Simulating Interactions Among

Multiple Characters

Hubert P. H. Shum

Doctor of Philosophy
Institute of Perception, Action and Behaviour
School of Informatics
University of Edinburgh
2010

Abstract

In this thesis, we attack a challenging problem in the fieldr@racter animation:
synthesizing interactions among multiple virtual chagestn real-time. Although
there are heavy demands in the gaming and animation inesistio systemic
solution has been proposed due to the difficulties to moaettimplex behaviors
of the characters.

We represent the continuous interactions among charaderdiscrete Markov
Decision Process, and design a general objective funatiemdluate the immedi-
ate rewards of launching an action. By applying game theati s tree expan-
sion and min-max search, the optimal actions that benefihheacter the mostin
the future are selected. The simulated characters camaatteompetitively while
achieving the requests from animators cooperatively.

Since the interactions between two characters depend dro&ddateria, it is
difficult to exhaustively precompute the optimal actionsdt variations of these
criteria. We design an off-policy approach that samples pre¢omputes only
meaningful interactions. With the precomputed policy, tpgimal movements
under different situations can be evaluated in real-time.

To simulate the interactions for a large humber of charactéth minimal
computational overhead, we propose a method to precompaté durations of
interactions between two characters as connectable gatthe patches are con-
catenated spatially to generate interactions with madtgsiaracters, and tempo-
rally to generate longer interactions. Based on the optimsaiuctions given by
the animators, our system automatically applies concttersato create a huge
scene of interacting crowd.

We demonstrate our system by creating scenes with hightgustieractions.
On one hand, our algorithm can automatically generatetiarisenes of interac-
tions such as the fighting scenes in movies that involve redsdof characters. On
the other hand, it can create controllable, intelligentrabters that interact with
the opponents for real-time applications such as 3D comai®mes.

Acknowledgements

I would like to thank Dr. Taku Komura for his constant suppamtmy research
career. During the last seven years, we spent countlessaddysights discussing
on our researches. His creativity is one of the many things/elbenefited a lot,
and he is one of the few professors who really work with sttglentil midnight
whenever we have a tight deadline.

| would also like to thank my teammates. | wish to thank to Dhutaro
Yamagzaki for giving me numerous advices since the beginaofrige interaction
project. Many thanks to Edmond Ho for all the sharing in bakearches and
living during these difficult years, especially when | firstiged at Edinburgh.
I must thank Masashi Shiraishi who works with me on the irdéoa project.
It surely would be tough without him when working in those teinnights. |
have to thank Ludovic Hoyet for working with me on the reird®ment learning
project. Though his stay in Edinburgh is short, he broughtteam a lot of joys
and memories. Thank Pranjul Yadav for his hard work on theiEmgnomentum
project. Itis a pity that he did not pursue his research candedinburgh. Finally,
| wish to thank my new teammates Adam Barnett and He Wang, waedtthe
ups and downs during our studies.

| have to thank the generous supports of the IPAB. | must thankS2thu
Vijayakumar for his advices during my PhD study. | also wigliitank Ms. Irene
Madison and Ms. Jane Teplechuk for helping me with the tedtmcumentations
that would take me ages to fill in.

Finally, I wish to thank Dr. Franck Multon and Dr. Subramaniamamoor-
thy as my examiners. Their suggestions and comments hetgailoprove this
thesis.

This project was partly supported by a funding from RIKEN, a CEgént
from the Research Grant Council of Hong Kong, the Special Coatiin Funds
for Promoting Science and Technology from Ministry of Ediaora Culture, Sports,
Science and Technology of Japan, and the Initiating Knogédetransfer Fund
from the University of Edinburgh.

Declaration

| declare that this thesis was composed by myself, that thk eantained herein
is my own except where explicitly stated otherwise in the,tard that this work
has not been submitted for any other degree or professioadfigation except as

specified.

(Hubert P. H. Shum)

To my beloved wife,
who shares my joys and tears for each of my paper submissions,
and takes care of me throughout my doctoral study,
as well as my whole life.

Vi

1

Table of Contents

Introduction 1
1.1 Demands for Character Interactions 1
1.2 Problems Definition and Methodology Overview : 4

1.2.1 Simulating Interactions from Singly Captured Motions 4
1.2.2 Precomputing Interactions for Real-Time Applicasion. 5

1.2.3 Simulating the InteractionsforaCrowd 6
1.3 ThesisStructure 7
1.4 Summary 8
Related Works 9
2.1 Physical Simulation Approaches 10
2.1.1 Proportional-Derivative Controller 10
212 InverseDynamics. 11
2.1.3 Spacetime Constraints 12
2.2 Data-Driven Motion Synthesis 13
2.2.1 Motion Interpolation 13
2.2.2 Motion Rearrangement 15
2.3 Motion Planning For Interactions 17
2.3.1 Crowd Simulation 17
2.3.2 ResponseSystem 19
2.3.3 Statistical Analysis o L. 21
2.3.4 Optimization Based Approaches 21
2.3.5 Topology Based Approaches 22
2.4 SUMMANY o e e 23
Data Preparation 25
3.1 Motion Capture and Motion Segmentation 25

vii

3.2 Supporting FeetPatterns, 27
3.3 ActionLevel MotionGraph. 28
3.4 Action CombinationTable 30
3.5 Summary 32
Temporal Tree Expansion 33
4.1 Contributionsin ThisChapter 34
4.2 OutlineoftheMethod 34
4.3 Multi-modal Character Control 35
4.3.1 GameTreeExpansion 36
4.3.2 Evaluating Competitiveness and Cooperativeness . . .38.
4.3.3 Pruning Non-Plausible Choices 40
4.4 Objective Functions 41
4.4.1 Competitive Function. 41
442 Cooperative Function, 43
45 ExperimentalResult. 44
451 KickBoxing 44
45.2 Chasingand RunningAway 47
4.6 DISCUSSIONS 50
4.6.1 ActionEvaluation 50
4.6.2 GameTheoryRelated 51
4.6.3 Usage Complexity 52
4.6.4 Limitations 53
4.6.5 ComputationalCost 53
4.7 SUMMAIY o e e e e 54
Interaction Graph 55
5.1 Contributionsin ThisChapter 57
5.2 OutlineoftheMethod 57
5.3 Samplingthe State Space 58
5.3.1 State Representation 58
532 DataSampling 59
5.4 InteractionGraph 62
5.4.1 Creating States of Coupled Actions 62
5.4.2 Creating the Edges of the Interaction Graph 63
5.4.3 Search on the Interaction Graph 63

viii

5,5 ExperimentalResults 67
5.5.1 Competitive Interactions: Kick Boxing 68
5.5.2 Collaborative Interactions: Carrying Luggage 72

5.6 DISCUSSIONS 72
56.1 StateSampling 72
5.6.2 Action Evaluation and Selection 73
56.3 GameTheoryRelated 74
5.6.4 Comparison to Reinforcement Learning 74
5.6.5 Usage Complexity 76
5.6.6 PossibleExtensions. 77

5.7 Summary ... 77

Interaction Patches 79

6.1 Contributionsin ThisChapter 80

6.2 OutlineofMethod. 81

6.3 InteractionPatches 81
6.3.1 PreprocessingMotionData. 81
6.3.2 Composing Interaction Patches, 82
6.3.3 Evaluating the Interactions 86
6.3.4 Computational Efficiency 87

6.4 Connecting Interaction Patches 38
6.4.1 Temporal Concatenation of Interaction Patches 88
6.4.2 Spatial Concatenation of Interaction Patches 88

6.5 Scene Composition 89
6.5.1 SelectingPatches 89
6.5.2 Concatenating Interactions 90
6.5.3 RecyclingCharacters 92

6.6 ExperimentalResults a3
6.6.1 Scenes Generated By Concatenating Interaction Patcheéx3
6.6.2 Scenes Where Characters Are Recycled 95.
6.6.3 ComputationalCosts 96

6.7 DisSCusSIONS 97
6.7.1 PatchesCreation 97
6.7.2 Scene Generation and Controllability 98
6.7.3 Usage Complexity 98

6.7.4 Comparisons On Different Control Systems
6.7.5 Limitations
6.8 Summary e

7 Conclusions

7.1 Summary of Contributions

7.2 Future Research Directions
7.2.1 Grouplnteractions
7.2.2 Intuitive User Interfaces
7.2.3 Hierarchical Character Controller
7.24 Run-timelearning
7.2.5 Interaction Adjustment L.

7.3 Publications

7.4 Commercialization

A Runtime Synthesis
A.1 Characterand World Modeling
A.2 Soft Posture Constraints
A.3 Hard Posture Constraints
A4 PostureSolver
A5 Summary

Bibliography

109
110
111
112
112
113
114
114
115
115

117
117
118
119
120
121

123

List of Figures

3.1 The motion segmentationsystem 27
3.2 An action level motion graph generated from the boxingiomo . 29

4.1 The outline of the temporal tree expansion method 35
4.2 An expanded game tree of fighting between two characters .. 37

4.3 The non-alternating feature of the gametree 37
4.4 Launching reactive motioninagametree 38
4.5 Min-max evaluation inthe gametree 39
4.6 Examples of actions thathastobe pruned 41

4.7 High quality interactions simulated by the temporag ggpansion

method 45
4.8 Energetic boxer fighting with atired boxer 46
4.9 Energetic boxer fighting with a smart tired boxer 46
4.10 Infighters that prefer short distance to opponent aond sange

attacks LAY
4.11 Outboxers that prefer long distance to opponent angl tange

attacks AT
4.12 A crowd of characters fighting with the opponents coitipely

while following predefined curve cooperatively 48
4.13 Acharacterchasinganother.: 48
4.14 A smart character chasinganother 50
4.15 A character chasing another while followingapath 50
4.16 Two characters chasing another cooperatively 51
5.1 The outline of the Interaction Graph 58
5.2 Elements of the state that represent the relationshipeotwo

charactersinteracting 59
5.3 Anexpandedgametree 60

Xi

5.4 Grouping samples to form nodes in the Interaction Graph . . 63
5.5 Creating the edges of the Interaction Graph 64
5.6 Evaluating the valueofanode 6.7
5.7 Interacting with computer controlled character witimgsstyle in-
terface 68
5.8 Interacting with computer controlled character witphlievel com-
mands 69
5.9 Many character fighting with each other with Interact@naph . . 69

5.10 Outboxing styled fighting simulated by Interaction@ra 70
5.11 Infighting styled fighting simulated by Interaction @na 70
5.12 Screen shots of the characters controlled to avoid aHenmbile
holdingabox, 73
6.1 The outline of the Interaction Patches 82
6.2 ThePatternList 84
6.3 Temporal concatenation of Interaction Patches 85
6.4 Spatial concatenation of Interaction Patches 86
6.5 Creating Scene by Concatenating Interaction Patches 91
6.6 An example of scene constructed by Interaction Patches.. . . 103
6.7 Creating Scene with Characters Recycled 103
6.8 The standard pose acting as a hub to connect differearation
Patches 104
6.9 One-to-many fighting synthesized by Interaction Pache . . . 105
6.10 User interface to synthesize one-to-many fighting 105

6.11 Character falling onto one another synthesized bydotem Patchek)6
6.12 Hundreds of character falling onto one another syited$y In-
teraction Patches, 106
6.13 American football synthesized by Interaction Patches. 107
6.14 People avoiding a rat and bumping onto each other ssimtfteby
Interaction Patches 107
6.15 Continuous fighting between two characters synthe$igeater-

actionPatches 107
6.16 Characters moving luggage cooperatively synthesiygédterac-
tionPatches 108

6.17 Comparison on the controlling accuracy of differenttcarsystem408

Xii

4.1

4.2

5.1

6.1
6.2
6.3

List of Tables

The parameter used in the competitive function to sitewarious
effects 49
The parameter used in the cooperative function 49

The score table of the matches between the InteractiaphGind

othercontrollers171
The table of annotations used to annotate captured msotio. . . 83
ThePatternList used to compose the Interaction Patches . . .104

The computational speed, number of actions and numbetesf
action Patches of each experiment 105

Xiii

Chapter 1
Introduction

Character animation has become a popular research area theedemands in
the gaming and movie industries. For examples, three dilmealscartoons like
“Monster, Inc.” and “The Incredibles” use a lot of humanelikharacters to carry
out the story line. It is very common for these charactersnteract with the
environments or even with other characters in the movie. $\th@ audience focus
a lot on funny character models and realistic renderingceffethe movements
of the characters, especially the interactions among tlygve, the souls to the
character and implicitly catch the attention of the audeentmagine watching
“The Incredibles” or "The Lord of the Rings” without any fighg scenes. The
movies would become uninteresting and monotonic.

Although interactions among characters are popular, tthesimies still rely on
systems that require heavy manual works, making the pramuof such scenes
time consuming and costly. Recent researches propose adtgarfthms to syn-
thesize the movements of a single character, but only a fe¥wewsh focus on the
problem of the interactions among multiple characters bseaf the complexity
of the problems. In this chapter, we briefly review some otdobinologies used in
producing character animations, and point out why it iscliftito generate inter-
actions among multiple characters. We will then suggesthitee major problems
we are going to solve in this thesis, and give an overview arr@aearches.

1.1 Demands for Character Interactions

In movies like “Final Fantasy: The Spirits Within” and “Thel&r Express”, we
can see a lot of high quality human characters. A key asp@grerate high qual-

1

2 Chapter 1. Introduction

ity animations is the movements of the characters. For el@mpen a character
is interacting with the environment, such as sitting on aréha moving train, the
movements of the body must be natural and obey the laws ofgshyaithough it
is possible to manually design the movements of the chasatdich is known
as keyframe animation, it requires skilled animators t@@aatural and realis-
tic motions. Therefore, in the movies stated above, moteptwre techniques
are used. Instead of creating motions using mouse and kejbibe animator
capture the movements using three dimensional motion gagtdevices. The
motion data are then imported to computer graphics softaacerendered with
character models. The major advantage of applying motiptucag techniques
to create character animations is that the motion are alwaysral as they are
performed by real human. Furthermore, the intrinsic plaisides are always sat-
isfied. For example, we can capture an actor lifting a heaygabland use them
to control characters in a movie. We will find that the chaga&eeps the body
balanced when lifting since the motions are captured.

The interaction among characters is one of the most impontarements in
a scene. In games like “NBA Live” and “Winning Eleven”, plagesnjoys con-
trolling characters to fight with or play sports games wittmpaiter controlled
characters. In movies, high quality fighting scenes likeséhon “300” always
catch the attention of the audience. Although motion capdus effective to gen-
erate realistic human motions, it is still a relatively neaghinique and has a lot
of limitations. One major problem is the difficulty to captuseveral actors in-
teracting with each other at the same time. If we use the pomydtical motion
capture system, the actors will be occluded from the camarakshence parts of
the body segments will not be captured. On the other handk ifise magnetic or
mechanical motion capture system, the actors need to wélar dod heavy de-
vices on their bodies, which will seriously affect theirgractions. Furthermore,
dense interactions such as fighting have a high chance tog#atha capturing
devices. Therefore, instead of capturing the motion datkbdesplaying them di-
rectly, people try to reuse the movements captured by aesaiglracter. A typical
approach is to create a motion database containing shokmips captured by
a single character. Then, the animators give high levelingbns for creating the
scene, and the system plan the motions of the characterstsatdhey move as if
they are interacting with each other.

There are some researches on generating intelligent ¢cees&o achieve high

1.1. Demands for Character Interactions 3

level goals automatically, such as running around basetlearimators’ design.
However, few of them can generate characters that interdictother characters.
The reason is that when creating a single character to explointeract with an
environment, everything is static except the characteifjtand hence planning
can be easily done. Once the planning is finished, the clersiotply carries out
the plan since nothing unexpected would happen. Howevesnwe wish two

characters interacting with each other, both of them arewtyo to the opponent
and would move around. Planning becomes more complex siaageed to take
into account the movement of the opponents. Due to such exibyglthe interac-

tions we can find in games are usually in low quality, whilesdaa movies rely
a lot on manual designs. A system that can automatically lsi@dnigh quality

interactions is needed.

There are several important requirements for a good inierasimulation
system. First, high quality interactions require intedlig characters that interact
with their opponents as if they are real humans. For exampthe fighting scene
of “The Matrix”, characters are not simply standing stilldapeing hit. Instead,
they avoid opponents’ punches and counter attack. To stenbigh quality com-
pletive interactions, each character has to acts as anidodivand plan for its
own benefits in order to be “smart”. Second, real-time appilbms like computer
games require the simulation to be completed with minimahmatational cost.
In games like “Tekken”, the players control their charasterfight with computer
controlled characters in real-time. While there are fastecg@ssors and better
graphics cards, we need better algorithms to finish the psasein such a short
time limit. Third, recent computer animations tend to useigehnumber of char-
acters in the scene. In movies like “The Lord of the Rings”reha&re thousands
of background characters fighting with each other. In suemnas, we wish each
character to interact with several of its neighbors at onite minimal manual
processing. Current researches lack a framework to handtelsnd of crowd
interactions due to the large amount of information thatlsée be considered. In
this thesis, we will propose new algorithms to address theg@irements.

In general, the technology we have to generate scenes ohdtittns among
multiple characters is far behind from what we need in theistides. The reason
of such lack of researches is due to the difficulty and comtyléa control the
characters when they are interacting with each other. Tieisis proposes a com-
plete framework to solve the problem, and hence generateduglity scenes up

4 Chapter 1. Introduction

to the industrial standards.

1.2 Problems Definition and Methodology Overview

In this section, we define the three major problems we areggtirsolve in this
thesis, and give an overview of our methodology to tackleottodlems.

1.2.1 Simulating Interactions from Singly Captured Motions

While interactions are the key elements to create high quekiaracter anima-

tions, it is difficult to produce such animations by keyfragnbecause the move-
ments of a character would affect another. Also, capturingiipte characters in-

teracting with each other with motion capturing devicednsast impossible due

to the limitation of the technologies. We need an algoritionprioduce scene of
dense interactions effectively by capturing the motion eirgyle actor only. The

characters must behave intelligently as if they are realdngpand the animator
should be able to control the scenes.

1.2.1.1 Our Method

We first capture the motions of a single actor for easy and&fgecapturing. The
captured motions are rendered during run-time with virthelracters. We prefer
to capture long sequence of motions to preserve the nats®lof the motions.
Then, we segment the motions automatically into semantiores; which are
used as entities during the interaction synthesis proseda#en displaying the
actions, instead of simply displaying them in the order @taeng, we can reorder
them to create different behaviors. For example, for a sébafng actions, we
can reorganize the actions such that the character alterlygtunches and kicks.
Furthermore, we can create two characters and tell themrforpea series of
actions such that they appear to be interacting. Hence, rtitdgm to simulate
interactions can be considered as the problem to find outghecombination of
actions for the two characters. More details can be found egp@3.

A smart character interacting with its opponents must napsr perform the
actions that cause the best immediate benefit. Rather, itdshwake careful plan
and select the actions that benefit itself the most in theduttor example, during
boxing, a simple attack may cause minimal benefit as it wilbbloeked easily by

1.2. Problems Definition and Methodology Overview 5

the opponent. Instead, it may be wiser to wait for the oppbtempunch first,
avoid such a punch and counter attack while the opponentis are unable to
defence. To implement such intelligent, we apply artifioi&lligence algorithms
used to simulate computer players in chess games. We desajgaithm called
temporal tree expansion, which uses the concept of gaméote@luate the long
term benefits of performing an action. With the game tree, reelipt the future
states of interactions after launching the possible clsa@actions. We also pre-
dict what actions the opponent may perform to counteradterfuture, assuming
that the opponent tries to perform the best actions. By thig wa can select
the actions that benefit the character the most in the futumsidering the possi-
ble reactions from the opponent. The game tree expansiaoagpcan simulate
realistic interactions such as fighting and chasing amongnacharacters. By
changing the way to evaluate the benefits, we can adjust tieviwes of the char-
acters, such as simulating a character that wish to run awayits opponent. We
can simulate smarter characters that consider the funhanef, and less intelligent
characters that consider only immediate benefits, by adgie size of the game
tree. To control the movements of the characters, the anmean give high level
commands that are evaluated during the tree expansiongzoere details can
be found in Chaptet.

1.2.2 Precomputing Interactions for Real-Time Applicatio ns

Real-time applications like computer games, similar to resyoften involve char-
acter interactions. There are tons of fighting games and gpanes that require
dense interactions of multiple characters. The major fadusharacter interac-
tions in games, apart from motion quality, is the computaiaost. Since the
characters in games must act in real-time, it is challentgprgimulate high qual-
ity interactions in such a short time limit. We wish to draroally decrease the
computational cost for simulating interactions betweeo tlvaracters. Although
simplifying the problem and creating interactions of lovgerality may be a so-
lution, we believe that it is possible to generate high duaifiteractions even in
real-time by applying precomputation techniques.

