right”, “middle”
and “upwards” according to the direction of the attack or to which
direction of attacks the defense is valid for. Finally, adjustments are
made, according to knowledge of the experts.

6 Physical Interactions Between Avatars

Since there are a lot of collisions between the bodies, we add re-
pulsive forces to the segments when a collision occurs, and the
segments are pulled back to the original trajectories by PD con-
trol [Zordan and Hodgins 2002]. The bodies are modeled by
spheres and cylinders to reduce the computational cost of collision
detections.

We adopt Jakobsen’s [Jakobsen 2001] technique to use particle sys-
tems to simulate the rigid body dynamics; since the location of seg-
ments can be constrained in this method, we fix the supporting foot
onto the ground to avoid it from sliding.

When the attacker correctly hits the opponent, a reactive motion to
step away is launched to simulate the effect of being hit. According
to the posture of the body and the direction and strength of impulse,
we simulate the initial reaction based on rigid body dynamics and
then blend the motion with the reactive motion selected from the
motion database [Arikan et al. 2005; Zordan et al. 2005].

7 Experimental Result

An optical motion capture system was used to capture the motions
of one actor at a time. The frame rate was set to 60 postures per
second. We have captured the shadow boxing motion of an ener-
getic kick boxer for 7 minutes, that of a tired boxer for 7 minutes,
and a running-around motion for 1.5 minutes. They were automati-
cally segmented into 279, 240 and 215 actions, respectively. These
motion sets were used to control the virtual avatars. Each avatar
model has 6 degrees of freedom for the translation and orientation
of the root, and 72 degrees of freedom for the joint orientation.
Using these data sets, various experiments based on the temporal
expansion approach were conducted. The weight constants of the
objective function for each experiment are shown in Table 1.

Firstly, we simulated a fight between two avatars using the actions
of the energetic boxer. Although both avatars use the same action
set, we can simulate different levels of intelligence by altering the
depth of the game tree expansion. We simulated a less intelligent
fighter by setting the intelligence level to two, and a smart fighter
by setting the level to four. The intelligent fighter always wins the
match as its decision is based on further expansion of the game tree.

Secondly, we simulated a match between an energetic fighter and
a tired fighter. Since the motions of the tired fighter are slow, the
tired avatar keeps being hit by the energetic fighter when the in-
telligence levels are the same. However, the tired avatar becomes
stronger than the energetic fighter when it expands the game tree
much deeper than that of the energetic fighter.

Thirdly, different styles of fighting were simulated by adjusting the
objective function. It is known infighters prefer to fight in close
distance, and hence uses short range attacks such as upper cuts and
hooks more frequently. As a result, they become more aggressive
as the duration of such attacks are short, and stopping the attacks
will endanger the fighter as he/she will be in the reaching distance
of the opponent. On the other hand, outboxers prefer to keep dis-
tance from the opponent and use long range attacks such as straight
punches and kicks more often. They also move around more as
they need to keep distance with the opponent. In order to simulate
such effects, we first classified the attacks into short and long range
ones. Then, an aggressive infighting style is modeled by setting the
preferred distance to short, and giving higher score to successful
short range attacks (Figure 6 (a)). The outboxing style is modeled
by setting the preferred distance to long and giving higher score to
successful long range attacks (Figure 6 (b)).

69

wθ wr rd wl w+
D w−D

General Boxer 101 101 0.8m 0 105 105

Path Follower 101 101 0.8m 101 105 105

Infighter 101 101 0.5m 0 105/101 † 105

Outboxer 101 101 2.0m 0 101/105 † 105

Chaser 101 101 0.1m 0 105 0

Runaway 101 101 3.0m 0 0 105

† The weight of short range and long range attack respectively

Table 1: The weight values used to simulate various effects

Then, a scene two fighters moving along a predefined path while
fighting was simulated (Figure 6 (c)). The path is modeled as a se-
ries of check points. We made use of the desired position in Equa-
tion 1 such that higher score is given to an action that guides the
avatars to the next check point. The primary objective of this ani-
mation is to let the avatars fight while the secondary objective is to
let them follow the path. Therefore, the weight of location function
should be smaller than that of scoring function in Equation 3.

Finally, a scene where an avatar chases another was simulated (Fig-
ure 6 (d)). The movements of both avatars are based on the running-
around motion. The preferred distance of the chaser is set short and
that of the avatar who is running away long. Moreover, based on the
scoring function, high score is given to the chaser when it catches
the other avatar. As a result, the chaser tries to approach its oppo-
nent while the opponent tries to get away.

We also simulated a scene where two avatars chase one avatar. In
this case, the game tree is composed of nodes and edges which
represent the actions of three avatars. The score of the each action
is computed based on the status of two avatars. The chaser’s score is
computed by the chaser’s action and the current status of the avatar
running away. The score of the avatar running away is computed
by its action and the status of the chasing avatar that is closer to
it. When evaluating the leaf nodes of the game tree, the scores of
edges by the chasers are summed. As a result, the chasers cooperate
with each other to catch the avatar that is running away (Figure 7).

The computation time depends on the size of the action set, the
connectivity of the motion graph, and the complexity of the objec-
tive function. In general, using a computer of Pentium 4 Dual core
(3GHz) and 1GB of RAM, it takes 5 minutes to create a video of
30 seconds when expanding the game tree for three levels to de-
termine every action of the avatars. The readers are referred to the
supplementary video for further details.

8 Discussions

Using our method, it is possible to simulate the dense competitive
interactions of multiple avatars based on individually captured mo-
tions. The process is fully automatic except adding semantic tags to
the classified motions. Such tags are necessary for coupling the at-
tacks and defenses. If we have a number of tagged motions already,
this process can be skipped as the newly captured motions will be
grouped into the corresponding group.

There are some drawbacks in our system. Firstly, the invalid combi-
nations for pruning the subtree during the temporal expansion must
be determined by the expert who knows the nature of the interac-
tions well. Secondly, we cannot currently handle continuous con-
tacts such as those appearing in wrestling. However, such contin-
uous contact does not happen often in martial arts such as Karate,
kick-boxing, Taekwondo, or other sports such as basketball, soccer
or rugby. Therefore, our method is useful for most competitions.

When applying our method to generate an animation of mass crowd
fighting, expanding the game tree for all the avatars in a single tree
is computational costly and quite a waste as avatars far away cannot
actually interact. We can handle such cases by first finding out the
small of group of people having interactions and expand different
game trees for each group. We can monitor and switch in/out the
members of the group in case the distance from each other becomes
smaller or larger.

The proposed method is deterministic; the action to be selected is
determined only based on the min-max score computed over the
interaction graph. The system can be easily switched to a proba-
bilistic system. We can set the probability that the avatar selects
each action according to the min-max score, and use the Russian
Roulette approach to determine the action.

9 Conclusions

In this paper, we have presented a method to simulate competitive
scenes in which multiple avatars are densely interacting with each
other using singly captured motions. We have proposed a method
called temporal expansion approach to determine the strategy of
the avatar. We have shown that various styles of fighting can be
created by changing the parameters of the game tree such as its
depth and the evaluation function. We have also proposed a method
to create and use the offense / defense table in order to simulate
realistic interactions. For future work, we are planning to apply the
methodology for collaborative activities such as carrying luggage
together. As a result, we will be able to apply it to other fields
such as robotics to control two robots simultaneously to conduct a
collaborative task.

Acknowlegement

This project was partly supported by a CERG grant from
the Research Grant Council of Hong Kong (RGC Reference
No.:CityU1149/05).

References

ABE, Y., LIU, C. K., AND POPOVIĆ, Z. 2004. Momentum-based
parameterization of dynamic character motion. Proceedings of
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, 173–182.

ARIKAN, O., AND FORSYTH, D. 2002. Motion generation from
examples. ACM Transactions on Graphics 21, 3, 483–490.

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. F. 2005.
Pushing people around. Proceedings of 2005 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 59–
66.