6 Chapter 1. Introduction

1.2.2.1 Our Method

While the game tree approach can simulate high quality iotieras, the most crit-

ical problem is that it is very computational costly. Sintirlg a few seconds of
interactions would take several minutes. Thus, it cannatdy@ied in real-time

applications like computer games. In most simulation sgstehe optimal choice
of actions depends on limited criteria, such as the disthrtgeen the two char-
acters, their relative orientations, and the actions perifog by them. In theory, it

is possible to list out all the possible variations of theseda, which are known

as states, and precompute the optimal actions for each wof. tiHowever, there
are too many states and precomputing them all will requireraeasonably long
time and large memory. Fortunately, we find that althoughetlaee a lot of states,
the characters mostly stay in a small subset of these statiegdnteractions. For
example, during fighting, the characters always stay in éepex distance with

respect to the opponent, and face the enemy during punchdscks in order to

hit the opponent. Hence, we can simply precompute the optintens for such

small number of states that are relevant to the interactidfespropose a method
to sample the useful states by evaluating their quality vagpect to interactions.
Then, we design a finite state machine called the Interaci@ph to organize
the states, and hence precompute the optimal actions faragdabhem. With our

method, high quality interactions can be simulated in teaé. Furthermore, the
user can give high level control commands like those in cdempgames during
run-time, and the system can select the optimal actionsdbaserecomputed
results immediately. More details can be found in Chapter

1.2.3 Simulating the Interactions for a Crowd

We find that there is an increasing trend to use a huge numbemavacters in
a scene like wars in the animation industry. In such sceinesgtare two re-
quirements. First, the characters must not only interatit wisingle opponent.
Rather, we wish to see scenes in which multiple charactezsaicting at the same
time. However, due to the complexity of interactions, it ey difficult to gen-
erate high quality interactions involving many charact&scond, computational
cost to generate such interactions must be small, becauseeadto generate the
interactions for tens or even hundreds of characters. Wetwisave a system that
can generate interactions within a crowd effectively.

1.3. Thesis Structure 7

1.2.3.1 Our Method

Although the Interaction Graph can simulate high qualitgiactions in real-time,
due to the limitation in the complexity of the states, we caly simulate two char-
acters interacting with each other. Even if we put many attara into the scene,
they will only interact with one opponent at a time. This kimfcone-to-one inter-
action will appear to be monotonic and unrealistic. Furthae, the Interaction
Graph generates a lot of nodes and edges, making it diffewdontrol the qual-
ity of the interactions and manually authoring the graph. phpose a method
to combine one-to-one interactions to form many-to-maigractions for a large
number of characters. First, we generate short durationtefactions between
two characters using the temporal tree expansion appraatistare the results
in a structure called the Interaction Patch. We define a atandterfaces for the
patches such that they can be concatenated to form longeaations and inter-
actions that involve more characters. During run-timehwitset of precomputed
Interaction Patches, our system plan the best way to camei@ti¢he patches with
reference to optional users’ preferences. The computtcwst for concatenating
the patches is very small, and hence we can simulate a scéntens to hundreds
of characters interacting with each other in real-time. \veutated scenes of
crowd fighting, falling onto each other like dominos, playidamerican football,
and helping each other to carry luggage. More details canunedfin Chapte®6.

1.3 Thesis Structure

The structure of this thesis is as follows. First, we reviée telated researches
in the field of character animations, and highlight thoseufieg on the inter-
actions among characters in Chap2erWe point out that there is a lack of re-
searches on high-quality dense interactions. We then iexpla methodology
to capture motions from a single actor and simulate theatens for multiple
characters. We first talk about the processes to capture racegs the motion
data in ChapteB. Then, we explain the framework to simulate dense inteyasti
using artificial intelligence techniques called temporagtexpansion in Chapter
4. Although temporal tree expansion method can generate dqughty interac-
tions, it is computational costly and is not suitable foritaae processes. Thus,
we propose a framework to precompute the interaction indbion into a data for-

8 Chapter 1. Introduction

mat called Interaction Graph in Chapter Since the Interaction Graph can only
generate one-to-one interactions, we propose the Iniendeatches that represent
the interactions of two characters in a short duration in @rd The Interaction
Patches can be precomptued and combined during run-timedteca huge scene
of crowd interactions in real-time. Finally, we conclude thole thesis in Chap-
ter 7. AppendixA includes further information on fine tuning the movements of
the characters and rendering them in the scene.

1.4 Summary

High quality interactions for multiple characters are intpat aspects in the movie
and gaming industries. However, there is a lack of reseaneht@the complexity

of the problem. We indicated that the requirements of theareh area can be
divided into three problems. First, we have to simulatesgalinteractions among
characters. Second, the process has to be made real-tinui thes needs of

computer games. Finally, we need a mechanism to create ¢nberdctions that

involve tens to hundreds of characters. We gave an overueti@methodology

we proposed. We proposed three ideas to deal with the prebleamely the

temporal tree expansion, the Interaction Graph and thedctien Patches. In the
following chapters we will go into details for each of the ade

Chapter 2

Related Works

Motion synthesis has become one of the major research areasiputer graph-
ics, robotics and biomechanics. Driven by the demand of cawenggames and
movies, the field evolved rapidly in the past decade.

There are two main streams of techniques to simulate moti©nsone hand,
physical simulations, which are based on dynamics, moeahibtions with phys-
ical parameters such as force and angular momentum. Sucitasions play a
key role in controlling robots and analyzing human movemsentainly due to
their accurate simulations of control forces. Howeverythee in general com-
putational costly and are unable to guarantee realisticom&t More discussion
can be found in Sectio@.1 On the other hand, data-driven approaches, which
are mainly based on kinematics, generate new motions witltaptured motions
from motion capture system. Because human performed moveraes used,
it can simulate realistic motions with minimal computatiddowever, since the
internal dynamics are not captured, the motions cannot &ptad to different en-
vironments nor react to external perturbations. Se@i@mexplains in details how
data-driven approaches work.

While both streams of approaches can model and simulate ttiemaf a
single character, it is unclear how these algorithms carxtended to model mul-
tiple interacting characters. In recent years, there aneesoew approaches to
analyze the nature of interactions and apply them to cowirtlal characters.
Most of these researches, however, can only produce lirmtedactions among
characters, such as collision avoidance during walking. these that can sim-
ulate denser interactions, they usually suffer from the glexity of interactions
and produce only sub-optimal results. More informationuailable in Section

9

10 Chapter 2. Related Works

2.3

2.1 Physical Simulation Approaches

There are two major advantages of physical simulation amtres. First, with a
well defined physical model, they guarantee the physicaéctimess of the motion
generated. This is important to generate control signatshotics and evaluate
human motions for medical or biological concerns. Secordabse the motions
are simulated based on dynamics, it is possible to adjushtt®ns by adding ex-
ternal perturbations to the characters. In computer gachesacters are expected
to react to dynamic environment and external forces. Physimulations provide
an excellent framework to simulate such behaviors.

We will discuss three popular areas of physical simulationsharacter ani-
mations. The proportional-derivative (Secti®dri.]) controller approximates the
control signal as a weighted combination of errors. It i$ fasl effective to sim-
ulate simple human motions. Inverse dynamics (Se@idr? is used to calcu-
late the control forces required to perform a predefined enotOnce the control
forces are optimized, the controller becomes independehttreference motion.
Spacetime constraints (Secti@ril.3 solve the body motions with multiple con-
straints by optimizing a set of objective functions, andrgangee the stability and
optimality of the synthesized motion.

2.1.1 Proportional-Derivative Controller

Forward dynamics has been used extensively for gait sion[Raibert & Hodgins
(1997), Van De PannéMar 1996, Liu & Popovit (2002]. One of the popular im-
plementations of these systems is the proportional-darezéPD) controller. In
PD control, the joint torque required is determined by conmggthe current joint
angle and angular velocity to that of the desired posture:

T = kp(8 — B) + k(8 — 6)) (2.1)

wheret is the torque applied to the joifl,and®’ are the joint rotation and angular
velocity respectivelyfy and®); are the target joint rotation and angular velocity
respectively.kp is called the proportional gain, which governs the respoass
andKky is the derivative gain, which is used to reduce overshootth\RD con-

2.1. Physical Simulation Approaches 11

troller, one can simulate the torque required for a charaot@erform different
motions.

The PD control system can be extended further to simulat&-teatun and
run-to-walk transitiontiHodgins(9-11 Apr 199), Shiratori & Hodging2008)], as
well as walking with different step lengthiHpdgins & RaibertJun 199}]. Usu-
ally a finite state machine is used to connect multiple PDrodiets and handle
the transition between controllers. Apart from locomotiathletic motions such
as cycling and handspring vaultinggdgins et al(1995], and somersault motion
[Playter & Raiber{7-10 Jul 199] are generated. Such systems require a certain
amount of manual design to generate different types of meti®D control is also
suitable to generate responsive motions such as the faldiok motions when one
is being pushedfordan & Hodging2002]. Since generating realistic full body
motions require carefully designed dynamics systems, firagosed to control
characters by simply tracking captured human movement$) that the move-
ments can react to external forcésbp & Popovt (2006]. For speeding up the
simulations, simplified polygons model can be used to remrethe characters
with high degrees of freedonMitake et al.(2009)].

One problem of PD control is that the system overpowers thealadynamics
of the object. This is because the forces applied by PD cbateonot optimized,
and tend to be larger than required. Recently, the gentles$oace proposed to
control fluids and deformable solids with optimal preconspugain for each time
step Barbi¢ & Popovi (2008]. However, it is not confirmed if such an approach
works well when applied to human body with high degrees admn.

2.1.2 Inverse Dynamics

When controlling characters in a physical environment, wedrne calculate the
control forces or torques to perform different actions. @pproach is capturing
the actions and applying PD control to estimate the contalds to be applied.
However, systems based only on such feedback forces ariyusustable due to
the high gains required. Instead, the control torques casobguted by inverse
dynamics and applied in a feed-forward system to minimizestes of feedback
controls [yin et al. (2007, Oshita & Makinouchi(20017)].
Quadratic programming is proposed to solve the torque apdition problem

for simplified walking charactersif Silva et al(2008)]. Although such optimiza-

12 Chapter 2. Related Works

tion is computational costly given the high degree of freedor a human body,
it can be solved in real-time by considering only short hamizand hence gen-
erate an interactive systerivlirco da Silva(2008]. Alternatively, optimizations
in high dimensional space can be solved in a properly rediovedlimensional
space for faster and more robust resuBarpic et al.(2009]. With a combined
force and torque controller, realistic motion to restorabee when standing can
be simulated Adriano Macchiettq2009]. By training a higher level controller
based on stepping pattern, locomotion that satisfies diftestepping constraints
can be generatedpros et al(2008]. One may also combine controller trained
with different source motions to create a controllable ahtar that is capable of
balancing from external forces and switching locomotigthest [Sok et al(2007),
Tsai et al.(2009)].

2.1.3 Spacetime Constraints

Although frame-based motion editing methods such as PDr@océin generate
control signals, they may result in unstable motions witteffy movements. In
contrast, spacetime constrainigifkin & Kass (1988] are introduced to optimize

a motion segment in a given duration. When using the methathadors spec-
ify multiple constraints, which are usually representec a®t of keyframe pos-
tures, and apply a solver to compute the optimal controluesdgoy minimizing

a predefined objective function based on dynamics. Withetpae constraints,
realistic motion like running and jumping can be generatedpvt & Witkin
(1999, Liu & Popovit (2002, Liu et al. (2005]. By applying non-linear con-
trollers to plan through contact state changes, agile l@t@m can be generated
[Muico et al.(2009]. The method is also used to generate transitions between m
tion segmentsRose et al(1996], and adapt previously created motions to new
situations and characterGleicher & Litwinowicz (1998)].

Although spacetime constraints can simulate stable aridtieanotions, they
are very computationally costly due to the nonlinearitytad bbjective functions
used during the optimization stage. Work has been done taneehthe per-
formance by introducing hierarchical structure to the spljiu et al. (1994)],
and simplifying the system to a linear time procearig & Pollard(2003]. By
combining spacetime constraints and motion displaceme, isimulation can
be conducted in interactive tim&leicher(1997]. However, since the general

2.2. Data-Driven Motion Synthesis 13

concept of these researches is to generate a motion thahio@s a predefined
function, it is difficult to generate interactions for reate application where the
constraints are not known in advance. As a result, it is sstggeto dynamically
update the constraints in every time-step during run-tioa shat animation can
be generated with user interactiodain et al(2009)]. It is also possible to apply
spacetime optimization in every time step to interactiv@mthesize the interac-
tions between characters and objedaif & Liu (2009)].

2.2 Data-Driven Motion Synthesis

Despite of the extensive uses in robotics, physical sinaulat less popular in
character animations. One major concern is that physicaltgect motions may
not always appear natural. This is because naturalnessmarmunotion is dif-
ficult to be well represented with simple physical formuldsother problem is
that these approaches are, in general, computationaltly chse to the high de-
grees of freedom of the human body. For real-time applioatg&uch as computer
games, computational resources have to be distributedfevadit modulus such
as rendering and non-player characters (NPC) controls. IAystem of physical
simulations may not be affordable.

On the other hand, with the improvement in motion capturénetogy, it
becomes easier to acquire 3D human motions using motionreagystems. Re-
cently, researchers have focused more on data-driven ages, while apply-
ing physically constraints to enhance the captured matidime data-driven ap-
proaches can be classified into motion interpolation (8e@i2.1) and motion
rearrangement (Sectidh2.2. The former interpolates motion segments to create
new ones, and the latter synthesizes motion by rearrangaigmsegments in a
motion database.

2.2.1 Motion Interpolation

With motion interpolation techniques, new motions can ha&lsgsized by blend-
ing multiple captured source motion segmeBiiderlin & Williams(1995]. Due
to the ability to create new motions, such approaches ystdalhot require a large
motion database, which is favorable to systems with linstedage like game con-
soles.

14 Chapter 2. Related Works

With the simple Alpha blending algorithm, two motions arerided linearly
frame by frame as follow:

Mplend (f) =aM1(f) + (1—a)Mz(f)VF € [fto, ftf} (2.2)

where fi, and f;, represent the frame range for blending the two motmwns=
ﬁ is a value between 1 and My end, M1 andMs are the postures at the
blended motion, first motion and second motion, respegtivel

Since the source motions may not be synchronized in speediamadion,
blending them frame by frame usually leads to unnatural Wieh&a Dynamic
time warping is introduced to minimize the difference bedgwdwo motions by
synchronizing them during blendinggvar & Gleicher(2003, Hsu et al(2009)].
The general idea is to evaluate the posture differenceseegtwwo source mo-
tions in every possible combination of frames pairs. Thgnathic programming
is applied to select the frame pairs with minimal differefaeblending. Apart
from synchronizing the source motions with minimal postditéerence, some
researchers suggest to consider the foot supporting statetermine synchro-
nization framesl{lénardais et a2004)]. Thus, multiple synchronization frames
are defined to indicate the change in supporting states, landihg is performed
within the periods where supporting states remain uncléingg this way, the
foot skate of the characters, which is a common artifact fotiom blending,
can be minimized. Similarly, for rhythmic motions such asadag, the beat
patterns of the motions could be considered to synchrohieesburce motions
[Ménardais et a2004)].

Motions of different logical context, in general, cannotlidended together.
For instance, blending a punching motion with a kicking motwill lead to an
unnatural result. Therefore, it is suggested that sourdsonmsshould be classi-
fied into groups and blending should only be applied withichegroup Park et al.
(2004)]. Similarly, locomotion can be classified into differem¢g patterns before
blending such that foot sliding can be avoidédemoto et al(2007)]. Since clas-
sifying motions requires a lot of manual work, automatic raaghes are intro-
duced Kovar & Gleicher(2004), Mukai & Kuriyama(2005].

Dimensionality reduction techniques such as Principal Gomept Analysis
(PCA) or Scaled Gaussian Process Latent Variable Model (SGRkan be ap-
plied to create a reduced space of high dimensional motiditeough interpo-
lation is not performed explicitly, each point in the reddspace represents an

2.2. Data-Driven Motion Synthesis 15

implicitly blended posture from multiple sources, and geirtory in the reduced
space represents a blended motion of the source motiori Btged & Hertzmann
(2000, Grochow et al.(2004]. Furthermore, although it is difficult to control
a character based on blending in the high dimensional jgates, it is possi-
ble to solve the optimization problem in the reduced spawd,then project the
posture back to the joint spacg&dfonova et al(2004), Chai & Hodgins(2009,
Bitzer et al.(2008]. In other words, dimensionality reduction techniques ba
considered as statistical means to group similar motiomseg¢s and generate new
motions by implicit blending.

2.2.2 Motion Rearrangement

With motion rearrangement, new motions are synthesizectagranging shorter
motion segments in a sequence of captured motion. The M@raph approach
is an effective algorithm to organize captured motion aneractively reproduce
continuous motions based on a graph structltev@r et al. (2002, Lee et al.
(2002]. The graph is automatically generated based on a set abnsptwith
the nodes representing poses in the captured motion and egjgesenting mo-
tion segments. To create the graph, the similarity betwebitrary poses is
evaluated based on kinematical data such as the positiowedadity of joints
[Wang & Bodenheimef2003]. The similar pairs are connected with edges. By
traversing the graph, it is possible to generate long sexpseof motion.

Since the Motion Graph produces a lot of edges and nodes wtithty con-
text, it becomes difficult to control the character basedrenuser wishes. Re-
cently, to reduce the complexity of the Motion Graph, sonseagchers proposed
to generate a simpler, hub-to-hub Motion Graph called Fap&iGleicher et al.
(2003, Shin & Oh(2006]. In such a graph, every node represents multiple sim-
ilar poses and every edge represents multiple similar maegments. A simi-
lar approach is to apply the concept of motif, which is theigratrepresentation
used in deoxyribonucleic acid (DNA), to group similar aoganto a single edge
[Beaudoin et al(2008, Jingjing Meng & Wu(2008]. With a simplified graph,
animators can easily modify the structure of the graph amsh edd in desired
motions. Another solution for organizing complex Motiona@hs is to integrate
behavior contexts into the captured motions and generaierarthical structure
of motion data [au & Kuffner (2005, Kwon & Shin (2005, Chiu et al.(2007)].

16 Chapter 2. Related Works

Usually, motion segments of similar logical behavior am@sslfied into the same
group as a node, while the edges indicate possible trandigbwveen the groups.
Motion planning with such graphs is more efficient since it b&a carried out in
the behavior level instead of the motion data level.

It is possible to control a character using the Motion Grapkldfining objec-
tive functions to select appropriate motion segments. iBuswesearches created
controllable characters performing different tasks suchuaning and exploring
a territory [Choi et al.(2003]. The quality of the resultant motion and the con-
trollability of the characters, in general, depend a lot lo@ tonnectivity of the
Motion Graph Reitsma & Pollard2004 2007)]. Hence, some researchers pro-
pose to enhance the connectivity by blending multiple nrmstighao & Safonova
(2008]. Furthermore, since these kinds of planning usually irega lot of com-
putational power, methods to precompute the optimal astiote performed and
store them in a look-up table are proposkdy & Kuffner (2006]. During run-
time, the motions of a large number of characters can be ateulin real-time by
referencing the precomputed look-up table. Roughly speakar such precom-
putation techniques, memory requirement increases expiaiig with respect to
the complexity of the system. As a result, the bottleneckefdystem shifts from
computational power to memory usage.

Recently, hybrid systems that combine the advantage of mog@rrangement
and motion blending by integrating blending parameteis aotion Graph are
proposed$afonova & Hodging2007), Heck & Gleicher(2007), Safonova & Hodgins
(2008)]. In such graphs, each node contains a set of source mdtobtending,
and the edges denote the ability to transit from node to nadde. result, while the
Motion Graph provides natural transitions to generate eguence of motions,
realistic variations of the source motions can be generayechotion interpola-
tion. Furthermore, by embedding blending information iofmimization algo-
rithm such as reinforcement learning, characters can biealeal in a continuous
action space\Wan-Yen Lo(2008)].

While it is originally proposed to organize and rearrange anmotion, Mo-
tion Graphs can also be applied to organize the motion of §lofkirds Lai et al.
(2009] by considering the whole group as a single object. Someareters ap-
ply the graph to organize 2D human motion vidédagg et al.(2009] with the
consideration on pixel similarity. Also, Motion Graph cae bsed to organize
the movements of complex polygon meshésnes et a2007)] by dividing the

2.3. Motion Planning For Interactions 17

meshes into smaller parts and create edges for each part.

2.3 Motion Planning For Interactions

Although it is popular to apply motion synthesis technigt@£ontrol a single
character, controlling multiple characters to interadhwaach other remains an
open problem. Current researches on this topic can be ctaksifio five cate-
gories. First, the crowd simulation methods (Sec®dad.1) are shown to be effi-
cient to generate the behaviors of a crowd of charactersitidairproblem is that
these methods cannot be easily extended to handle crowctaiitiplex interac-
tions such as people pushing around. Second, responsensy&ectior2.3.2
are strong at generating reactive behaviors by combiningomoapture data with
physical dynamics. The drawback is that interactions satedl by these methods
are bound to be passive, such as characters being pushedidingv The third
category is to generate motions based on statistical asqfyection2.3.3. By
analyzing the behaviors of real humans, one can simulatectess with sim-
ilar behaviors. However, such kinds of statistics are, inegal, difficult to be
acquired and limited in variations. Optimization-basedhods (Sectior2.3.4
can synthesize the required motion by optimizing pre-ddfolgective functions.
Approaches like reinforcement learning are effective intBgsizing interactive
behaviors. Nevertheless, more researches are requiresh&vage realistic inter-
actions among large number of characters. Finally, topobaged methods (Sec-
tion 2.3.5 are good at generate close interactions between two dbesawith
multiple keyframes, but it is unclear how these approachesoe integrated with
artificial intelligence controllers.

2.3.1 Crowd Simulation

The objective of crowd simulation is to model and simulater@e number of
characters in an environment. Although simple flocking nhadesimulate the
movements of flocks of birds and schools of fishes has beemgedalecades ago
[Reynolds(1987, 1999, it is until recently that more delicate approaches appea
to model the movement of humans. The use of social force igesigd to de-
scribe the internal motivation of the characters to perfagfions or movements
[Helbing & Molnar (1995]. Based on the concepts of social forces, a dynami-

18 Chapter 2. Related Works

cal model is proposed to simulate the movement of peoplenicgielbing et al.
(2000]. Later on, a probabilistic model is introduced for theestilons of motions
[Sung et al(2004)]. Fluid dynamics is also used to determine the flow of people
moving in the spaceTfreuille et al.(2006)]. In such systems, the density of char-
acters in the environment is evaluated to generate a pat@&eid. The positions

of the characters, and their corresponding movementshareupdated based on
the field.

Procedural based approached is proposed to simulate cratlvddifferent
movement behaviors based on a set of predefined rules. Aanityoe modeled
as a 2D map and the pedestrians are assigned with the chet&-fmnavigate
the city [Loscos et al(2003]. These check-points can be further classified as in-
terest points, for which the characters must pass througth aation points, for
which the characters would perform certain actiobsi$se et al(1998]. Such
systems are extended to control the movements of a groupavhcters rather
than a single one by classifying characters into leadersramdbers. Only leaders
make decisions on check-points and members follow thenesponding leaders
[Musse & Thalmani(1997)]. Collision avoidance for the characters can be imple-
mented by checking the future trajectories of movementsséeeting away from
potential collisions [Feurtey(2000, Loscos et al(2003]. The concept of proxy
agents, which are virtual, invisible characters that infeeenearby characters, is
introduced to simulate social effects in a crowd such asgipilaces to the elderly
[Yeh et al.(2009)].

To enhance the scalability of the crowd simulation systeswyall as decrease
the run-time overhead, patches based methods are intrbdlibe patches, which
represent short segments of motions in small areas, arenergleprecomputed,
and combined during run-time to create a huge scene. Theompttches is
proposed to simulate scenes such as office and playgroumdhiah each patch
defines the movements of a character to interact with an blyjex small rect-
angular areallee et al.(2006]. When combining the patches during run-time, a
scenes in which a lot of characters interacting with differebjects in the world
can be generated. Based on a similar concept, the crowd patcbereated to
precompute the behaviors when multiple characters aval etner when walk-
ing [Yersin et al(2009]. In our work, we also apply patch based method to create
a crowd scene. However, our patches define the dense inbeiatmong multiple
characters rather than simple locomotion.

2.3. Motion Planning For Interactions 19

The controllability of the crowd also becomes an importasiearch topic in
crowd simulation. While procedural based approaches carstilfje behavior of
individual characters, there is a strong demand in gamesandks to control the
crowd of characters as a whole, such as maintaining the tamand moving in a
specific manner. A spectral-based approach is appliedegiolate the motion of
the characters in between multiply keyframes of crowd fdiomg Takahashi et al.
(2009]. On the other hand, by representing the spatio-tempetationship of a
group of moving characters as a mesh, mesh based defornetiomques can be
applied to edit the movement of the whole crowd while minimigzthe adjustment
required Kwon, Lee, Lee & Takahaslti2008]. A similar idea is proposed to edit
a crowd of character with multiple constraintsiin et al. (2009] by borrowing
the Laplacian transform in mesh editing that produce asHag possible transfor-
mation [lgarashi et al(2005]. In our experiments, we also implements interfaces
to control the characters in different levels.

In these works, the interactions between the charactersitirer simple, such
as avoiding other pedestrians in a path, or walking along astother character.
Although crowd simulation is efficient to compute the movetaf a large num-
ber of characters, due to the simplification of charactezldviors, it is difficult to
be applied for creating interactions when close contaath ss pushing, pulling
or hitting motions are involved. Unlike previous reseasg;heur proposed algo-
rithm can generate a huge number of characters while capéklenulating the
dense interactions among them.

2.3.2 Response System

How a person behaves when being pushed, pulled or hit is tigctracting re-
searchers due to the demands in animation systems suchemsgadhes. Since
solving the body poses during impact by frame based optimizasometimes
leads to unstable body movements, optimization with space tonstraints are
proposed to guarantee the stability of the motion througtime [Liu et al.(2006)].
The drawback is that the computational cost is very largae éwean off-line pro-
cess due to the high degrees of freedom for a human body. Asili,fecal op-
timization based on dynamic¥dmane & Nakamur&2000)] is proposed to solve
the body postures during impact in real-tindbe et al.(2007]. Dimensional re-
duction techniques such as Principal Component Analysis jR@Aproposed to

20 Chapter 2. Related Works

simplify the system and speed up the optimization procés£]Liu (2008]. An-
other solution is to apply machine learning techniquesfaining a system that
could give plausible combinations of reactiodsikan et al.(2009, Zordan et al.
(2007)].

One important research area of response system is to gemegdistic bal-
ancing motions in the presence of external perturbatiohs.ZEro moment point
(ZMP) is an important criterion to balance the body of a cbmaFujimoto et al.
(1998, Li et al. (1992, Nishiwaki et al.(2001)]. The Three-Dimensional Linear
Inverted Pendulum Mode (3DLIPM) is a popular method usedbotics to sim-
plify the linear dynamics of the lower body such that appiatercontrol torques
can be calculated efficientl¥Kpjita et al.(2002), Kajita, Matsumoto & Saig¢2001)].
Since angular momentum is not considered in 3DLIPM, angulamentum gen-
erated due to noise or external perturbation has to be naeito zero using feed-
back controllersKajita, Yokoi, Saigo & Tani€2001), Napoleon et ak2002]. As
a result, an enhanced version of 3DLIPM called Angular Motmeninducing in-
verted Pendulum Model (AMPM), which can counteract angmiamentum in-
duced by external perturbations, is proposkddoh & Komura(2003]. Using
AMPM, it is possible to calculate reactive motions for bipdtiat preserve dy-
namic balance during locomotioKkgmura et al(2004)]. By further considering
the difference of the moment of inertia between the currestyre and the cor-
responding posture in a reference captured motion, it isiplesto synthesize the
movement for counteracting external perturbations andwgity moving back to
the original gait motionkomura, Leung, Kudoh & Kuffne(2009)].

Apart from dynamics based approaches, response motioimgamilision can
be generated by combining motion capture data with invensenkatics or for-
ward dynamics Komura et al.(2004), Komura, Ho & Lau (2005, Zordan et al.
(2009]. The idea is to apply dynamics to simulate the effect ofactpand then
blend the posture to a captured reactive motion. Thus steainotions of falling
down, regaining balance or even avoiding collision can beeged effectively.

The general focus of response systems is the responsivenmeatef the char-
acter. Thus, it is not trivial to extend such systems to a@rtharacters that ac-
tively interact with other characters such as punching goopnt in boxing. In
our research, we apply response systems to simulate themeot® during colli-
sions, and propose new methods to simulate active movements

2.3. Motion Planning For Interactions 21

2.3.3 Statistical Analysis

A straight forward approach to generate dense interacbeihseen characters is
to first capture the interactions of multiple humans with aiorocapture system,
then extract statistical information such as the trajeesoof movement from the
captured data, and finally use machine learning techniguesproduce motions
under different situationsgang Il Park & Shir{2004), Lee et al(2007), Lerner et al.
(2007, Kwon, Cho, Park & Shir{2008)].

The drawback of a these methods is the difficultly to gathatistical data.
Even with the state-of-the-art technology, it is not easgdquire the motion data
of multiple persons. Some researchers avoid the problermbirlg the system
to handle two character$§ang Il Park & Shin(2004, Kwon, Cho, Park & Shin
(2008)]. This is because capturing multiple persons using mategture system
is very difficult due to collision of body parts and occlusigmother method is to
limit the motions to be locomotion, and use overhead canterasck the move-
ment of a crowd without capturing the details of the motiolbed et al.(2007),
Lerner et al(2007)]. Then, by statistically evaluating the translationslod peo-
ple, characters with similar behaviors can be synthesitéolvever, due to the
limitations on motion capturing, these algorithms cannetapplied directly to
generate motions of multiple interacting characters.

2.3.4 Optimization Based Approaches

Optimization based methods are effective in synthesiziragarcter motions. Usu-
ally, machine learning techniques are used to train a ctearéx optimize a pre-
defined objective functions. Based on reinforcement legrj8utton & Barto
(1998], the optimal control policy can be trained by letting a &dwer to per-
form actions and observing the benefits. It is used to trainaaacter to reach a
target location while avoiding collision with obstaclesbd on a Motion Graph
[Ikemoto et al.(2005]. By embedding information for motion interpolation, a
more flexible controller that can blend multiple motionscamétically can be
trained Lo & Zwicker (2008]. Reinforcement learning can also be used to en-
hance the controllability of a character by predicting teencontrol signals based
on the training samplegv[cCann & Pollard(2007)]. Alternatively, using active
learning, one can generate real-time highly-controllablaracters by adaptively
capturing new actions that can improve the quality and nesigeness of the con-

22 Chapter 2. Related Works

troller [Cooper et al(2007)].

Reinforcement learning can be extended to simulate hightguaderactions
among multiple characters based on singly captured motitins used to train
boxing characters to approach and hit a targee[& Lee (2004 2006] and to
train computer based players in a fighting garibdre Graepe(2004)]. How-
ever, these researches focus mainly on relatively simpéantions due to the
high dimensionality, and hence complexity, of the humaniomotBy assuming a
continuous state space for human motion, and computingdtieal weights for
the bases of the motion trajectories, it is possible to gehuman motion in a
lower dimensionality spacdfeuille et al.(2007)]. However, this method cannot
be used for handling discrete actions such as pushingngufind avoiding.

A general problem of these techniques is that they only peogplutions for
simulating the interactions of two or three characters. yTtie not provide a
method to simulate a scene of many characters, except flogatihg a number
of pairs in the scend_pe & Lee(2004 2006)], or randomly allocating characters
in the scene and letting them interact with each other ongie distance is close
[Treuille et al.(2007]. In movies or games, we wish to see characters concur-
rently interacting with multiple neighbors in a crowd. Oupposed method can
generate such kind of many-to-many interactions effelgtive

2.3.5 Topology Based Approaches

Simulating close interactions between multiple charactedifficult because of
the large number of contact points. Recently, the topolo@csphas been pro-
posed to simplify close interactions synthesis. In the kogp space, a human
body is defined by a set of string and the interactions of twaratters are de-
fined by the tangles between the two set of strings repreggtitie two bodies
[Ho & Komura (2009)]. By combining singly captured motions with tangle in-
formation, one can simulate collision-free close intdoart between two charac-
ters with a small number of keyframad¢ & Komura(2007)].

The topology space can also simplify the motion planningess during close
interactions. While path planning techniques like Rapidkpléring Random
Trees (RRT) [aValle & Kuffner (2000, LaValle (1998)] in joint space can gen-
erate simple interactions between a character and an ¢Bjeapiro et al(2007),
Esteves et al2005], applying RRT in the topology space of multiple characters

2.4. Summary 23

can further guarantees collision free patht® [& Komura (2007a)]. Moreover,
being a global optimization technique, RRT requires hugepmgational cost. It
is shown that in the topology space, reasonable interactian be generated even
if local, frame-based optimization is usddd & Komura (200%)].

Although keyframe based close interactions can be sindile@sily with the
use of topology space, it is unclear how such operations eantbgrated with
artificial intelligence controllers. Furthermore, sinte thumber of string pairs
increases exponentially with the number of characters,oitildl be difficult to
apply topology operations for more than two characters.

2.4 Summary

The two streams of motion synthesis techniques, physioalilation and data-
driven approaches, are capable of synthesizing motion ofggescharacter. Re-
cently researchers are trying to apply such techniquestteiscenes when mul-
tiple characters interacting with each other. Howeverrésellts are still far from
satisfactory. We will propose a new method to simulate demssactions be-
tween a few characters, and extend the scheme to simul&tinneacontrollable
interacting characters and crowd with interactions.

Chapter 3
Data Preparation

In this chapter, we explain the processes to capture theonsbf actors indi-
vidually, segment them into shorter semantic actionssdiathem into different
categories, compose a data structure called action levebMGraph, and embed
supplementary information into the actions.

We apply an optical motion system to capture human motiorQiti8 with
35 markers. The positions of the markers are then convestactharacter model
represented by a hierarchy of 25 joints using third partywafe. Each joint has
3 degrees of freedom for rotation and the pelvis joint hasdalitianal 3 degrees
of freedom for translation. In other words, a pose can beesgmted by a 78
dimensional feature vector.

3.1 Motion Capture and Motion Segmentation

We capture long sequences of motions of a single human. Qagtine motion

of one person instead of those by two persons eases thetmoilet data. When
capturing the motions of two actors at the same time, thexaramy problems
especially for the popular optical motion capture system wuthe occlusion of
the body segments. Usually, such data requires a huge amibpost-processing
to correct the positions of markers, and the quality of théioms is not as good
as those when one subject is acting. Another advantage tfraapalone is that
we can make various combinations of motions. If we simplyagphe captured
motions, the type of interactions will be limited, and assult the final animation
will appear monotonic.

Here we define the term “motion” as the raw-captured datatlaaterm “ac-

25

26 Chapter 3. Data Preparation

tion” as a semantic segment of the motion we captured. In de dif fighting, an
action can be an attack (such as a left straight, jab or akigk}, a defence (such
as parries, blocking or ducking), a movement (such as stgdpi the left, step-
ping forward or back step), a reactive motion when being pitshed away, or the
combinations of them. We capture long sequences of motiwstead of shorter
actions individually. The major advantage is that we cars@mnee of naturalness
of the movements. However, we have to segment them intoestetmantic seg-
ments for better character controls.

We develop an automatic motion analyzer to segment raw meindo actions.
It consists of three steps. First, for a captured motionatiezleration of all joints
is calculated (Figure.1 (a)). Second, the supporting feet patterns throughout
the motion are detected (Figugel (b)). Details on determining supporting feet
pattern automatically will be explained in Secti®2. Third, we detect the periods
when the sum of squares of the acceleration of the jointsrgetathan a pre-
defined threshold (Figurd.1 (c)). In these high acceleration periods, the body
is expected to go through continuous movements such akstsao defences.
Finally, segmentation is performed at the center of the osbpport phases.
However, we do not segment the motions during the high aatele periods
detected in the previous step in order to preserve the agotytiof high acceleration
movements (Figur@.1 (d)). Easy as it may sound, due to the large variety of
human actions, it is difficult to create a perfectly accuissggmentation system.
Therefore, we allow users to fine tune the results.

We manually embed high level information into the segmeatgns. First,
for each action, there must be at least one movement clagsiimg) the nature
of the action, such as “attack”, “avoid”, “block”, “movem#&netc. Notice that
there may be multiple movement classes within an action sscblocking an
attack with the arms while avoiding. Second, for actions thgquired the usage
of specific joints, we record the names of the joints. Foraneg, in the action
“right hook punch”, the joint “right hand” is recorded to beetjoint being used
in the action. Finally, we include high level descriptiomms §pecial actions. In
our system, such information includes the attacking dimedor “attack” actions,
and the rough defending body parts for “block” and “avoidtiaes. They help in
evaluating the suitability for performing the actions iffelient situations.

3.2. Supporting Feet Patterns 27

Acceleration

(a) /Threshold
K N~
= | = |
(c){
(d) {
Figure 3.1

The motion segmentation system. (a) The sum of square ofeaatien for all

joints against time is plotted. (b) The supporting feetgrais of the motion are

detected. (c) By applying a threshold in the acceleratiohipl¢a), the periods

with high acceleration are extracted. (d) Actions are segeteat the centers of

the double supporting phases, except those cutting thriheghigh acceleration
period extracted in (c).

3.2 Supporting Feet Patterns

We follow the algorithm proposed by Ikemoto et alkgmoto et al.(2006)] to
detect supporting feet patterns in our capture motions. &\thg authors suggest
using a dedicated model with high dimensional feature speeéound that a sim-
plified model works reasonably well. We simplify the modetwo ways. First,
instead of using the joint positions all the lower body jeiat a feature vector, we
only consider the speed and height of each individual foeto&d, we monitor a
single frame instead of a window of frames to maintain a lowehsional feature
space.

We apply a soft margin support vector machine (SVEp$er et al(1992),
Cortes & Vapnik(1995] as our classifier. A two dimensional feature vector is
used in the SVM to indicate the movement speed and height obt fEach
feature vector is associated with a class, which is either 1stipported” or -1 for
“unsupported”. During the training stage, the user indisahe supporting feet
for some actions, and the system generates training saroplassociating the
feature vectors with the classes of supporting feet. THeEnSVM calculates the
hyperplane that maximizes the margin of the two classestaf da

argming [w[|?+C ;&

| (3.1)
subject tagi (w-x; — b) > 1 —§;

28 Chapter 3. Data Preparation

wherew is the normal to the hyperplang, is the slack variable which measure
the degree of misclassification of the featureC is a parameter for penalty on
error, ¢ is either 1 or -1 indicating the class ®f, b determines the offset of the
hyperplane from the origin along. Our SVM apply radial basis function as the
system kernel:

K (xi,x;) = e VXl (3.2)

wherex;, X; are feature vectorg,> 0 is a parameter for the kernel.

Notice thatC in Equation3.1 andy in Equation3.2 need to be tuned. Our
system searches for the optimal values using brute forcksgrarch. We train
a SVM for each possible quantized values®andy. Then, we evaluate the
performance of the SVM using leave-one-out cross-valadatiTheC andy that
perform the best will be used.

Once the SVM is trained, we can apply it to classify the supporfeet of
any posture in the actions we have during run-time. SinceSWb! is simple,
the computational cost is neglectable. Apart from the se@thputational cost,
the major advantage of our simplified system is that the atourtraining data
can be dramatically decreased. In the research of lkemab ¢tkemoto et al.
(2009], around 9000 frames of training data is needed, which isva¢ent to
150 seconds of motion data. It should be noted that most md@tabase in our
system contain only tens of seconds of data, and hence usthgasarge feature
space is not feasible. With our simplified system, arounde2@®isds of training
data is enough to produce reasonably accurate classificatio

3.3 Action Level Motion Graph

We build a Motion GraphArikan & Forsyth(2002), Lee et al(2002, Kovar et al.
(2002] in the action level rather than the frame level, as@Ghdicher et al(2003,
Lau & Kuffner (20095, Kwon & Shin (2005]. We call this data structure the ac-
tion level Motion Graph. Planning based on such a graph idasino the way
human does, as people also use actions such as attack andedafethe funda-
mental entities during planning.

The processes to generate an action level Motion Graph swelized in Fig-
ure 3.2 First, we extract the starting poses and the ending posalt attions.
Then, we apply K-mean to cluster similar poses together.siseem determines

3.3. Action Level Motion Graph 29

the number of clusters, K, iteratively with a predefined shiid indicating the
maximum pose difference within a cluster. Each clusteresgmts a group of
similar poses and becomes a node in our Motion Graph. Somtmgtposes and
ending poses may be grouped into the same cluster. This niedr&tions, which
are represented by edges, with such ending poses can becteshteeactions with
such starting poses.

Figure 3.2

An action level motion graph that is generated from the bgxnotion. (Upper)
Starting and ending poses of actions are extracted. Thedjassent motions
and the colored regions represent actions. (Middle) Smei#racted poses are

grouped into nodes, and actions are represented as edge&rjlThe resultant

action level Motion Graph.

We design our distance function as a weighted sum of six teswalculate the
difference between two poses during the K-mean classihicafl he weights are
manually designed. For any two poseandB, we first align them by translating
along the floor plane and rotating around the vertical axisenl we apply the
distance function to calculate their difference. The fingt terms of the function

30 Chapter 3. Data Preparation

evaluate the posture difference for the upper body:
Dupper = Y 3= I (3.3)
|

Dupper’ = Z HJIA/ - JiB/H (3-4)
]

where]; is the three dimensional Euler angle of the jaink represents its deriva-
tive, andi represents the set of joints above the pelvis. The supptsepresents
the two pose#\ andB respectively. The next two terms evaluate the posture dif-
ference for the lower body:

Diower = |Li6_ I-IBH + |L'r°_ |—|r3|| (3'5)
Diower’ = |LIA/_LF/||+|LrA/_LrB/H (3'6)

wherel| andL, are the three dimensional leg vectdf®nura et al(2004] point-

ing from the pelvis to the left and the right foot respectyél; andL; are the
corresponding derivative. The final two terms evaluate #ight difference for
the body:

Dheight = [H” —HE| (3.7)
Dheight = [HY —H?| (3.8)

whereH is the height of the pelvis an@H)’ is its derivative. The final distance
function between the two poses becomes:

D(A,B) = WuypperDupper + Wupper’ Dupper’ + Wiower Diower

(3.9)
+Wiower' Diower’ + Wheight Dheight + Wheight’ Dheight’

where thew terms are the corresponding weights. The design to sepavatgght
the upper body, the lower body and the height of the body i®itant to cope with
different motion data sets. For example, if we are congngefighting motions,
all terms are equally important. However, for locomotiorlsas jogging and
walking, the upper body and its derivative are far less irtgparthan the other
terms, and the corresponding weights can be set small.

3.4 Action Combination Table

When we simulate interactions in later sections, we defineablg functions to
evaluate the suitability for the characters to perform actyoas. The functions

3.4. Action Combination Table 31

are useful in many aspects concerning interactions, bytfetleshort to represent
the implicit factors that affect the action selection psseThese implicit factors
are difficult to be evaluated mathematically and requirgaekiformation from

the animators. In this section, we explain the action comtimn table, which

helps to determine the optimal actions to be performed baseke action by the
opponent. The table is maintained manually. It (1) enalbiiessiystem to take
into account subtle factors of interactions which cannosiogply expressed by
objective functions, and (2) provides interface to animateho want to pair up
specific actions.

Each record in the table contains three fields: the chataetetion, the oppo-
nent's action, and a suitability value that describes hdecéfe the character's
action is with respect to the opponent’s action. A positieéue encourages the
character to perform such an action when the opponent isnpeirig the oppo-
nent’s action, while a negative value means such an actiotdtetter be avoided.