GLEICHER, M., SHIN, H. J., KOVAR, L., AND JEPSEN, A. 2003.
Snap-together motion: assembling run-time animations. ACM
Trans. Graph. 22, 3, 702.

GLEICHER, M. 1998. Retargetting motion to new characters. Com-
puter Graphicsi Proceedings, Annual Conference Series, 33–42.

GRAEPEL, T., HERBRICH, R., AND GOLD, J. 2004. Learning to
fight. Proceedings of Computer Games: Artificial Intelligence
Design and Education (CGAIDE 2004), 193–200.

JAKOBSEN, T. 2001. Advanced character physics. In Game De-
velopers Conference Proceedings, 383–401.

70

(a) (b) (c) (d)

Figure 6: Some of the screen shots of the simulated fights: (a) Infighters fighting at very close distance, (b) outboxers at long-range distance,
(c) the fighters following a path while fighting, and (d) one avatar chasing another.

Figure 7: Two green avatars chasing the blue avatar. The green avatars cooperate with each other to catch the blue avatar.

KOMURA, T., HO, E. S., AND LAU, R. W. 2005. Animating re-
active motion using momentum-based inverse kinematics. Jour-
nal of Computer Animation and Virtual Worlds (special issue of
CASA 2005) 16, 3, 213–223.

KOMURA, T., LEUNG, H., AND KUFFNER, J. 2004. Animat-
ing reactive motions for biped locomotion. ACM Virtual Reality
Software and Technology, 32–40.

KOVAR, L., AND GLEICHER, M. 2004. Automated extraction and
parameterization of motions in large data sets. ACM Transac-
tions on Graphics 23, 3, 559–568.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. ACM Transactions on Graphics 21, 3, 473–482.

KWON, T., AND SHIN, S. Y. 2005. Motion modeling for on-line
locomotion synthesis. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
29–38.

LAU, M., AND KUFFNER, J. J. 2005. Behavior planning for char-
acter animation. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
271–280.

LAU, M., AND KUFFNER, J. J. 2006. Precomputed search
trees: Planning for interactive goal-driven animation. ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation,
299–308.

LEE, J., AND LEE, K. H. 2004. Precomputing avatar behav-
ior from human motion data. Proceedings of 2004 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 79–
87.

LEE, J., AND SHIN, S. Y. 1999. A hierarchical approach to in-
teractive motion editing for human-like figures. Proceedings of
SIGGRAPH’99, 39–48.

LEE, J., CHAI, J., REITSMA, P. S. A., HODGINS, J. K., AND
POLLARD, N. S. 2002. Interactive control of avatars animated

with human motion data. ACM Transactions on Graphics 21, 3,
491–500.

LIN, C.-K., PENG, J.-Y., AND TAI, W.-K. 2005. Exploring
offense-defense relationship for chinese martial arts. Proceed-
ings of CASA 2005, 177–182.

LIU, C. K., HERTZMANN, A., AND POPOVIĆ, Z. 2006. Compo-
sition of complex optimal multi-character motions. ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation,
215–222.

MUKAI, T., AND KURIYAMA, S. 2005. Geostatistical motion
interpolation. ACM Trans. Graph. 24, 3, 1062–1070.

PARK, S. I., KWON, T., SHIN, H. J., AND SHIN, S. Y. 2004.
Analysis and synthesis of interactive two-character motions.
Technical Note, KAIST, CS/TR-2004-194.

SAFONOVA, A., AND HODGINS, J. K. 2007. Construction and
optimal search of interpolated motion graphs. ACM Transactions
on Graphics 3.

ZORDAN, V. B., AND HODGINS, J. K. 2002. Motion capture-
driven simulations that hit and react. Proceedings of ACM SIG-
GRAPH Symposium on Computer Animation.

ZORDAN, V. B., MAJKOWSKA, A., CHIU, B., AND FAST, M.
2005. Dynamic response for motion capture animation. ACM
Transactions on Graphics 24, 3, 697–701.

71

72