In our system, the table is used to evaluate the quality oérdsfe actions
during fighting, which is difficult to be evaluated numerlgal It is known in
boxing that sway back motion is effective for avoiding uppets and hooks, and
head slip is good for avoiding straight punches. There arnews factors such as
the direction the punch is approaching from, and whethedé#fender can see the
attacker all through the motion, that support these bastmigues. However, it
is tedious to represent all factors accurately with nunaémenctions. By using
the action combination table, we can indicate how appritgpBaadefence is with
respect to an attack, and hence see more effective defekedisdse appearing in
real boxing matches. The details on applying the table wikkplained in Section
4.4,

The action combination table also provide animators anfexte to embed
manually designed plausible close-contact interactinttsthe scene. There may
be special attacks and defences that look good while peeiivg two characters.
Such action pairs, however, may not be well evaluated byctibgefunctions due
to their low effectiveness. With the table, the animator ceke such interactions
appear with minimal adjustments to the system. Although wg anplement
the attack-defence relationship in our system, the tabiesailarly be applied to
pair up actions such as good-looking moves in dances, agsw/&lckles-avoids in
soccer.

32 Chapter 3. Data Preparation

3.5 Summary

In this chapter, we explain the concept of action, which ismantic segment of
raw captured motions. We automatically segment actionscan the accelera-
tion profile of the movements and the supporting feet pattéive train a support
vector machine to determine the supporting feet autornibticBy applying K-
mean clustering, we create the action level Motion Graph. al§e design the
action combination table to store high level relationshepaeen actions.

Chapter 4
Temporal Tree Expansion

Synthesizing animations of multiple characters closetgracting with one an-
other has a high demand in the computer animation and the Bipuier games
industries. Due to the difficulties of directly capturingetinotions of multiple

subjects simultaneously, many methods to synthesize suotaton from singly

captured motions have been proposed. Most of them are baseptional con-

trol: defining an objective function that represents thedbgsnwhen the charac-
ters perform the motions, and maximizing the long horizavarels to control the
characters.

However, unlike traditional optimal control in which thevenonment is static,
simulating interacting characters requires the consiaeraf different possible
reactions performed by the opponents. Game theory proaidexcellent frame-
work to model such planning process. In this chapter, wegse@ new method-
ology based on game theory to synthesize animations of pleiitharacters in-
telligently competing with each other in a dense environiméfe expand the
game tree to evaluate all the possible results in the fuilinen, min-max search
is used to select actions that maximize the score of the altedrcharacter and
minimize that of the opponent. With our proposed methodctieacters behave
intelligently for interactions such as matrtial arts, tagd aport games.

A major problem of applying game theory to character contr@uch a com-
petitive environment is the low controllability of the oadirscene. If we design a
reward function that guides all the characters to behaveanay we want, the
opponents of the controlled character will try to penalize tharacter’s reward.
Therefore, it is difficult for the animators to control theese. We propose a hew
method to embed a cooperative term into the traditional mméx- framework. In

33

34 Chapter 4. Temporal Tree Expansion

our system, the characters compete intelligently basedhemrampetitive func-
tions, while cooperate with each other to follow the highelenequests from the
animator.

To show the effectiveness of our method, we simulate vamouspetitive in-
teractions of the characters. We show examples of boxinghmeat in which the
strength of each fighter can be adjusted by changing the aéptie game tree
expanded. We also adjust the control parameters of theatbesdo simulate dif-
ferent styles of fighting, including outboxing and infiglginThe animators can
control the overall moving trajectories of the charactassyell as the frequency
of launching a specific action. Our method is effective fomaators to design
scenes with a crowd of well controlled characters intengclike real humans.

4.1 Contributions in This Chapter

e We propose a new method to simulate dense interactionsedligi@int char-
acters by techniques in applying game theory such as gamexmgansion
and min-max search.

e We propose a multi-modal approach to enable the characerseting with
each other while cooperatively achieving common goals.

4.2 Outline of the Method

The outline of our system is shown in Figutel. It consists of five steps:
1. Capture the motion of a single actor.

2. Segment the motion into semantic actions, and organgeadtions in an
action level motion graph.

3. Simulate the interactions of two characters by expandiggme tree, which
predicts the future states with respect to different chofcactions.

4. Evaluate the game tree by min-max search and select timeabjgiction.

5. Let the character perform the optimal action, and henoergge a scene of
dense interactions.

4.3. Multi-modal Character Control 35

Steps 1 and 2 are precomputed, while steps 3 to 5 are perfanmad-time
repeatedly. Whenever a character finishes its action, step$§ are performed so
that it selects the optimal action.

Single Person
Mocap

Motion Segmentation
Into
Semantic Action Units

Processes

Action-Level e ~f
Motion Graph 71 Kick

Evaluating Actions
with Objective

Functions
: Expended
: Game Tree
[Evaluating Leaf Nodes [— e ————
§ max —s .';

-
0
.

Min-max min
Evaluation max —s

Run-Time
Processes

Selecting Optimal
Actions for Each
Character

Interacting
Characters

-
--

Figure 4.1: The outline of the temporal tree expansion method.

4.3 Multi-modal Character Control

In this section, we explain our multi-modal control methbdttenables the charac-
ters to compete with others while cooperate in the aspeaetisfgthe requirement
of the animator. When a character is going to select a newrga@igame tree is
expanded and the possible outcomes in the future are esdludising min-max
search, a character can be controlled intelligently to catepvith its opponents.
However, min-max search is surprisingly inefficient to ecohthe overall scene,

36 Chapter 4. Temporal Tree Expansion

such as encouraging the interacting character to follonedgdfined path. If we
apply an objective function to guide the characters to foltbe path, they try to
prevent their opponents to follow such a path due to the max-framework. As a
result, the deeper the tree is expanded, the smarter th&y lalack the opponents,
and the slower they follow the path. We propose a multi-mestaluation system
that embeds cooperative evaluation functions into the mam/framework, such
that the characters have the intelligence to compete with ether while helping
each other to achieve common goals.

4.3.1 Game Tree Expansion

For controlling the characters, we adopt methods used fqrl@jers in strategy
games such as chess. To control them intelligently, onhsiclening the imme-
diate benefit is not enough. For example, in chess, a movetnanshows the
greatest effect in one ply, such as taking a valuable pi&eedlicastle or a bishop,
is not necessarily the best choice for winning at the end. Baeding the game
tree and evaluating the static position after a few plies,@an make a choice that
benefits the player in long term. Here we apply a similar apgindo evaluate the
long term benefit of performing an action.

The major difference between character interactions aeslsis that the choices
made by the characters are performed in a continuous timaidomvery node in
our game tree represents the state of interaction betwenltaracters when ei-
ther of them is about to select a new action. The edges fromdte represent the
possible choices of actions in such a state. Notice thawbeharacters perform
their selected action concurrently, and whenever any ahthieish their actions,

a node is added and another expansion is performed. FHg2shows an exam-

ple of an expanded game tree, with the vertical axis reptiegetime. The blue
character starts the game tree expansion process with eecbioiwo actionsa;
anday, at the timet;. Based on the choice of the blue character, the red character
has a choice of actions to counter actxatNotice that the action selected by the
blue character is still continuing when the red charactekendhe selection, as
indicated by the blue dotted lines. The actmnends at3, and another level of
nodes will be added for the blue character with edgge® ag, based on the red
character’s choice of actions.

Since the actions in our game tree have different duratithresprder of ex-

4.3. Multi-modal Character Control 37

. s v
% 4 4 d3 Time

Figure 4.2: An expanded game tree of fighting between two characters. The dis-
tance along the vertical axis represents time. The nodes represent the states of
fight of the two characters when any of them select new actions, and the edges
represent the choices of action. The dotted lines indicate the continuation of the

selected actions while the opponent selects its actions.

pansion is not always alternate between the two charadteascharacter selects
an action with long duration, its opponent may perform savactions before its
next turn to select. In Figuré.3, the blue character selects a long actgratt;.
When the red character expands a nodg,aince it selects a short motidn, it
can further expand another node whmrends ats. Finally, when thea; ends at
t4, the blue character expands the tree again.

A
Time

Figure 4.3: The expansion of the game tree is not always alternate. Since the
action selected by the blue character is long, the red character expands two levels

of tree before the blue character further expands.

In some situations, a character may be forced to perform @onaghen some
criteria are satisfied. In terms of fighting, when a charaisteeing hit, it will ei-
ther be knocked down onto the ground immediately, or jus lwance and walk
a few steps to recover the balance and resume the fight. Baemee motion will
be decided based on the current state of the body and thesenpdided to the
body, and the character being hit does not have a choicedadtion. In our sys-
tem, according to the posture of the body and the directidrs&nrength of impulse,
we simulate the initial reaction based on rigid body dynanaiod then blend the

38 Chapter 4. Temporal Tree Expansion

motion with the reactive motion selected from the motiorablase Arikan et al.
(2009, Zordan et al(2009]. Figure4.4 shows an example of launching reactive
motion during game tree expansion. The blue charactertsedge@nd the red
character selects;. It turns out that the red character will be hit by the blue one
att;. The red character is forced to discard the latter pali;ads shown in the
dotted part ob;, and perform a falling back actid®. Since the red character has
to perform the reactive motion, it loses its chance to exghadjame tree.

Figure 4.4: The character is forced to stop the current action to perform a reactive
action when being hit. Since the reactive motion is determined by the system rather

than selected by the character, there is only one outgoing edge.

4.3.2 Evaluating Competitiveness and Cooperativeness

We adopt the min-max framework to evaluate the long term fitemfdlaunching
an action. The framework is updated in two aspects to fit irpooblem. First, the
state evaluation for each leaf node is performed by evalgétie whole path from
the root node to the leaf node, rather than considering tfenlede only. Second,
we embed cooperative function into the evaluation procasis that the character
can compete intelligently while cooperatively achieve edagfined goal.

For every edgee, we define two functions to evaluate the competitiveness
(FMP(e)) and the cooperativeneds%°P(e)). The details of the objective func-
tions will be explained in Sectiod.4. Suppose character A is competing with
character B and is expanding the game tree to select an athemode expanded
by Ais called a max node and that by B is called a min node. Thepetitive and
cooperative scores of a leaf noldi the tree are defined as:

S) =y Fe) - Y)
€ €€max €jS€min (41)
F0) =y Fe) Y F9e)

€ E€max €j €€min

4.3. Multi-modal Character Control 39

whereenax U enax represents the set of edges from the root node to the leafinode
with enax represents the set of edges expanded from the max nodesy, amep-
resents those from the min nodes. Figdre(Left) gives an example of leaf node
evaluation. In the figure, for the leaf no&™©MP(1)=FMP(gy)+FMP(gy) —FMP(g)
andS*P (1)=F P (gy)+F P (g,)+F°P(ey).

MaX = €p P N
N ()

M N e
1
—

MaX = €3 \

\

Figure 4.5: (Left) The scores of the leaf nodes (squares in the figure) are evalu-
ated from the root node to the leaf nodes with Equation 4.1. (Right) Min-max is
conducted by recursively applying Equation 4.2 and 4.3 from leaf nodes to root

node.

As in traditional min-max evaluation systems, equatohis applied to cal-
culate the scores of the leaf nodes only. For the internaésiothe scores are
evaluated by propagating that of the leaf nodes recursively the leaf nodes
towards the root node, as shown in Figdts (Right). The cooperative score are
embedded into the min-max structure. It is evaluated diffdy for the min and
max nodes such that both characters regard the coopertme &s benefits. For
an internal noden with its set of children nodes;, the optimal choice of the
children nodes is evaluated as:

o argmax(S©™P(n;) + S°P(n;)) if nj is @ max node 4.2)
a argmin (S (n;) — S°P(ny;)) if nj is @ min node '

and the scores of the internal nodeare evaluated as:

SOM(n) = SOTP(c)

(4.3)
SOP(n) = SOP(c)

Equatiord.2and4.3are applied to evaluate all internal nodes recursively ftioen
leaf nodes towards the root node. Finally, Equaddis applied to the root node
to select the optimal action to perform.

40 Chapter 4. Temporal Tree Expansion

4.3.3 Pruning Non-Plausible Choices

In order to reduce the computational cost and avoid nonsfidéiinteractions, we
prune the mal choices of actions when expanding each note geime tree. This
pruning can be applied alongside with traditional alphtaIpeuning as we follow
the min-max framework.

Although there are a huge number of choices for the actiofeutach, many
of them never happen as they cause obvious disadvantagésgaral behaviors
(Figure4.6). The criteria to prune the actions based on the situatiagheo€harac-
ters are listed below:

e Actions that cause penetration to the opponentCollisions of the charac-
ters are examined. The actions that cause one charactaliypaverlapping
with the others are considered invalid. If none of the adtican avoid pen-
etration, we try to keep those that are penetration-freleedtist frame, such
that the next interaction does not start with penetration.

e Actions that end up with wrong facing angles We require the character
to face the opponent at the last frame of the actions. In agiesy, we apply
this criterion to ensure that the fighting and chasing charado not turn
their back to their opponents when they finish any actions.

e Actions out of distance It is meaningless to launch some actions if the
opponent is further than the reaching distance. This arites applied in
our fighting experiments such that the character does rastiattor defence
if the opponent is further than 1 and 3 meters respectively.

e Actions required to be launched In some situations, only a specific set
of actions logically makes sense. This criterion is appliedur fighting
system to enforce the characters selecting only defensii@na when the
opponent attacks.

The criteria listed above are in descending order of impaealf none of the
actions can satisfy all criteria, the subset that satisfiesd of higher importance
will be selected. By pruning the actions as suggested, apart énsuring that
animations appear natural, we reduce the computationab€astrategy making.
Empirically, we can prune at least half of the available chsiusing these pruning
policies. This would reduce the computational cost appnaxely byO(%AD),
whereA is the number of available actions aDds the depth of the game tree.

4.4. Objective Functions 41

Figure 4.6: Examples of actions launched by the green character that has to be
pruned: (Left) Penetrating the opponent (Middle) Turning the back to the opponent
while fighting (Right) Defending while opponent is far away

4.4 Objective Functions

In this section, we explain the objective functions used dgu&tion4.1to evalu-
ate the competitiveness and cooperativeness of the ititarac The competitive
function evaluates how good an action is for a character topete with its op-
ponent in a game. The cooperative function evaluates hod tf@ocharacter can
cooperate with its opponent by launching an action. By combithe two func-
tions, controllable characters with realistic behavi@s be generated. The exact
values of the parameters used in these functions can be foufable 4.1 and
Table4.2

4.4.1 Competitive Function

The competitive function evaluates how good each charactempeting with the
other characters during close interactions including fightchasing and sports.
The function consists of three terms: tm@vement term, thescoring term, and
the action combination term. In this section, we explain the objective of each
term, and detail the function design of each term in our syste

The movement termevaluates the distance and facing angle. Since the char-
acter is supposed to compete with its opponent, the moveterenis defined with
respect to the opponent:

f””Vlzwe(e—ed)2+wr(r—rd)2 (4.4)

wheref, r are the relative orientation and distance from the opporespiectively,
B4, I'q is the preferred relative orientation and distance,\agdvy; are the weight

42 Chapter 4. Temporal Tree Expansion

constants for each term. In our system, we alway®get 0 such that the char-
acter tries to face the opponenty depends on the type of interaction and the
movement style. For example, in boxing, an infighter preferkeep short dis-
tance with the opponent. In that casgjs set to be small such that higher scores
are given to actions that bring the character closer to #&smsn On the contrary,
for an outboxer or a passive fighter who prefers to escapetieropponent, high
scores are given to actions that increase the distance &etivem.

The scoring term evaluates how effective the action is to compete with the
opponent based on the rules of the game. In general, it isadkfis the weighted
sum of the damage the character giving to and receiving fremopponent:

¢ = wiD* —wpD~ (4.5)

whereD™ is the damage that the character gives to the oppoBents the dam-
age to be received, and;, wy are positive weight constants for each term. In our
system of boxing, the damage is set proportional to the iutglof the attacking
segment at the moment it lands to the opponent. The weiglstaois depend on
the competing style of the character. For boxing, in casédiner is an outboxer
that is less aggressivery) is set small andvg is set large. In case a fighter is run-
ning out of time and is losing the fight, it has to fight more aggively regardless
of the risk of being hit; in that casey}, is increased andy; is decreased.

Theaction combination term evaluates the suitability of performing an action
based on the action combination table explained in Se@&iénConsidering the
action to be performed by the character and its opponentearcls the table to
see if such a pair of actions is defined:

S if the action pair exists in the table
fcomb:{ WsS i ion pair exists i (4.6)

0 otherwise

wherews is a weight,Sis the suitability value as indicated in the table. In our
system, this term is only used to evaluate the quality ofsée action when the
opponent is attacking.

The competitive function is the sum of the three terms:

Fcomp _ fmov1+ fscore | f comb (4.7)

The competitive function is general enough to be used fabuarcompetitive in-
teractions such as fighting, chasing, and sports. For exam@ game of chasing,

4.4. Objective Functions 43

we can increase the preferred distance for the charactemgiaway, and shorten
it for the chaser. For sports like basketball, we can desigroaing function that
considers the probability to throw the ball into the baskath that the character
will try to shoot when there is no opponent in front of it.

4.4.2 Cooperative Function

The cooperative function evaluates how much the charaatergooperating to
achieve a common goal. In general, such a common goal is thereenent of
the animator. For example, the animator might want to spebé overall tra-
jectory of the two characters when moving. Alternativelg/dhe might want the
characters to launch actions in some specific style. Sudbriaare evaluated by
the cooperative function. The cooperative function is cosgal of two terms: the
movement termand thespecial requirement term

Themovement termis defined similarly to the one used in competitive func-
tion. The difference is that we now consider the global pmsiand orientation of
the character after performing the action:

M2 — Wy (Y — Ya)? +Wp(p— pa)? (4.8)

wherey, p are the global orientation and position of the charactehenworld
coordinate systemyy, p are the respective desired valug, andwy are the re-
spective weights. Empirically, we found that if we wish a i@dder to follow a
predefined trajectory, instead of utilizing tiggerm, it would be more effective
to define the trajectory as a series of check points, and egdatvalue ofpy
whenever a checkpoint is reached.

The action requirement term gives high score to the character if a specific
action is performed:

W, whenA™ performed
ff¥=2¢ —w, whenA performed (4.9)
0 otherwise

wherew; is the weight A+ is the set of actions to be performed akd is the set
of actions not to be performed. The animator can make usesadhon require-
ment term to favor the use of good looking actions when theysaiccessfully
performed. Also, by requesting a character to perform neaahotions, we im-
plicitly require such a character to be hit by the opponentesreactive motions

44 Chapter 4. Temporal Tree Expansion

are not designed to be performed without being hit. By dynalyimipdatingA,
the animator can control the flow of the animation.
Finally, the two terms are summed to compose the coopefatiaion:

[FO0OP — fmovZ fred (4.10)

4.5 Experimental Result

An optical motion capture system was used to capture theomof one actor
at a time. The frame rate was set to 60 postures per second.aVéechptured
the shadow boxing motion of an energetic kick boxer for 7 rresuthat of a tired
boxer for 7 minutes, and a running-around motion for 1.5 n@auThey were au-
tomatically segmented into 279, 240 and 215 actions, réispgc These motion
sets were used to control the virtual characters. Variopsm@xents based on the
temporal expansion approach were conducted. The paradtdre competitive
and cooperative functions for each experiment are showmloe®.1 and Table
4.2respectively.

The computation time depends on the size of the action sethentbnnectiv-
ity of the Motion Graph. In general, using a computer of Rent#d Dual Core 3.0
GHz CPU and 2 GB of RAM, it takes 5 minutes to create a video of 80rsds
when expanding the game tree for three levels to determiegyection of the
characters. As discussed before, since the computatiosaircrease exponen-
tially with respect to the depth of the tree, expanding a gasewith more than
five levels is not advised.

When rendering the scene, we designed a particle systemdéehamexpected
collisions among the characters and adjust the actionsnpeedd for better visual
effects. Further information can be found in Appendix

4.5.1 Kick Boxing

Firstly, we simulated a fight between two characters usiegtttions of the ener-
getic boxer. High quality interactions such as realistiacks and defences were
shown (Figured.7). Although both characters use the same action set, we can
simulate different levels of intelligence by altering thepth of the game tree ex-
pansion. We simulated a less intelligent fighter by setthgyinhtelligence level

to two, and a smart fighter by setting the level to four. Thelliggent fighter

4.5. Experimental Result 45

always wins the match as its decision is based on furthermskpa of the game

tree. When designing the weight of the objective functiomgsithe purpose of the
movement term was just to guide the characters to their sspeds$ for attacking,

its corresponding weight was set smaller than that of tharsgoerm.

Figure 4.7: High quality interactions simulated by the temporal tree expansion
method. The figures show realistic attacks and defences performed by the two

characters.

Secondly, we simulated a match between an energetic fighdex tired fighter.
Since the motions of the tired fighter are slow, the tired abi@r keeps being hit
by the energetic fighter when the intelligence levels arestmae (Figured.8).
However, the tired character becomes stronger than thg@etieefighter when it
expands the game tree much deeper than that of the energéterfiln our ex-
periment, we expand five levels for the tired boxer and twelkefor the energetic
boxer. As a result, although the movements of the tired baseslow, the boxer
arranges an effective sequence of actions to hit the oppdRigrure4.9).

Thirdly, different styles of fighting were simulated by asljing the objective
function. It is known that infighters prefer to fight in closstdnce, and hence use
short range attacks such as upper cuts and hooks more figguena result, they
become more aggressive as the duration of such attacksateasid stopping the
attacks will endanger the fighter as he/she will be in thehiegcdistance of the
opponent. On the other hand, outboxers prefer to keep disttiom the oppo-
nent and use long range attacks such as straight punchescisdrore often.
They also move around more as they need to keep distanceheithpponent. In
order to simulate such effects, we first classified the astacto short and long
range ones based on the attacking positions. Then, an aygréasighting style
is modeled by setting the preferred distance to short, avidgghigher score to
successful short range attacks (Figdr#0(a)). The outboxing style is modeled

46 Chapter 4. Temporal Tree Expansion

Figure 4.8: Energetic boxer (the green character) fighting with a tired boxer (the
blue character). With the same intelligence levels, the tired boxer keeps being hit
due to (Left) the inefficient attacks and avoids, and (Right) slow movements such

as turning around.

Figure 4.9: Energetic boxer (the green character) fighting with a tired boxer (the
blue character). With a superior intelligence level, the tired boxer can hit the oppo-

nent with an effective arrangement of the slow punches.

by setting the preferred distance long and giving higherescto successful long
range attacks (Figur.11(b)).

Then, a scene of a crowd of fighters moving along predefineldepathile
fighting was simulated (Figuré.12). Each of the pathes is modeled as a series
of check points to be reached by a pair of characters. Eaatkg@nt is defined
by a 2D position on the floor, an optional timing value, anddp&onal require-
ments on action usage. Whenever a character reach the pasitibe current
check point, and wait until the indicated time has reacheslupdate the check
point to the next one. Since the movements of the charaateastraints statio-
temporally, we can design a scene with a lot of charactetsowitany risk of un-
expected collision. We made use of the movement term in tbperative function
in Equation4.10such that higher score is given to an action that guides tae ch

4.5. Experimental Result 47

Figure 4.10: Infighters simulated by our system that prefer (Left) short distance to
opponent and (Right) short range attacks such as hook punches, upper cuts, elbow

punches and knee kicks.

Figure 4.11: Outboxers simulated by our system that prefer (Left) long distance to

opponent and (Right) long range attacks such as kicks and straight punches.

acters to the next check point. We also make use of the acguirement terms
to tell the blue characters knock down their opponents attttecheck points. On
the other hand, the fighting behaviors of the two charactersianulated by the
competitive functions in Equatioh.7.

4.5.2 Chasing and Running Away

A scene where a character chases another was simulatedg&i§j8. The move-
ments of both characters are based on the running-arourndmdthe preferred
distance of the chaser is set short and that of the char&eteistrunning away is
set long. Moreover, based on the scoring function, whenhhser catches the op-
ponent, high score is given to the chaser and high penaliyés ¢o the opponent.
As aresult, the chaser tries to approach its opponent wielepponent tries to get
away. When we increase the intelligent level of the chaseouo &nd lower that

48 Chapter 4. Temporal Tree Expansion

Figure 4.12: TA crowd of characters fighting with the opponents competitively while

following predefined curve cooperatively using our multi-modal framework.

of the running away character to two, the chaser can catchgpenent quickly
(Figure4.14). By integrating the cooperative function, we can simulattelaing
and running away characters while following a predefingéd¢tary (Figure4.15.

Figure 4.13: The green character chasing and catching the blue one. In this case,
they have similar intelligence levels, and hence the green character can rarely catch

the opponent.

We also simulated a scene where two characters chase oreet@nain this
case, the game tree is composed of nodes and edges whicbengidiee actions of
three characters. The score of the each action is compused lwen the status of
two characters. The score of the chaser is computed by tlsechaction and the
current status of the character running away. The scoreeo€hlaracter running
away is computed by its action and the status of the chasiagcter that is closer
to it. When evaluating the leaf nodes of the game tree, theesagredges by the
chasers are summed. As a result, the chasers cooperateagitiother to catch
the character that is running away (Fig4ré6).

4.5. Experimental Result 49

Wg | Wy | Bq | rg wp Wp | Ws
General Boxer | 10 | 10t | 0° | 0.8m 10° 10° | 107
Infighter 10t [10t | 0° | 0.5m | 10°/10t T | 10° | 1P
Outboxer 10t [10t | 0° | 2.0m | 10t/10° T | 10° | 1P
Boxer (Path) 10t | 10t | 0° | 0.8m 10° 10° | 107
Chaser 10t | 10t | 0° | 0.1m 10° 0| O
Runaway 10t | 10 | 0° | 3.0m 0 10°| 0
Chaser (Path) | 10' | 10t | 0° | 0.1m 10° 0|0
Runaway (Path) | 10t | 10! | 0° | 3.0m 0 10°| 0

T The parameters used for short range and long range attack respectively

Table 4.1: The parameter used in the competitive function to simulate various ef-

fects

Wy | Wp | Wi
Boxer (Path) 0 | 10! | 10°
Chaser (Path) | 0 |10t | O
Runaway (Path)| 0 | 10' | 0

Table 4.2: The parameter used in the cooperative function (Unlisted simulations do

not require the cooperative function)

50 Chapter 4. Temporal Tree Expansion

Figure 4.14: The green character chasing and catching the blue one. The green
character is set of have a higher intelligent level, and hence is able to catch the

opponent quickly.

Figure 4.15: The green character chasing and catching the blue one. The catch-
ing and running away behaviors correspond to the competitive function, while the

behaviors to follow the path correspond to the cooperative function.

4.6 Discussions

4.6.1 Action Evaluation

The action combination ternf ™) in Section4.4is currently defined as an el-
ement of the competitive functiorFf°™P). This is because the term is used to
model the attack-defence relationship, and we wish thetemelnaracter to per-
form better defensive motion. However, in case the animadmts the two charac-
ters to cooperatively perform nice-looking interactiotig term has to be moved
to the cooperative functiod=€°°P), otherwise the two characters will prevent their
opponents to act as indicated in the action combinatioretabl

4.6. Discussions 51

Figure 4.16: The two green characters chasing and catching the blue one. Since
the score of the two green characters are summed, they form a team and catch the

blue character cooperatively.

4.6.2 Game Theory Related

In our model, we assume each character has perfect knowtadgs opponent

in terms of the opponent’s strategy and action evaluatioctfans. Due to such
knowledge, the min-max search always gives optimal resuiiswever, if the
knowledge on the opponent is incomplete and inaccurateyrap-model search
[Carmel & Markovitch(1996)] and probabilistic opponent-model searElopkers et al.
(2001)] may perform better. Opponent-model search can impraveénformance
on decision making by building a profile on the opponent basealhistory of pre-
vious moves Donkers(2003]. On the other hand, probabilistic opponent-model
search assumes the actual profile of the opponent to be aredftgeveral prede-
fined profiles Riley & Veloso (2006, Donkers et al(2004)]. Both methods take
advantages on the observation on the opponent and selesttired optimal ac-
tions. For example, in a chess game, the min-max searchdsyesxperienced
and novice opponents in the same wahannon(1988], while opponent-model
search and probabilistic opponent-model search take atiment the mistakes that
are made by the opponenf3dnkers et al(2001)].

To implement opponent-model in our system, one simple ambrds to ob-
serve the actual moves made by the opponent. Then, duritiggthexpansion pro-
cess, we determine the probabilities of the opponent tcclaita actions based on
the observed history, and evaluate the opponent nodesheittxpectation values.
However, we prefer min-max rather than opponent-modelemtlr system. This
Is because the temporal tree expansion method is slow arw srapplication
is limited to computer animation rather than computer gar@gponent-model is

52 Chapter 4. Temporal Tree Expansion

useful in computer games, where the opponent is a humanategrand the com-
puter controlled characters need to adapt to the behaviding uman character.
However, in computer animation, we wish the characters todiecontrolled and
acts consistently. The behaviors of the characters areailyrpredefined by the
animators, and hence the opponent-model cannot benefydtens

Nash equilibrium is considered to be a solution for most gémeery based
system. In such equilibrium, all players in the game canbtdia better rewards
by changing their control strategies. It is proved thateleists at least one Nash
equilibrium point in any game with a finite set of actiofseumann & Morgenstern
(1944, Nash(1951)]. While a lot of researches focus on computing the equilib-
rium points in a gameAvis et al.(2010, Solan & Vieille (2010], we try to avoid
approaching equilibrium in our system. This is because whencharacters are
close to an equilibrium point, they are very likely to staytla point for a long
duration, which leads to a monotonic animation. One examfpliee equilibrium
in a fighting game is that both characters defense themsiakager, which is ob-
viously not what we wish to sed hore Graepe{2004)]. Fortunately, since each
action in our system has specific attacking and defendingtpuwiith different du-
rations, the state space in our system is highly irregulars Teduces the chance
that the characters stay at an equilibrium point. Furtheemwe give penalty to
actions that are recently used. With such a penalty funcéeen if the characters
reach an equilibrium point, the point will shift to other &imns in the next time
step.

4.6.3 Usage Complexity

The proposed algorithm is easy to use. Still, animatorsgrected to have basic
understanding on the parameters that affect the tree expgm®cess, such as the
depth of the game tree and the parameters in the objectiatiduas, in order to
generate the required style of animation. One advantadeedafytstem is that it is
based on short horizon optimization. In other words, onegpirameters are set,
the results can be generated almost immediately. Therafasgpossible to tune
the parameters by trial and error.

Currently, we implemented functions to monitor the collrsmf characters.
Such information is used in the objective function to detamvalid attacks and
defenses in a fight, as well as valid catches during chasing.aMb have func-

4.6. Discussions 53

tions to monitor the position and orientation of the chagegstwhich are used to
determine the characters’ movements. Although these oramitfunctions cover
a large area of interactions, some animators may wish toalefimer means to
evaluate the actions. In such a case, they need to implerddiitomal monitor-
ing functions, and integrate them into the objective fumtsi This will require
in-depth understanding on the system.

Designing the trajectories of movement is straight forwaxe provide anima-
tors with functions to construct simple trajectories susistaaight lines, arcs and
circles. The animator can then adjust the trajectoriesaseti action requirement
constraints if needed. Our system can highlight overlagppiea among trajecto-
ries by considering both spatial and temporal informatibthne checkpoints, and
give the animators a better understanding on what will happe

The proposed algorithm is fully automatic except addingasetio tags to clas-
sify the actions. Such tags are necessary for coupling thekstand defenses, and
usually require the knowledge from specialist in the fiellwé have a number
of tagged actions already, this process can be automatdte asetwly captured
actions can be tagged based on the similarity to existingract

4.6.4 Limitations

There are also some drawbacks in our system. Firstly, theitheombinations
for pruning the sub-tree during the temporal expansion mestetermined by the
expert who knows the nature of the interactions well. Selypmee cannot cur-
rently handle continuous contacts such as those appearimgestling. However,
such continuous contact does not happen often in martsasadh as Karate, kick-
boxing, Taekwondo, or other sports such as basketballesaraugby. In other
words, our method can be applied for most competitions.

4.6.5 Computational Cost

The process of expanding the game tree takes up a major ptré @omputa-
tional power. Fortunately, this process can easily be bral@vn into multiple
parallel processes. More specifically, we can implement Hidthuead system
with each thread expanding a sub-tree of the whole gameAemulti-core pro-
cesser becomes cheap and popular, the performance of duvdrezin be greatly
enhanced.

54 Chapter 4. Temporal Tree Expansion

When applying our method to generate an animation of massdcfighting,
expanding the game tree for all the characters in a singéeisreomputational
costly and quite a waste as characters far away cannot gcini@ract. We can
handle such cases by first finding out the small of group of lecmgving interac-
tions and expand different game trees for each group. We caiiton and switch
in and out the members of the group in case the distance fromather becomes
smaller or larger.

4.7 Summary

In this chapter, we presented a method to simulate comgestienes in which
multiple characters are densely interacting with eachraibang singly captured
motions. We proposed a method called temporal expansiaoagipto determine
the strategy of the character. We showed that various styfgghting and chasing
can be created by changing the parameters of the game tieasits depth and
the evaluation function. We embedded the cooperative imeinto the min-max
framework such that the characters can follow high levetiurtsions cooperatively
when competing with each other. As a result, we can creagdigent characters
that can compete well and be controlled easily.

Chapter 5
Interaction Graph

Intelligent computer-controlled characters are essent@mputer games and an-
imation. In many computer games, users can usually contioheacter to interact
with other computer controlled characters. The intellmgeof the computer con-
trolled character is important as it can affect the qualftthe game. On the other
hand, background characters in computer animation areualsaly controlled by
the computer. If their movements are unrealistic due ta th@or intelligence, the
animator needs to manually edit them, which will result irug&amount of extra
cost. In theory, the temporal tree expansion method in Chdptea perfect so-
lution to generate characters with realistic interactiddewever, in practice, the
algorithm is too computational costly to be used for reaetiapplications such as
computer games. Moreover, if there are a huge number of cfeasan the scene,
the time required to plan the movements for all charactelioeivery long even
as an offline process.

Traditional techniques such as decision trees and flockiivg bbeen used to
control such characters. However, those techniques cangamerate reactive
movements, and cannot realize strategic movements thafibére characters in
the future.

Reinforcement learning enables real-time optimal contfeharacters. It has
been used to control pedestrians to avoid other obstaclebavacters walking
in the streetslkemoto et al (2005, Treuille et al.(2007)], control a boxer to ap-
proach and hit the target¢e & Lee(2004)], make the transition of actions by the
user-controlled character smootidCann & Pollard(2007)], and train a com-
puter controlled fighter in computer gamethpre Graepe(2004]. However,
there are two problems that we face when we try to use reiafoent learning

55

56 Chapter 5. Interaction Graph

to control human characters intelligently when they arerautting with another
character.

First of all, the state space is too large. The state spacedses exponentially
with respect to the number of parameters. Parameters suhbbk astion the char-
acter is undertaking, its body position and orientatiord #re timing to launch
the action are going to form the state space. The number igygoibe doubled
if there are two characters. As a result, it is difficult forstixg adaptive learning
techniques such as Q-learning/gtkins(1989] to explore the whole state space
to search for optimal policies.

Another problem is that the way the people behave changedingao vari-
ous factors such as their mood, habits, and preferencegdiohschowever, pre-
vious animation techniques used “on-policyBytton & Barto(1998)] reinforce-
ment learning methods, which require the system to be netdain case the reward
function is changed. For example, in boxing, there are Isoc@lted infighters who
prefer to fight aggressively in short distance, and use pesshch as upper cuts
and hooks more. On the contrary, there are outboxers, wHerpestay away
from the opponent and as a result, prefer to use straighthnasnwhich are effec-
tive in long distance. If we train a virtual boxer by an onipglreinforcement
learning approach, it will not be able to compete well witheatfighters who have
different styles of fighting. The system needs to be prexg@ior various types of
fighters, and the policy needs to be switched according ttypiesof the opponent,
which will be very computationally costly.

In this research, we make use of the fact that the subspaceafingful in-
teractions is much smaller than the whole state space of hacacters. We ef-
ficiently collect samples by exploring the subspace whereselenteractions of
the characters exist and favoring samples which have highexdivity with other
samples. Using the samples collected, a finite state ma¢hBM) called Inter-
action Graph is composed. In order to control the charantanioptimal way, a
min-max search / dynamic programming is conducted on thezdntion Graph.

Our character controlling policy is close to the optimalipgl although we
plan actions only on a subset of the whole state space. As dlgetve space is
explored is independent of the reward function for strategking, we can also
recompute the policy of the characters in run-time basedhemiser’s preference.
We can simulate various activities by two characters sucfighsing, chasing,
playing sports, or carrying luggage together. Our methodptan strategic move-

5.1. Contributions in This Chapter 57

ments for Non-Player Characters (NPCs) in 3D computer gamesexample,

we can control virtual fighters in boxing games, or the baclkgd crowd moving

or fighting with each other in computer animations, or chinaccollaboratively

working, such as carrying a box.

5.1

Contributions in This Chapter

e \We propose a new off-policy learning approach that can samplge state

space by using criteria that favor states with good convigctand more
interactions.

e We propose a finite state machine called the Interaction lGt@aprecom-

5.2

pute the optimal actions for a character to collaborate anp=te with an-
other character intelligently.

Outline of the Method

The outline of Interaction Graph is shown in Fig&é. It consists of five steps:

1.

2.

Capture the motions of a single person conducting thettarggon.
Generate the action level Motion Graph structure out @iniotion data.

Explore the combined state space of two characters bylaimg the inter-
actions of the two characters and expanding the game tree.

Generate the Interaction Graph of the two characters addle most ap-
propriate movements of the characters at each node by dgnaogram-
ming or min-max search.

At each state, the corresponding character selects ¢étempputed optimal
action. If the animator/user wants to change the policgtsgy of the con-
trol, the information in the lookup-table is recomputed leyrunning dy-
namic programming or min-max search. This can be done in aéaonds,
and can be run in background while simulating the interastio

Steps 1 to 4 are precomputed during the preprocessing stdmgje, step 5
is done during run-time. Since the optimal policy to contiteé characters is

58 Chapter 5. Interaction Graph

precomputed, the run-time overhead is very small. Henaesymtem can simulate
interacting characters in real-time.

Single Person
Mocap

Motion Segmentation | & P
S I T

Semantic Action Units k ﬁ Pﬁh

: Action-Level e o E

Motion Graph 4 X;h 2’;

" unc .

Off-Policy State i fock { :

Sampllng by ... Offline
Expandmg 3 Huge :.'..-u- ----------------- ;'/“"._.:\.\.:;./:,.;: -------- ..- Processes
Game Tree i Sampled States g ud o ol :

with High
Interactions
Quality

Connecting Sampling
States with Actions as e . i A A AR R A AR AR

fdges Interaction ﬁ’ @

: Graph with

: Precomputed

. Optimal Actions @ @ :

[Providing Optional i

User Interactions

Real-Time :

. Run-Time
Interacting Processes
Characters

¢

--

Figure 5.1: The outline of the Interaction Graph.

5.3 Sampling the State Space

In this section, we explain how we explore and collect sandala in the state
space of two interacting characters.

5.3.1 State Representation

Here we explain how the status of two interacting charaggerspresented; the
approach is general enough so that any kind of interactianse applied. The

5.3. Sampling the State Space 59

state space we consider here is composed of statuses whenaiaracter has
finished an action and is about to start a new action. It camtasstatuses when
an action of the character is interrupted by the other charand is forced to start
a new action.

Suppose we define the two charactersdgndB. We express the state when
characteA is about to select the next action by the following vectér= (r, 65,
By, Next(Ma), My, Fy) wherer is the distance between the two charactéssand
B, are the angles made between the facing direction of char&ed B, and the
line connecting the two, respectivelM, is the action just finished by character
A, My is the action character B is currently undertakiftgxt(M,) is the set of
actions that can be launched aftdg, andF, is the frame number character B is
at in actionMy, (Figure5.2). The facing direction of each character is determined
by its orientation of the head. We can define a state wherecteaB is about to
select an action in the same way? = (r, 8y, 8,5, Next(Mp), Ma, Fa), where the
variables are defined in the same way as those of character

{2 -
| &
-

Next(M,)

&

Figure 5.2: Elements of the state that represent the relationship of the two charac-

ters interacting

5.3.2 Data Sampling

The data samples are collected by simulating the interactdthe two characters
as explained in Sectiod.3, and saving the state samplesl6fand|B. During
the simulation, when a character ends its action, it seketaction among the
next available actions iNext(Mqpy). Instead of continuously simulating the
interactions along the time line as done in other adaptivdarement learning
approaches, we collect the samples by selectively expgridéngame tree (Figure
5.3). The nodes of the tree represent the states suth asd|®, and the edges
represent the actions that can be chosen by the character.

The most important issue in this research is how to seleahalgan the game

60 Chapter 5. Interaction Graph

Figure 5.3: An expanded game tree. The nodes represent the states of interaction
when either fighter launches new actions. Each edge represents the action that

has been selected by the fighter.

tree, and how to further expand the tree. We need to explerggace well enough
to find the policy that can give the optimal solution to therelster. On-policy
methods such as SARSRKRmmery & Niranjan(1994] have been used to train
the computer controlled characterEhpre Graepe(2004]. In on-policy meth-
ods, the samples collected are dependent on the rewarddian&uch methods
will selectively explore the subspace which gives betterarels. For the simu-
lation of two characters interacting, the user might prédecthange the behavior
of the characters by adjusting the reward function. In suchs®, if we use on-
policy approaches, we need to retrain the system all oven alystead, we use an
off-policy approach here, in which the way we explore andemblsamples is inde-
pendent of the way the actions are rewarded. Using such anaqp the samples
obtained can be used for different reward functions. As altese can change
the behavior of the human character controlled by the sydiging run-time.

However, we cannot use well-known off-policy approachehsas Q-learning
[Watkins(1989)], in which the selection of the action is strongly affeclsda ran-
dom factor. This is because the state space is too largeisiregearch, we explore
the state space in a specialized way for the interactions@tharacters. We use
an off-policy approach in which the criteria of selecting gpace to explore are
independent of the reward function. We need to explore theace that includes
a lot of meaningful interactions between the characters.

Starting from an appropriate state, we expand the game Weefavor states
which (1) have high connectivity with other samples, andré3ylts in dense in-
teractions of the characters.

Criterion (1) can be evaluated by counting the number of edg@sg out

5.3. Sampling the State Space 61

from the state that redirect the characters to existingsiatthe state archive. Let
us define this number b§. We adopt criterion (1) because we require a graph
with high connectivity to increase the controllability ¢fet character. A state of
low connectivity is less useful as the chance to visit it is bnd it is difficult to

get back to other important states. If the number of statés v connectivity
increases, the character needs to pass through a lot ostates to finally start an
effective action. This drops the performance of the charaand eventually the
animation will also appear unnatural.

Regarding criterion (2), the way to evaluate the quality téiiactions between
the characters must be defined by the user: this can be sifypéedre handling
activities in which objective is clear. For example, it isg&0 define the quality
of collaborative interactions such as carrying luggagetiogr or competitive in-
teractions such as fighting. The first way to evaluate anactem is by setting
constraints. For example, when carrying luggage togetthetwo characters must
not be too far away from each other as the luggage will fallowto the ground.
Actions leading them to get too close also cause problemesretdre, thresholds
to keep the distance between the two characters are setn&dtiat violate such
constraints can be considered as unsuitable and can belgivecores. For com-
petitive actions such as boxing, the objective is to hit eatbler, or block / avoid
those attacks which will otherwise cause the characterltadsvn. For boxing,
we evaluate the amount of dense interactions by the sumeamkatin the reaching
distance and effective defence actions by both charadtetsis define the amount
of interaction byJ,.

At every state visited, we compule+ J, of all the actions that can be launched.
The children nodes are sorted based on the score, and th@%pm&des will be
further expanded. All the nodes explored in the game tresared in the sample
archive.

The exploration continues until either the number of sasplethe archive
reaches a maximum limit, or until the number of newly creagachples that do
not duplicate with those already in the archive becomeslenthian a predefined
threshold.

62 Chapter 5. Interaction Graph

5.4 Interaction Graph

Based on the samples collected in the previous section, wpasea FSM whose
states represent the interactions of two characters. WéheaFSM the Interac-
tion Graph. Once the Interaction Graph is composed, by aefithe objective
function that evaluates the action chosen by each charastaran search for the
optimal action by using dynamic programming or min-max seatt is also pos-
sible to change the way each character behaves by editimgwaed function and
recomputing the policy in run-time.

In the following subsections, we explain about composing tates of the
Interaction Graph based on the collected samples, comgettte states by edges,
and finally searching for the optimal action at every stat¢hergraph.

5.4.1 Creating States of Coupled Actions

After producing sufficient samples of interactions, theiEmones are grouped
together using K-mean, and the states of the InteractioplGaae produced. A
distance functiorD is defined as follows to calculate the difference between two
sampled; = (r', 8}, 8., Next(M}), Mi, F!) andl; = (r], o), GE), Next(MJ), Mtj),

F):

ri—ri] | je,—el , [6,-8]|
Oy + Op + Op

D(I;,1j) = { if Net(M}) = Net(Md) , Mi =M] and|Fi —FJ| <F, (5.1)

oo Otherwise

whereo, and og are constants to normalize the effects of the distance and th
rotation angles respectively, afglis a threshold value.

Empirically, we found that, = 0.5m, og = 11/6 give good results. A state of
the Interaction Graph is produced for every clustered gradyich is represented
by the average sample (Figused).

One important issue is how to determine the tolerance fongjny samples.
If this value is too small, there are going to be too many staed if this value
is too large, there are going to be too many artifacts, sudbassliding, sudden
rotation of the body, and fast transition from one posturarother. Since foot
sliding is the most noticeable artifact, we determine threghold in a trial and
error manner based on the amount of foot sliding that canroccu

5.4. Interaction Graph 63

aam "
o

Figure 5.4: Grouping samples to form nodes in the Interaction Graph. Using the
samples created by tree expansion, the nodes are composed by grouping similar

samples.

5.4.2 Creating the Edges of the Interaction Graph

An edge in the Interaction Graph represents an action peddiby the character,
and points from the original state before the action to tiselltant state after the
action. Recall one of the elements in the statext() is the set of next available
actions by the corresponding character. For every actiddexi(), as a result
of launching it, we might arrive to another state in the lattion Graph. If that
happens, the two states are connected by an edge. Howewxer tlse graph does
not cover the whole state space, there is a chance that mostatailable in the
graph after an action is launched. In that case, the edgd gemerated, and the
character will not launch such an action at the state. Aftansing through all the
Next() actions in all the states and linking the states by edgesahmposition of
the Interaction Graph is completed (Figir&).

5.4.3 Search on the Interaction Graph

Once the Interaction Graph is created, we can do strategyagéy using dy-
namic programming or min-max algorithm. If the two charastare collabora-
tively working, they will select actions that maximize a cmwon return function.
Such a problem can be solved by dynamic programming. In chseropeti-
tive activities such as boxing, each character will try taxmaze its own return
value and minimize the opponent’s return value. Such a proldan be solved by
min-max search. In either case, we first need to define therdefuaction that
evaluates the individual interaction. The rewards for esation at each state are

64 Chapter 5. Interaction Graph

Figure 5.5: Creating the edges of the Interaction Graph: (Left) the state sampled
by tree expansion in the state space (Right) the Interaction Graph generated by

connecting the sampled states with actions as edges

precomputed, and therefore, its computational cost doesaffext the run-time
performance.

To simulate two characters intelligently interacting wiach other, we need
to find the optimal policy to control the characters. Morecsfeally, at each time
stepi, suppose the character selects an action and getward defined byr;.
Theoptimal policy ttoffers an action at every state that maximizes the following
return value:

R=SVri (5.2)

wherey is called thediscount factor, with the range defined asOy < 1.

Let us define the reward function for carrying luggage as amgfe of col-
laborative activities. If we want the characters to proceed specific direction
with respect to their average facing direction, we can camphe reward, as
follows:

Fo = WgB2 +Wq(d — dp)? + Wy (V — V)2 (5.3)

wheref is the relative orientation of the carriers with respecti@it partnersd is
the distance with the opponeuqt; is the desired distance between the twis, the
average velocity of the two charactevg,is the preferred average velocity of the
two characters that define the desired direction of movenagrtwg, Wy, W, are
the weight constants for each term. We compyftfer eight different directions, as
we would prefer to interactively control the two characterslifferent directions

5.4. Interaction Graph 65

during runtime. Using the reward function, we can compugeréturn value at
each state by Equatidn2 using dynamic programming.

For competitive interactions such as boxing and chasingjseehe simplified
version of the objective functions defined in Sectd. Let us briefly review
the reward function that evaluates the action of fighterss tomposed of three
criteria: (1) the relative orientatiorB) and distancer{ of the fighter from the
opponent, (2) the damage the fighter has given to the opp¢bent and (3) the
damage the fighter received from the opporn@nt). The reward we use has the
following form:

Fbox = WgB2 +Wg(d — dp)? + WD —wpD™ (5.4)

whered,, is the preferred distance by the fighter; is the damage that the fighter
has given to the opponemd,” is the damage received, am@,wd,wg,wa are the
weight constants for each term.

In case of competitive activities, we do min-max searcheiadtof dynamic
programming, on the Interaction Graph. Let us explain hodatguch a min-max
search on the Interaction Graph. Assug to be the reward of thg-th transition
going out from stateé and is computed by the reward functions (Equabohfor
fighting). The value tells us how much the character earnses&d by launching
the j—th action at stat&. For all state-action pair§}i j are precomputed so that
there is no need to evaluate the interactions of charaateirsgorun-time. Suppose
the best score the character can obtain from §ade a result of searchirtlevels
ahead i3/ 4, and we knowv 4 for all the nodes already. The value\gfy1 can
be computed by checking all the out-going edges from skatsum the reward
of the edggW j) with the return value of child state for depdhand find out the
edge that returns the largest (if it is a max node) or sma(ititis a min node)
value (Figureb.6):

Vi a1 = {max/mint (W j + Vg j).a) (5.5)

The ID of the best next state is savedny;1. The pseudo code of this procedure
is shown in Algorithm 1.

The computational cost for finding the optimal path for miaxrsearch is
O(N x D), whereN is the total number of states in the FSM dhds the maximum
depth of the min-max search.

All E; 4, which are the best states to transit to next at each statesamed
in a look-up table. This min-max computation has to be dorg once for the

66

Chapter 5. Interaction Graph

Algorithm 1 Min-max on the Interaction Graph

/* Initialize the score of 0-depth to 0 */
fori=0toN—-1do
Vio=0
end for
[* Evaluate the optimal action */
[* For each depth of search */
ford=0toD—1do
[* For each stat& of the FSM */
fori=0toN—1do
/* Scan the children o§ */
I* sj is its index of thej-th child of § */
if §is a max nod¢hen
Vid1 < maxj{Vs; da+W j}
Eidr1< sj S.t.maxj{Vs; a+W j}
else{ S is a min node
Vid+1 < minj{Vs, ¢ +W j}
Eidr1 < 5sjs.t minj{VSj,d +W ;}
end if
end for
end for

5.5. Experimental Results 67

Vs(i,2),d

Vs(i,3),d

Vidst Vg

= {max/min} (W + Vy;;,4)

Figure 5.6: Every node has a table which keeps V; 4, which is the best score the
character can obtain from state § as a result of searching d levels ahead. The
number of out-going edges from § is N;, the ID of the state on the other end of the

j-th edge from state i is 5.

whole graph unless the evaluation function is changed. f&ppens only when
the user wants to change the parameters or sub-functiorguiatien5.4. Even if
that is the case, it can be done in a very short time as all trepeters required
to recompute them are embedded in the data structure ofahsgition.

5.5 Experimental Results

We have simulated scenes of fighting as examples of conyeeitiieractions and
scenes of carrying luggage as examples of collaboratiwraaotions. We have
captured the shadow boxing of a boxer for 2.5 minutes, andom®to carry

objects for 2.5 minutes. Each motion was segmented into h@87187 actions,

respectively, and was classified into different groups. rAudation based on the
game tree expansion was first done to compute and collecathples. Using the
obtained samples, Interaction Graphs of different catiegavere created.

As in the previous chapter, a particle system was used tol&amexpected
collisions among the characters and adjust the actionsnoeet for better visual
effects. Further information can be found in Appenéix

68 Chapter 5. Interaction Graph

5.5.1 Competitive Interactions: Kick Boxing

We created a motion database of kick boxing. Then, we gestkeat Interaction
Graph of 79,855 states and 3,392,297 edges. The construgdtibe Interaction
Graph took around 180 minutes using a Pentium 4 Dual Core 30 @*U and
2 GB of RAM.

5.5.1.1 Game-Style One-to-One Fighting

In order to show the real-time performance of our system, ave lmplemented a
game-style interface which the user can control a charézteght with the com-
puter controlled character (Figuke?7). The user can give high level commands
such as “move forward / backward ”, “turn left / right ” “puntikick”, “dodge”,
and “avoid” to the character; the best action that belongsutth categories are
selected based on the Interaction Graph. The action of thergmt character is
selected based on min-max search in the graph. All thesels=acan be under-
taken just by looking up the table, and therefore, the coermdntrolled character
can react in real-time.

Figure 5.7: Using the game style interface, the user can control a character to fight

with the computer controlled character by the Interaction Graph.

A screen shot of such a scene is shown in Figa& The strength of the
computer controlled character can be adjusted by the ddgtiesearch on the
Interaction Graph; if we want to keep it weak, we can set it,twllich means the
computer controlled character will only select the actiathwhe best immediate
effect. It can be made stronger by increasing the depth csehech.

5.5. Experimental Results 69

I’UNCE‘ AVOID PUNCH AVOID

KICK DODGE KICI, DODGE

Figure 5.8: Using the high level commands, the user interacts with the computer

controlled character based on Interaction Graph.

5.5.1.2 Multiple Characters Fighting

We can easily increase the number of boxers and create awbene many char-
acters are fighting with their opponents (Figbr6). The characters are split into
two teams, and each character fights with the closest clearecthe opposite
team.

Figure 5.9: Using the Interaction Graph, we can simulate a lot of characters fighting

with each other in real-time.

During the simulation, sometimes other boxers get closan the opponent
the boxer is currently fighting with. In such a case, the baxeéitches the oppo-
nent. Therefore, in some cases there are scenes where aaetehappears to be
fighting with two or more characters. Also, there are casatsttultiple characters
fight with the same enemy due to the lack of enemies. Each of thi# therefore
consider the enemy is fighting solely to itself. Howevergsithe state space only
defines two characters, the enemy will only decide its adb@sed on one of its
many opponents, which is the closest one.

70 Chapter 5. Interaction Graph

5.5.1.3 Changing Fighting Styles During Run-Time

In order to show the effect of changing the reward functionrdurun-time, we
have enabled the computer controlled character to charggstyte of fighting
while fighting with the user-controlled character. When thgdesof fighting is
switched to outboxing, if the user character approachdstcaemputer character,

it will step backward or to the side to keep the distance bebhntbe two. On the
other hand, when the computer character’s style is switthedight, it becomes
more aggressive and always tries to hit the user fighter. shroaip are shown in
Figure5.10and Figures.11 Regarding the parameters of the reward function, we

used the same values as those in Chapter

PUNCH AVOID PUNCE i AVOID
(OUTBOXER) (OUTBOXER

KICK DODGE KICK DODGE

Figure 5.10: Computer controlled character fighting with outboxing style

LY

PUNCH AY0ID PUNCH AVOID

(INFIGHTER)

(INFIGHTER |

KICK DODGE KICK DODGE

Figure 5.11: Computer controlled character fighting with infighting style. Fighting

Styles can be switched during run-time.

The computation of new rewards for different fighting stylekes merely a
few seconds. We can compute the new rewards using a backbtiorgad when-
ever the user requests a change on style. Alternatively,amgpoecompute two
Interaction Graphs of different reward functions, and slibetween the graphs
during run-time.

5.5. Experimental Results 71

- Human| Static| Game Tree 2 Game Tree 3
Interaction Graph 1 -15 34 -37 -53
Interaction Graph 3 23 54 14 -19
Interaction Graph 5 28 55 28 -4

Table 5.1: The score table of the matches between the Interaction Graph controlled
character and the human player (Human), a character trained based on static ob-
jects (Static), and game tree search with expansion of two levels (Game Tree 2)
and three levels (Game Tree 3). Each row shows the scores when the depth of the

search on the Interaction Graph is 1, 3 and 5.

5.5.1.4 Comparison of Different Controllers

We held matches between a character controlled by the ttienaGraph with
three sorts of boxers; a human-controlled character, a atenpontrolled char-
acter trained to hit a static objedtde & Lee(2004)], and a computer controlled
character by game tree expansion with the full charactes sgamce. The character
trained to hit the static object is considered to be the waaks it has no idea of
defence. The character based on the game tree expansiansgahgest, as it
evaluates all possible combinations by expanding the gaeee however, it can-
not select an action in real-time when the depth level & The results are shown
in Table5.1 The scores are calculated by subtracting the number oessfid
attacks by the Interaction Graph controlled character ftoensuccessful attacks
by the opponent.

It can be observed that an Interaction Graph controlledacher is already
too strong for the human controlled character to competh witen the depth
level is over three. The character trained based on the sthject also cannot
perform well as it does not have any concept of defence. Ttezdation Graph
controlled character is weaker than that controlled by gaee expansion. The
strength of the fifth level Interaction Graph character iswlthe same as the
three level game tree boxer. This is because the game treg'baxtion is based
on the precise simulation of the fight. On the other hand, tiwce of actions
by the Interaction Graph includes quantization error. Winendepth of the level
increases, the quantization error starts to accumulate. |€vels of expansion is
equivalent to a movement of 2.5 seconds in average. In aies\such as fighting,
each action is very quick and short; 2.5 seconds is alreagylorg ahead in the

72 Chapter 5. Interaction Graph

future compared to the duration of each individual actioherEfore, we can say
our results are satisfactory, taking into account that theracters can perform
near-optimally by simply using a look up table.

In order to check how many of the important states the IntemadcGraph is
covering, we have examined how many of the states visitethdgame tree ex-
pansion approach are covered by the Interaction Graphisifdtio is high, that
means the Interaction Graph has a control policy compatatileat of game tree
expansion. The result was 93%, which is very high, congidettie actual size of
the state space.

5.5.2 Collaborative Interactions: Carrying Luggage

We created a motion database for carrying luggage. In faetlatabase only con-
tains the motions of a single character walking around, evtiie arm movement
of carrying luggage is generated by inverse kinematics. rkaraction Graph of
128,804 states and 4,685,246 edges was generated. Thaeuctastof the Inter-
action Graph took around 200 minutes using a Pentium 4 Dua 86rGHz CPU
and 2 GB of RAM.

5.5.2.1 Avoiding Balls While Carrying Luggage

Rewards were set to move the characters to eight locations@itbe characters,
and eight different policies were computed to move to eachtlon. Once the
policies are obtained, the user can interactively speb#ydirection the characters
should move, and the optimal action is chosen from the cporeding policy. The
user can control the characters to move to arbitrary doastto avoid being hit
by balls rolling in random directions. Screen shots of tharabters controlled to
avoid the obstacles are shown in Figbré2

5.6 Discussions

5.6.1 State Sampling

Due to the exponentially growing size of the state space waipect to the di-
mensionality, reinforcement learning could not be effithemapplied for dense
interactions such as fighting, in which the characters neddke into account

5.6. Discussions 73

Figure 5.12: Screen shots of the characters controlled to avoid the ball while

holding a box.

the full status of the opponent. However, the subspace teanmgful samples
exist is biased. By searching samples in the high densitypsues it is possible
to compose a FSM called the Interaction Graph that enabledigent control in
real-time.

In our method, as the criteria to determine the subspacepiorexis indepen-
dent of the reward function that evaluates each action,rttexdction Graph can
be used for different rewards, and it can be adjusted evanglwin-time. As a
result, we can simulate the movements of different stylaatefactions, such as
infighters or outboxers who have different preferencesttacks and defences.

5.6.2 Action Evaluation and Selection

The proposed method is deterministic; the action to be sleis determined
based only on the min-max score computed over the Intera@raph. The sys-
tem can easily be switched to a probabilistic system, as @opeevious works
[Lee & Lee (2004]. We can set the probability that the character selectd eac
action according to the min-max score, and use the Russidgtte@approach to
determine the action. We can also decrease such probamitiyrding to the num-
ber of times that that action has been selected at that $tateapplications such
as games, this approach can be a good method to randomlyniteethe actions

of the computer controlled character.

In our experiments, we do not include the discount factorméeluating the
actions at each state. This is because the depth of the seanaly up to five lev-
els, and the predictions are reasonably accurate. If a deepech is required, we
can use the discount factor when recursively compwing 1 in the Interaction

74 Chapter 5. Interaction Graph

Graph at Algorithm 1. In such a case, EquatiBwill be calculated a¥ 4,1 =
{max/min} (W j + Wei j),a) Wherey is the discount factor.

5.6.3 Game Theory Related

Since the Interaction Graph can be applied in computer gatiime® is a demand

to model the behavior of the human player and apply oppomaentel search
[Carmel & Markovitch(1996)] or probabilistic opponent-model seardhdnkers et al.
(200])] instead of min-max search. By this way, the computer cdletlacharac-
ters can adapt to different human players. However, as tiseaestrong rela-
tionship between the actions launched and the correspgsthites, modeling the
human player is tough due to the high dimensional state sgaggher research
will be required to generalize the history of launched awim the state space,
and model the player with minimal resources.

5.6.4 Comparison to Reinforcement Learning

The Interaction Graph is a machine learning based appraauhhas a lot of
similarities with reinforcement learningitton & Barto(1998]. Like temporal
different learning, we rely on dynamic programming to eadduthe state values.
Moreover, similar to off-policy temporal different leany methods such as Q-
learning, we maintain two policies. The behavior policysed to explore the state
space while the estimation policy is used to estimate the stdues. The major
difference is that in our system, the state sampling progeddshe state evaluation
process are completely independent. We do not revise theaggin policy until
sampling is completed. This framework has an advantagenoplisity when we
wish to change the estimation policy to model different vatrs.

One popular approach to deal with high dimensional stateespato apply
Monte Carlo Reinforcement Learningishman1996, Bouzy & Chaslo(2006)].
This approach is shown to be effective in Go, where the coxtglis up to 1560.
Instead of explicitly sampling the whole state space in otdevaluate the value
of a state, we may randomly assign a actions to such statetmedve the average
rewards. By repeating this process, it is possible to get aarate estimation of
the state values. Unfortunately, such an approach is netbeain our system.
This is because unlike Go, the action evaluation functiongur system are far
more complex, and involve computational costly processeh as the collision

5.6. Discussions 75

detections functions. As a result, evaluating the stateevaly Monte Carlo ap-
proach will take even longer than sampling the state space.

Another popular approach to deal with high dimensionalessgiace in rein-
forcement learning is to set up a hierarchical system witioap [Stolle & Precup
(2002], hierarchies of abstract machines (HAMPBgr & Russel(1998], or the
MAXQ framework [Makar et al(2007), Shen et al(2006]. We will discuss these
three methods with respect to our problem.

First, reinforcement learning with options creates terafipextended actions.
With a set of starting states and a set of destination statafiple successive
actions are combined as an opti@tglle & Precup(2002]. One example is that
when training a robot to navigate a huge room, we may divigerdom into
different areas, and train the robot to move from one areadthar. Each option
contains a starting area, a destination area, and a seragiohs for the robot
to perform. By this way, a complex problem can be decompostdarset of
smaller problems, and the optimal solution of each smalteblpm is learned
with reinforcement learning. However, in our fighting preil, since the rewards
function depends on collision detection of attacking bodstg a small change in
state may result in a large change in reward. This createghdyhirregular state
space. Using the robot example, our environment is full ahels and warping
points. It is therefore difficult to effectively divide theéase space into systemic
areas and apply options.

Second, the hierarchies of abstract machines (HAMs) cainstthe actions
that an agent can take in each state, and provides a hiararcheans of ex-
pressing these constraints at different levels of defat] & Russel(1998)]. For
example, when training a robot to navigate a narrow corritstead of allowing
the robot to move in all direction, we can tell the robot toyomlove forwards and
backwards. By this way, we can effectively reduce the actp@ts. In our system
of fighting, the hard constraints serve a similar proposstebd of allowing the
character to do any action, the actual actions a charaated@as limited by dif-
ferent conditions defined in the state space. For exampleallfstates in which the
opponent is attacking, the character should do nothing ¢bfasm defense. Simi-
larly, in those states where the opponent is far away, theackexr should not attack
nor defense.

Finally, MAXQ represents a problem with subtasks and sulsg@ad cor-
responds the values of parent tasks with those of subtas&kdr et al.(2007),

76 Chapter 5. Interaction Graph

Shen et al(2006]. A typical example is to train a robot picking up rubbishdan
putting the rubbish into rubbish bins in a given environmdnstead of training
the robot in the full state space, we can divide the task inbdasks such as navi-
gating, picking up rubbish, and putting rubbish into a biack subtask is trained
using standard reinforcement learning, and a global cthatris trained to assign
the correct task to the robot. In our moving luggage systemapply similar
concepts to decompose a huge task. Instead of training traatkrs to avoid
any obstacles with the luggage, we train the characters W@ tmoone of the eight
guantized directions, such that the training becomes argtler. The animator
acts as a global controller to assign movement directiortheéacharacters such
that they avoid the obstacles.

5.6.5 Usage Complexity

We create simple user interfaces for the animators, sudieagame-style control
panel, to ease the animation generating process. With thiestaces, it is easy to
give high level commands to the characters in the scene. Ywe lower level
controls are required, our interfaces may fall short. Iri,fags a tough problem
to enable the animators to control the whole scene in diftelevel of details,
especially in a real-time basis. Such an issue would reduiitieer research.

The criteria to determine the quality of interactions dgrine behaviors of the
characters must be specified by the animators. As the anisnate only allowed
to give an abstract idea of the interaction, this might noa lofficult task. Espe-
cially in case the interactions are competitive, an absidsa of the way the two
characters compete can already become a good hint for teeari

Once the criteria to evaluate the quality of interactiomssgecified, generating
the Interaction Graph is an automatic process. Howevelyatiag the quality of
the graph is difficult before this process is completed, &edjraph requires hours
to be built. Thus, it is better to be careful when setting up¢hteria. This is a
general problem for learning based approaches.

Similar to the tree expansion method in Chagtethe animators need to spec-
ify how to reward the actions. This again depends on the eatithe interactions,
and the animators need to adjust it to obtain a satisfactmyes Since the topol-
ogy of the graph is independent of the reward, the animatorsriteractively edit
the function and view the effect in the animation in a few sets

5.7. Summary 77

5.6.6 Possible Extensions

Our method can be easily combined with existing FSM framé&a/do control
characters in computer games such as wrestling. In suchgjarseally there is
one FSM for each individual character. We can let the usemsyfrcontrol the
characters based on the individually prepared FSM whendhegpart from each
other, and let them go into the Interaction Graph only whendinse interactions
start. Some game designers might prefer to manually desgnraotions so that
they appear plausible. Itis also possible to design a cdwgilge and insert it into
an Interaction Graph.

This research can also be extended to simulate the behdwealohumans
when they are competing with each other. In scenes of cotigrgtusually the
person does not have full knowledge about the opponent, radiuglly learns it
through the interactions. The person also takes advanfagieb a condition by
launching fake actions to trick the opponent. By enablingsystem to simulate
such behaviors, it will be possible to create a virtual tgalystem that the athletes
can use to train their skills and simulate matches with caligletes.

5.7 Summary

We presented a real-time approach to simulate scenes itwhittiple characters
are densely interacting with each other. We proposed a rddth@recompute
the complex interactions of the characters by favoringest#hat result in more
interactions with the character and that have higher cdivitgavith other states.

Using our method, it is possible to cope with problems witlhhdlimension-
ality, such as fighting. Our method can be used to control NR@G®icomputer
games as the optimal action at every state is precomputedaweven simulate
various styles of interactions as the samples collectethdependent of the cost
function used to select the optimal action.

Chapter 6
Interaction Patches

Scenes of battlefields, panicked crowds and team sports uesmand TV pro-
grams involve a huge number of interactions of multiple abtars. Existing
methods have problems creating such interactions. Manc@athposing the scene
using singly captured motions or keyframed motions reguardiuge amount of
labor by the animator. Flocking-based methodsynolds(1987, Helbing et al.
(2000] have problems simulating close interactions that ing@vot of kinematic
constraints. Previous optimization-based methbde [& Lee(2004), Treuille et al.
(2007)] suffer when creating artistic interactions, as the otoyedunctions are de-
signed just to benefit each character.

The Interaction Graph in ChaptBrcan generate a large number of characters
with realistic interactions in real-time. However, the tred suffers from two
problems. First, due to the limitation in the state spaceteraction Graph can
only simulate interactions between two characters. Algiowe can extend the
algorithm and put more characters in the scene, each ckamdy consider one
opponent during interaction at a time. Second, the grapbrgéss a lot of nodes
and edges, making it difficult to monitor the quality of irdetions, as well as
adjust the graph manually. We need an algorithm to modehtieeactions among
a large number of characters effectively.

When we watch fighting scenes in movies, we immediately redhat there
are a variety of interactions appearing stylized; artiaticl logically clear as if
they are designed by an artist. At the same time, we als@estilat the patterns
of interactions are very simple. For example, in a scene &hanain character
fights with many background characters, most interacti@ta/déen them follow
the rule of “background character: attack”, “main characé&oid”, “main char-

79

80 Chapter 6. Interaction Patches

acter: counter attack” and “background character: knocksah”.

This observation leads us to develop an algorithm that isbilexenough for
the user to design his/her favorite interaction, while sigdfitly automated so that
the user can create a large-scale animation involving a suwflicharacters with
the least effort. Our system simulates the minimal unit ¢éractions between
two characters based on abstract instructions given by sbe and stores the
result as structures called Interaction Patches. Thedctien Patches are spatio-
temporally concatenated to compose a large-scale scenbiah the characters
interact with each other, such as one person fighting withynearemies (Fig-
ure6.9), a group of characters falling down onto each other like idos (Figure
6.11), an American football player holding a ball and escapimgrfitackling de-
fenders (Figur®é.13 and a group of people passing luggage one to another (Figure
6.16).

Our work is inspired by the idea of Motion Patchée¢ et al.(2006], where
the large-scale scene is composed of building blocks. Usiag approach, it
is possible to generate an animation where the charactersaah with the en-
vironment. However, it is not possible to generate an anonavhere multiple
characters densely interact with each other. In this rebgave precompute the
complex interactions of multiple characters and use thetheabuilding blocks to
compose the final scene.

6.1 Contributions in This Chapter

¢ We propose a method to synthesize realistic interactiotvedan characters
by expanding the game tree, based on the pattern of intenacpecified by
the user. Since the pattern is specified, the number of catibirs is small,
and we can obtain realistic interactions with a limited antaaf computa-
tion. These interactions are saved as Interaction Patohes tised during
runtime.

¢ We propose a new algorithm to synthesize a large-scale scevid@ch the
characters densely interact with each other. The precadputeraction
Patches are spatio-temporally concatenated to composgeadeale scene.

6.2. Outline of Method 81

6.2 Outline of Method

The outline of Interaction Patches is shown in Figbu® It consists of five steps:
1. Capture the motion of a single person using a motion cagistem.
2. Create the action level Motion Graph, in which the actioesadl annotated.

3. Compose the set of minimal units of interactions, which ak tbe Inter-
action Patches, by specifying the pattern of interactiontsexpanding the
game tree.

4. Generate two tables that list how each Interaction Padahbe temporally
and spatially concatenated with other Interaction Patelhheempose large-
scale scenes.

5. Compose a scene by concatenating the Interaction Paiithisgs the only
online process, which allows the user to optionally givehHigyvel com-
mands and see what they can get immediately.

Steps 1 to 4 are performed during the preprocessing stage. ofily run-
time process is the low computational cost process at sté&s % result, we can
simulate a huge number of characters in real-time.

6.3 Interaction Patches

The Interaction Patch is composed of the initial conditibrthe two characters
and the list actions performed by each of them. The initialditoon includes the
distance between the two characteans the relative orientation of each character
with respect to the othe®t and6?), and the delay in either of the characters to
start the first actiontgs¢).

In the rest of this section, we first explain how we preprodkesnotion cap-
ture data, and then explain how the Interaction Patchesearergted. Finally we
explain how they are evaluated.

6.3.1 Preprocessing Motion Data

We assume the motion data is preprocessed and stored asanlaetl Motion
Graph. The list of annotations used in this research is showable6.1

82 Chapter 6. Interaction Patches

Single Person
Mocap

Motion Segmentation
Into
Semantic Action Units

SpeC|fy|r‘1g Desirable —
Interaction Patterns
: Interaction ¥ kick R Fal
. Patches s
Evaluating the
Connections Between .
Interaction Patches ¥ . . B
E Spatio- /EIEI ‘—; \ E
: Tempo-ra-l 3 —_—
Connectivity % N v
NEE :
Designing the L
Scenario of Desirable
Animations t
Crowd with : Run-Time
Dense Processes

Interactions

¢

.
--

Figure 6.1: The outline of the Interaction Patches.

6.3.2 Composing Interaction Patches

The process of composing Interaction Patches is to let the specify the pat-
tern of actions, sample the initial condition of the two @wers and simulate the
interactions between them. An overview, showing the cortiposof an Inter-
action Patch is shown in Figu&2 Each process is explained in the following
subsections.

6.3.2.1 Specifying Pattern of Interactions

A user first gives a list, defined here aPaiternList, that describes the pattern of
the interaction between two charactePatternList = { (CharlDj, Annotation;),
..., (CharI Dy, Annotationy) }, whereAnnotation; is the annotation embedded in

6.3. Interaction Patches 83

the action level Motion GraplCharlD; is the identity of the character who per-
forms this action, which is either 1 or 2, ands the total number of actions in the
pattern. In our system, multiple actions may share the sametation. Therefore,
an annotation represents a cluster of actions, rather tispedfic action. Figure
6.2 (upper left) shows an example BétternList. It should be noted that the list
defines only the starting order of the actions, and does nanmeach character
has to wait for the other character to finish its action totstarew action.

6.3.2.2 Sampling Initial Conditions

Once the pattern of interaction is determined, the init@ditions of the char-
acters are sampled based on the annotation of the first adboeach character
(Figure6.2, middle left). For most of the actions, there is a range innikt&l con-
dition parameters, 8%, 82, t4isf when the action becomes successful. For attacks
or tackles, the other character must be in the front at sostardie and the valid
range is relatively narrow. On the other hand, avoidingomstiare valid as far as
the character can get away from the opponent, which meanstige is larger.
We predefine the valid range of each parameter for each ammtd he system
computes the intersection of the valid range for the charactirst actions, and
performs uniform sampling in the intersection. In our systdistance is sampled
every 2@m, angles are sampled every°2@nd time difference is sampled every
0.1s.

6.3.2.3 Expanding Game Tree

When simulating the interactions between the two chargceash character is
controlled by its own action level Motion Graph. Startingrfr the sampled initial

Scene Annotations

Fighting punch, kick, avoid, dodge, transition, falling
American Football run, jump, avoid, tackle
Rat Avoiding avoid, pushed

Crowd Falling falling

Luggage Carrying| carry, walk, hand, receive, turn

Table 6.1: The table of annotations used to annotate captured motions

84 Chapter 6. Interaction Patches

...
. K .

PatternList: i Ch 1 Traversal: Ch. 2 Traversal:

Ch. 1: Punch@ K@ @7\

{ g: ; ﬁ“‘“l)('d% Av0|d Punch Avoid Punch
ic :

Ch. 1: Avoid @ g OF
............................... Av0|d Kick Avoid chk
Rt T SRR JUe

Inltlalcondltlon g ".,..——’....‘.

Oty : * Game Tree Expansion: / %

i ™~ : | punch (X)) (A) X
L et 73
I : l .
" Interaction Patch: F Avoid)y [1 ﬁ
S AR
ich.1 fpunch § Avoid P Kkick T 73')) 5
Foh.2 | Aavoid | F kick| | ! 7L /L
i & Pi o Avoid AE)R (7
' o <7

. *
..

Figure 6.2: Given the PatternList (upper left), the system sets the initial condition
(middle left). Using these data, the action level Motion Graphs are traversed by
both characters (upper right). The traversal process is equivalent to expanding the
game tree (lower right) as there are multiple choices for the same annotation. The

good interactions are stored as Interaction Patches (lower left).

condition, each character traverses its own action leveaidvidGraph according
to the pattern of annotations given by tPatternList (Figure6.2 upper right). As
the annotation represents a cluster of actions, we havépteuthoices of actions
for each annotation. SindeatternList contains a list of annotations, there are
exponential combinations of instances patternList. The process to evaluate all
possible combinations is equivalent to expanding a ganee(Figure Figures.2,
lower right). In this game tree, each node represents aaratdibe launched by
the corresponding character, and each edge directs thecgidrgt action by either
character.

When expanding the game tree and evaluating the sequenceafsasome
combinations are considered invalid for the following @as

e Invalid distance: We avoid interactions in which the characters stand too
close, as they can cause serious penetrations.

e Incorrect order of actions: As the duration of each action is different,

6.3. Interaction Patches 85

Patch A PatchB
ch.1 §— kick | § Avoid — KDodge T Kick
Ch.2 KAvoid K Punch - Nr‘ Kick ? Avoid

> Time

PatchA
To Background

ch.1 ¥ «ick %, Fall Patch B

Ch.2 K Avoid T\Punch »KDodge ’“éKick

ch.3 P Kick =, Fall

From Background To Background
> Time

Figure 6.3: Two cases of temporal concatenation of Interaction Patches. Two
characters finishing the previous Interaction Patch rejoin in the next patch (upper).
One character starts to interact with a different character after finishing the previous

patch (lower).

sometimes the overall order of the actions does not coineitlfiethe pattern;
such series of actions are discarded.

Close interactions involve a lot of close contacts of bodyrsagts. We need
to evaluate whether the segments collide or not. We repréiseinody segments
with rectangular bounding boxes and check if any segmest®wrlapping. If
the colliding segment has large linear or angular momentesponse motion of
being pushed or falling down is immediately launched. We gara every posture
of the response motion with the posture at the moment wheimihelse is added
to the body. The best matching frame is used as the staranggefiof the response
motion [Zordan et al.(2005]. If the segments unintentionally collide, such as
when a character is supposed to successfully avoid thekattamording to the
given pattern but gets hit, this sequence of actions is digch

86 Chapter 6. Interaction Patches

PatchA
To Background

Ch.1 'f—* Kick w~%, Fall

N v —

ch.3 P Kick %, Fall
N
From Background PatchB To Background
> Time
Patch A

To Background

ch.1 ¥ Kick K Dodge |~ Fall
A
Ch.2 K Avoid *

T i
7‘\Punch J‘echk I

ch.3 B Kick 2, Fall

Walk

From Background Patch B To Background
> Time

Figure 6.4: The condition for applying the spatial concatenation to the Interaction
Patches: Either the series of actions in the initial and final part of the patches must
overlap (upper) or the whole series of actions of one interaction patch overlaps with

part of the other Interaction Patch (lower).

6.3.3 Evaluating the Interactions

After expanding the game tree, we evaluate the interactisingy a cost func-
tion. Any paths connecting the root and leaf nodes of the gaeeeform a series
of interactions between the two characters. The set ofaotens with a score
above a threshold are stored as Interaction Patches. Thgd#gdhe evaluation
scheme is specific to the type of interactions. We used tleatinombination of
the following objective functions in our experiments.

e Contact criterion: For some actions such as holding the hand, punching
the face, and tackling the body of the other person, some péthe bodies
must contact either for a moment or throughout the timelBetter scores
are given to a series of actions that result in desired ctstac

¢ Relative distance / orientation criterion: For actions such as dancing, the
characters need to stay close and face each other for sorad.ggimilarly,

6.3. Interaction Patches 87

for interactions such as one character punching and the ato&ding, the
defender should get away from the punch, but needs to facattheker
while avoiding it. For these interactions, there are desdistances and
relative orientations of the root of the body at some momehtdughout
the motion. We can evaluate the interactions based on tfeefice of the
resulting values and the desired values.

e Timing criterion: Some combinations of actions performed by both char-
acters need to be well synchronized. We consider thoseasttens with
small timing differences to be better.

All the interactions designed in our experiments are matbiedifferent combi-
nations of the above functions. The blending ratios are rmiantuned for each
example.

6.3.4 Computational Efficiency

Since the process of constructing the Interaction Patohedvies game tree ex-
pansion, the computational cost is of exponential ordergdneral, when fully
expanding the game tree to evaluate the interactions ohctes, the computa-
tional cost isAP, whereA is the average number of available actions, 8nib
the depth of the tree to be expanded. However, we can greathice the cost by
making use of the following features:

1. Asthe patterns of actions are giventhe number of actions to be expanded
at each level is much fewer than that of doing a full searchsuftgng the
actions are evenly divided intN types of annotation, the computational
cost will be reduced tcﬁﬁ)D. At the same time we can get high quality
samples, as the pattern of interaction is a very importanibfdo determine
the realism of the interaction.

2. As the PatternList is short, the depth of the expanded trd2, is limited.
This is because only short Interaction Patches are requid system. We
can generate longer interactions, and those of more thacha@cters, by
concatenating the Interaction Patches based on the metiptalreed later
in Section6.4.

88 Chapter 6. Interaction Patches

6.4 Connecting Interaction Patches

We compose large scale scenes by connecting the Inter&atohes. Long series
of interactions can be created by temporally concaten#étiainteraction Patches.
Animations of more than two characters concurrently irdténg can be composed
by spatially concatenating the Interaction Patches. Welchlesuch concatena-
tions are possible for every pair of Interaction Patched,save this information

in a table. The details of checking the eligibility of temaband spatial concate-
nations are explained in the following subsections.

6.4.1 Temporal Concatenation of Interaction Patches

Two Interaction Patches A and B can be temporally concatenffl1) both of the
characters finishing patch A start interacting again inlp&d¢Figure6.3, upper),
or (2) one of the characters finishing patch A joins patch B stads to interact
with a different character (Figu&3, lower).

The patches must satisfy two further conditions to be temdfyoconcatenated:
Firstly, the motions when switching from patches A to B mustbntinuous; this
can be examined by checking the continuity of actions in tledéidm Graph. Sec-
ondly, if the characters in the two patches are different) &gure6.3(lower), we
must make sure the leaving character in patch A does noteolith the joining
character in patch B. The leaving character either leavesciige or joins another
Interaction Patch with another character. For exampleigargé 6.3 (lower), after
patch A, character 1 goes away and character 3 joins in pat€olBsion detec-
tion based on the two bounding boxes that surround charaeted character 3 is
carried out for all actions in the patch. Only if there is ndliston can patch A
and B be temporally concatenated.

6.4.2 Spatial Concatenation of Interaction Patches

The animator might need a scene where more than two chasactecurrently in-
teract; we can compose such a scene by spatially concatghatieraction Patches
of two characters. For example, the animator might needrescewhich a foot-
ball player jumps up and avoids tackles from two opponents, foom the left
and another from the right. This scene can be composed usmdnteraction
Patches, in which (1) a character jumps and avoids the tacktethe left, and (2)

6.5. Scene Composition 89

a character jumps and avoids the tackle from the right. Taerdéwo conditions
for such a concatenation (Figued). First, the two uncommon characters in the
two patches (character 1 and 3 in Fig6rd) must not collide into each other. This
condition is the same as the one in temporal concatenatiecord, the common
character in the two patches (character 2 in Figu#® must conduct the same
series of actions for a continuous duration. The duratiooveflap does not have
to cover the whole Interaction Patch. If the ending part & patch and the initial
part of another patch overlap (Figused, upper) or if the whole series of actions
in the shorter patch completely overlaps with a part of thegéy patch (Figure
6.4, lower), this condition is satisfied.

6.5 Scene Composition

Once we know the set of Interaction Patches that can be caoratatd, we can
automatically compose large-scale scenes by spatio-tathypooncatenating the
patches. In this section, we explain the process of comgdbmscene: First, we
explain the criteria for selecting the next InteractiondAamong all the available
ones, and then explain how these criteria are applied torgenthe scene. Fi-
nally, we explain how to reuse characters that exited lotema Patches for other
Interaction Patches later in the scene.

6.5.1 Selecting Patches

Among all the patches that can be connected to the curretalye@ one, our
system excludes those which result in collisions, and tledects the best one
among the rest based on an objective function explainedsrsthbsection.

First, we exclude the patches that result in collisions. piagch requires the
system to add a new character to the scene, we need to enatitbenewly
added character does not collide with any other charactesept in the scene.
This is done by representing each character as a boundingrizbahecking if the
new character overlaps with those in the scene. Then, waatealhe Interaction
Patches based on the following factors:

e Density of characters: Because there are going to be a large number of
characters involved in the interactions, we favor patchas allocate char-

90 Chapter 6. Interaction Patches

acters in open space. This is evaluated as follows:

1
Cdp+1

sa(p)

whered,, is the current density of characters at the region wheredhelie
date Interaction Patcpwill occupy.

e Frequency of the usageAs we prefer the characters not to keep repeating
similar movements, lower scores are given to patches whaek been re-
cently used. We define a paramefgrto represent the usage of the patch
p; once a patch is used, its correspondfpgalue is increased by one. On
the other hand, the value is decreased by 10% each time dtwrgs are
selected. The usage score of the patch is calculated ag/$ollo

st(p) = (1 —min(fp, 1))

e User preference: We provide a simple interface for the user to select the
preferred type of actions represented by action annottibine patches that
include such types of action are given better scosgip) = 1 if the action
satisfies the user’s preference agtp) = 0 if it does not.

The final score of a patch is defined as the weighted sum of inedhctors:

S(p) = Wasd(p) + WSt (p) +Wusu(p) (6.1)

wherep is the patch to be evaluatedy, ws, wy are the weights for each factor,
which we set asvy = 10,ws = 1000 andny, = 10000. The patch that returns the
highest score is selected.

6.5.2 Concatenating Interactions

Here we explain how to generate scenes of continuous itii@naénvolving many
characters by concatenating the Interaction Patches.

When an Interaction Patch is about to end, we automaticalcisthe patch
that can be temporally concatenated by evaluating all theectable patches us-
ing Equation6.1 If there are any patches which are spatially connectahbleh s
patches are also evaluated by EquaBiadhand the one with the best score is con-
catenated.

6.5. Scene Composition 91

ch.3 Ch.6
¢chi [T +—— +—— T +——]
Ch.2 Ch.4
Ch.5

»
>

Figure 6.5: Creating scene by applying spatio and temporal concatenations on
Interaction Patches. We can generate scenes in which a main character interacts
with many background characters. We assume the background characters comes
from background before the interactions, and return to background after the inter-

actions.

Then, the movements before and after the interactions #ochiaracters are
generated by a locomotion engine that controls the charactegreedy manner.
The locomotion engine selects a movement which is collifiea and transfers
the character as close as possible to the target positioa. Midvements of the
characters are determined backward and forward in timérgja@irom the mo-
ment of the interaction. For those characters that appear the background,
the starting point is set at a location outside the sceneamatial direction. The
motions of the characters whose interactions happen feslecided first. There-
fore, when deciding the locomotion of each character, wg nekd to avoid the
characters that are already in the scene. Although morerlblocomotion en-
gines based on model predictive contiloh{l & Kuffner (2005] or reinforcement
learning Lo & Zwicker (2008] might perform better, our controller works well
for the scenes we simulated.

An example of an overall time line is shown in Figud, in which character
1 (Ch.1) interacts with character 2, 3, 4 and 6 (Ch.2, Ch.3, Chd4Gin6) with
temporal concatenation. The Interaction Patch shared by &id Ch.4 is spa-
tially concatenated with another patch shared by Ch.4 and @hcbrresponding
fighting scene is shown in Figu®6. Ch.1 (blue) first attacks Ch.2 (green) at
the right side of the image, and next Ch.3 (grey) at the top) ie.4 (violet) at
the left, and finally Ch.6 (orange) at the bottom. When Ch.4 tidlsn, this mo-
tion is spatially concatenated with another Interactiotcan which it falls over
character Ch.5 (cyan). Once the Interaction Patches areg tixednotions of the
characters entering the scene are decided.

92 Chapter 6. Interaction Patches

6.5.3 Recycling Characters

When multiple characters continuously interact, they needpeatedly enter and
exit Interaction Patches (character 1 to 3 in Figbird. For instance, if we want
to design such a scene for two characters, both characterg got from a patch
need to rejoin in the next patch. However, sometimes thesislaf patches cannot
be found due to the distinct initial condition to start anehaiction Patch. We
solve this by giving the characters the degrees of freedajtgst their locations,
orientations and postures.

First, we introduce the concept of standard pose, which &rapppostures for
two characters, from where the two characters can easilyays to enter various
Interaction Patches (Figu6e8). This corresponds to the hub nod€sdicher et al.
(2003] in the Motion Graph. We first categorize the initial and fipastures of the
Interaction Patches according to their relative distancentation and postures.
The average poses of all the categories are computed anbébesne the standard
poses. Then, we can concentrate on planning how to reactetidesd poses. We
use the locomotion engine for moving the characters to tegatklocations when
it is far away from the standard pose. The characters movartisithe nearest
standard pose to start another Interaction Patch.

We define a distance function that evaluates the differeateden the current
pose B;) and each standard pod&)(as follows:

re—r gl ol 62 — 92
F(Pe,Ps) = (Cr, %)%+ (Ce,)24 (Ce, 52 (6.2)

wherer is the distance between the charact8sand8Z are the angles between
the line connecting the two characters and the directioh ebaracter is facing,
rs, 82, 82 are the corresponding values in the standard pose. Theaotsitand
0’ are used to normalize the effects of distance and angle,rarsato 306m and
180 respectively. The distance between the current statuseotharacters and
each standard pose is calculated and the one with the shdifiesnce is selected:

argming, F (P, Pj) (6.3)

whereP; is the-th standard pose, affd is the current status of the two characters.
Once the target standard pose is selected, each charagteaelpes the char-

acter it is to interact with by using the locomotion engine.aflthe characters are

at the required relative distance and orientation, eachacker expands the game

6.6. Experimental Results 93

tree to find the action that brings its posture to that in taedard pose. Since (1)
the connectivity of the action level Motion Graph is highdaR) the posture of

each character in the standard pose is a commonly used @osteircan usually

arrive at the target pose in one step. If the graph connécts/iow, and complex

path planning is required for arriving at the standard padss,possible to apply

dynamic programming to find the path in real-time.

As a result, even if there is no available Interaction Palett tan be imme-
diately launched, the characters can move around and dtpistposes to start
the next desirable Interaction Patch. As for timing, if ohamcter arrives at the
corresponding posture in the standard pose slightly ek the other character,
we let the character wait there so that it is synchronizetl itstopponent before
launching the next Interaction Patch.

6.6 Experimental Results

Using our method, we have simulated two types of scenes,hwdrne generated
by (1) only concatenating Interaction Patches, and (2)guia standard poses to
let the characters continuously interact. The first grougcehes can be generated
by the method explained in Sectiérb.2 and the second group of scenes further
requires the techniques explained in Sec6dh3 The set ofPatternList used to
generate the Interaction Patches are shown in TaBle

A particle system was designed to handle unexpected csliBsamong the
characters and adjust the actions performed. Furthemrd#on can be found in
AppendixA.

6.6.1 Scenes Generated By Concatenating Interaction Patch es

We simulated scenes where (1) a main character fights witty rnackground
characters (Figuré.9, Figure6.10, (2) a group of people fall down over each
other like dominos (Figuré.11, Figure6.12), (3) an American football player
holding the ball avoids the defenders and runs towards tae(§@mure6.13, and

(4) a mouse runs into a crowd and the frightened people avaidd bump onto
each other (Figuré.14). Although our system can automatically select all the
actions for all the characters, usually the user prefers/lggh level commands.
Therefore, for scenes (1), (3) and (4), we have preparedtarfane for the user

94 Chapter 6. Interaction Patches

to provide basic commands such as transition and rotatidheotharacter, as
well as field-specific commands such as punch, kick, and avdide commands
correspond t®,(p) in Equation6.1

6.6.1.1 A Character Fighting With A Lot Of Enemies

We created a scene in which a stronger character fightinganihof weaker en-
emies (Figure.9). During the animation, the stronger character avoids dgde
the attacks of the weaker enemies, and counter attacks émeien One features
of this animation is that when designing the InteractiorcRes, we require the en-
emies die after the interaction. By this way, we do not needatalle the motions
of the enemies after the interactions.

Apart from the interactions between the stronger characteits enemies, we
also apply Interaction Patches to handle the motions wheleker enemies bump-
ing onto other weaker enemies. These Interaction Patcleesdesigned by com-
bining PD control and motion of being pushed away or falliogvd [Arikan et al.
(2005, Zordan et al(2005]. More specifically, when expanding the game tree
to generate such Interaction Patches, the appropriateveawtions are selected
and blended to the motions of the characters whenever thefttilem collide.

Although our system can generate the fighting scene autcatigtisome users
may have specific preference on how the scene looked likeeldre, we design a
user interface for the user to control the actions of thengfeo character. Such user
defined actions will then act as constraints when selechiadriteraction Patches,
which correspond te,(p) in 6.1 Then, our system automatically searches for the
appropriate Interaction Patches to plan the movementseoivibaker characters
(Figure6.10.

6.6.1.2 Characters Falling Onto One Another

A scene in which a large number of characters falling ontoaaher like domi-
nos was created (Figug12. In this experiment we only use the Interaction
Patches in which one character falling onto another chara€uring run-time,
spatio concatenation is used in two ways. First, we conestgmatches such that
one character falls onto two or more characters. Seconekalction Patches are
also concatenated such that the newly falling charactersmee to fall onto other
characters.

6.6. Experimental Results 95

The Interaction Patches are automatically concatenatéuhsthe area speci-
fied by a given bitmap on the floor is filled with charactersf@lto the ground. As
the interactions between the characters are precomputed fer large numbers
of characters, we can obtain the results in real-time. Agtanning the motions
for the falling down characters, the standing charactersdded to fill up unused
areas in the scene.

We also generated a scene in which hundreds of charactkng fahto each
other (Figure6.12. In this case, we create one starting point of falling focrea
letter on the floor, and define the time for which to being.

6.6.1.3 American Football

We created a scene in which an American football player rarthe goal line
while avoiding tackling defenders (Figuéel3. Each Interaction Patch contains
a short clip of running motion for the offensive player, tlaekling motion of
the defensive player, and the avoid motion of the offenslaggr. By repeatedly
temporal concatenating the Interaction Patches basecdeooffénsive player, we
can simulate a continuous running and avoiding motion.

We allow the user to indicate the running directions of tHermsive player, as
shown in the arrow on the floor. The system then chooses theagte patch
with the most similar running direction.

6.6.1.4 Characters Avoiding A Rat

We synthesized a scene in which a group of characters aveideand bump into
each other. We defined twRatternList. The first one defines the interactions be-
tween the rat and the avoiding character, while the secoedefines the bumping
interactions between two characters.

In our system, the rat is a simplified character with only anetjfor the body.
We let the user define the movement trajectories of the maousieh consists of
a lot of shorter movement steps. Then, the scene is genaatethatically by
applying Interaction Patches that contain the movemepssiéthe rat.

6.6.2 Scenes Where Characters Are Recycled

We simulated scenes where (1) two characters are contityufgisting (Figure
6.195 and (2) a group of characters are passing luggage one afiénex to the

96 Chapter 6. Interaction Patches

characters next to them (Figuel6). Since for both of the experiments, we re-
quire the characters to interact more than once, we needise tbe character in
the scenes.

6.6.2.1 Two Characters Continuously Fighting

When generating a scene in which two characters continudigsiying (Figure
6.15), after finishing an Interaction Patch, the charactereeitnmediately enter
another patch, or search for a standard pose which leadstthanset of other
patches. A fighting scene where the characters keep on iatjaaikd defending
can be generated. Although the temporal tree expansiomégttion Graph ap-
proaches can generate scenes of continuously fighting 4shese generated by
Interaction Patches are more stylized due to the usPattdrnList. For example,
due to the use of Interaction Patches, we can generate awdberiatensive and
well synchronized interactions.

6.6.2.2 Many Characters Carrying Luggage Cooperatively

We created a scene in which many characters carrying luggaageeratively (Fig-
ure6.16. Each character continuously interacts with one of itghleors when
the luggage arrives. Each Interaction Patch includes th®mof the first charac-
ter standing, walking to receive the luggage, carrying aamtlinmg it to the second
character, and going back to the original location. Spatiacatenation is used
such that when one character receives the luggage with sh@ditch, it passes the
luggage to another character with the second patch. Diffénéeraction Patches
are selected according to the size and the weight of the fjegd&le define a set of
standard poses which are suitable for passing and recdugiggge. Using these
Interaction Patches and standard poses, we have generstedeawhere a large
number of characters pass luggage one after another toxhperson.

6.6.3 Computational Costs

The computational speed and the number of actions and atéleach experi-
ment are shown in Tablé.3. The computer used comes with a Pentium 4 Dual
Core 3.0 GHz CPU and 2 GB of RAM. The reason for large numbers efdnt
tion Patches in the “Mouse” and “Crowd falling” demo is thatmeed to generate
characters colliding from all directions for different @ntations of the characters.

6.7. Discussions 97

Excluding the rendering, all the animation can be generateghl-time, once the
instructions from the user are given.

6.7 Discussions

6.7.1 Patches Creation

Although we use thé&atternList to generate the Interaction Patch, animators can
manually design the Interaction Patches action by actiofadt, many animators
prefer to design complex elaborate interactions betweewrchlracters which are
difficult to be generated automatically. The design of thersction Patches is
simple, because they are short and only involves two chemrsactThe designed
Interaction Patches can be added into the database togethdine automatically
generated ones.

Interaction Patches can also be created by capturing themot two per-
sons. This method works for sparse interactions such as éssops avoiding
each other while walking, and two persons shaking hands.edexyit is not rec-
ommended for dense interactions such as fighting due to theitml difficulties
of motion capturing devices. Another disadvantage isedl&b spatio concatena-
tion, in which two patches can only be concatenated wheropéne first patch is
effectively the same as part of the second one. While it iscdifito perform an
action exactly the same in two trials, captured patcheestrtbm the low rate of
successful spatio concatenation.

When generating the Interaction Patches, although we lihtite number of
characters in each Interaction Patch to two, those of thresooe characters can
also be generated. In that case, we can generate the IrdarRetch of multiple
characters by expanding the game tree for all of them, amddatwecatenating them
as done in this research. However, more computational tiiidoe/ needed to
expand the game tree. We believe spatio concatenation iseefiwient method
to generate multi-character interactions.

We assume the interactions between the characters are shatir experi-
ments, we limit the total number of actions inside the IntBom Patches to be
four. This condition helps the system from two aspects:tlyjrhe computational
cost to generate the Interaction Patches can be minimizedvilMbe able to scan
a huge number of combinations which increases the chanaaaid plausible in-

98 Chapter 6. Interaction Patches

teractions. Secondly, shorter interactions are bettee fiit into the scene, as they
are more compact and less influential to the other extra cteagin the scene.
This helps the final process to compose the scene, as longdtims become a
constraint for the other characters. To generate longaresegs of interactions,
we suggest the use of temporal concatenation.

6.7.2 Scene Generation and Controllability

For scenes where the main character interacts with manyattiegbound charac-
ters, we assume the interaction between two different ckensoccur only once.
Therefore, the number of characters appearing in the ssgm®portional to the
number of interactions, which may cause the scene to be fijpely characters.
Although the collisions of characters will not occur as thetions of the charac-
ters are subsequently determined, there is a potentiathagkthey behave in an
unnatural way due to the lack of space. This problem is adblgeletting the
background characters fall down onto the ground or disappea the scene af-
ter the interaction. The fact that the interactions betwegncharacters continues
at least for a few seconds also helps to keep the number chatleas appearing
in the scene to be limited. We can also reuse some charatteesscene is too
crowded. As aresult, we do not face problems of unusual mewesreven though
we do not explicitly implement any function to control thenmioer of characters
in the scene.

There are two possible extensions to enhance the contiitlad the charac-
ters. The first method is to greatly increase the number efdction Patches and
introduce a hierarchical structure to store the patcheshdhcase, according to
the input by the animator, the corresponding cluster wilselected first, and then
the best patch in the cluster will be selected subsequehtly.second method is
to introduce parametric techniques to deform and intetpdlese existing patches.
Using such a method, we will be able to produce a large nunfharmtions from
a small number of patches.

6.7.3 Usage Complexity

The patch generation process is fully automatic except éael of a pattern list.
It is easy to define a valid pattern list during the patch gatn@n process. How-
ever, to generate artistic interactions, it is more abotgt tian technology. The

6.7. Discussions 99

animators must be familiar with the movie industry and havedjcreativity.

Similar to the tree expansion method in Chaptethe objective functions to
evaluate the quality of a patch are problem specific. Impleing extra objective
functions will require in-depth understanding on the syst®ne possible solution
Is to manually select good-looking patches. If only a fewstef patches are
required, the selection process is in fact not time consgmin

We created different interfaces for the animators to comiw® patch concate-
nation process. These interfaces are very easy to be usesdlevely similar to
the experiments of the Interaction Graph in Chaptesince there may be a lot of
characters in the scene, it is difficult to control every Brdgetail. For example,
when making the one-to-many fighting scene, our system attoatly concate-
nate patches in which one character falling onto anothes iStbecause we wish
the animator focus on the main characters.

Generating the scene can be a trial and error process, nieofuse our algo-
rithm runs in real-time. For inexperienced animators, tbay simply randomly
press some buttons in our control interface and see thetaasskene. Usually,
after a few trials, the animators would understand how tle®eds created, and
could generate the scene they want.

6.7.4 Comparisons On Different Control Systems

The Interaction Patches system requires far fewer santmesither optimization-
based systems. For example, in Interaction Graph explamé&thapter5, the
number of samples produced is over 50,000. With this largeb®u of samples,
it is difficult to monitor the quality of the interactions. Fthe experiments in
this research, fewer than 300 Interaction Patches are ddedweate a stylized
fighting scene. Methods such as the Interaction Graph aget&at for real-time
applications such as computer games. In order to make thputemcontrolled
character strong, the controllability of the characterneshigh, which means the
character needs to be able to launch various kinds of mousiriaoluding subtly
different stepping and attacks. This results in dense sampf the state space.
On the other hand, the objective of this research is to cieatglized animation
of characters interacting. The system does not need higtiatiability of the
characters, but only needs to be able to satisfy the higt éevemands given by
the animator. In addition to that, as our system first deteeshhow the characters

100 Chapter 6. Interaction Patches

are going to interact, the characters have a lot of degrefesaafom to adjust their
movements before and after the interactions. As a resultamegreatly reduce
the number of interaction samples.

We can evaluate the systems in terms of accuracy on conttdt i$, given
the control signals by the animators, how accurate can theacters follow the
signals. In this case, the Interaction Patches systemnpesfpoorly. Because of
the small number of available patches, it is difficult to thk characters perform
exactly what the animators want, such as moving to a predkfiosition. On the
other hand, with the Interaction Graph explained in Chapté¢he animator can
control the characters much more accurately. This is becaescan quantize the
possible control signals can compute the optimal policef@ry quantized signal.
Still, the accuracy depends on the level of quantizatiomefquantize the control
signals heavily, the accuracy will be low. Otherwise, witkea of finely quantized
control signal, the accuracy will be high, but the systenhredjuire a huge amount
of memory. The temporal tree expansion method explained ap@n4 performs
the best in terms of accuracy on control. This is because #thad is essentially
a short horizon optimization system. That is, we always e short duration
based on the exact current situation. Hence, we do not nepatdize the control
signals at all. An example is shown in Figlgd.7. Suppose the animators require
a pair of fighting characters to follow a predefined path, theracters controlled
by temporal tree expansion will follow the most accuratdifzose controlled by
the Interaction Graph can follow the path, but the accurapedds on the level of
guantization. Those controlled by the Interaction Patadamot follow the path
well since there are only a small number of patches.

When comparing the computation cost of different systems nopgsed, the
temporal tree expansion method performs the worst. Thigésilse the cost of
every action selection increase exponentially with reseihe depth of the game
tree, and usually we require three levels of tree expansi@ngate a smart char-
acter. Both Interaction Graph and Interaction Patches wesmprputed tables for
action selection, and thus the computation cost increasardiy with respect to
the size of the tables. Since the Interaction Patches meit®d far smaller table,
it is even more computational efficient than the Interac@Gwaph. Another advan-
tage of the Interaction Patches method is that each patamedefiultiple actions
for two characters. Therefore, when planning a scene witie@gfined number of
characters and duration, the Interaction Patches requuek fewer table lookups

6.7. Discussions 101

when comparing to the Interaction Graph.

If we wish to implement or extend the character control syste this thesis,
the temporal tree expansion method requires the smallest.éfVe simply need
to implement the objective functions and the min-max framéw Tuning the
objective functions can be a trial and error process, asftbete are shown im-
mediately. Both Interaction Graph and Interaction Patcheailt on top of the
temporal tree expansion method. The Interaction Graphmegiomuch more effort
to be implemented. This is because even if the frameworkaseadle, training the
graph takes a lot of time, and in case things goes wrong, wenedd to retrain
the graph. This is a general problem of learning based msthiddwever, once
the graph is successfully trained, we can tune the way weiaieathe actions and
see the effect almost immediately. For example, when crgalifferent style of
fighting, we simple need to tune the parameter. The wholehgrap be updated in
seconds, and the resultant animation can be generated-tmneaFinally, imple-
menting the Interaction Patches method requires buildiegpaitch concatenation
framework. Once the framework is completed, we can easégter Interaction
Patches by tree expansion. The framework works well witly anlew patches,
and hence building the patches requires only a short time.

The Interaction Patches system can become an alternatived@ting realistic
interactions by using infinite horizon optimization metbadich as reinforcement
learning. In theory, it is possible to produce realistienactions between charac-
ters if each of them select motions based on what benefitsttiemost. However,
in practice, such smartness can make the scene less stgtizbd characters will
never conduct actions that do not benefit them. The chasdoé=ome too careful
and as a result, they will never launch risky movements thatoake the interac-
tions more attractive. On the other hand, the animatorseatitience want to see
energetic movements. It is much easier to produce suchacttens by using our
short-horizon method as the users can explicitly speci#ypiittern of interaction
they want to see. Another advantage is that the computdtiasais limited by
the short depth of the game tree.

6.7.5 Limitations

There are some limitations with our method. First of all, pnecess of specifying
the pattern can cause problems if the actions by the chasaate abstract and

102 Chapter 6. Interaction Patches

aimless as they are difficult to annotate. Our method is maitatde for actions
which are easy to annotate. Secondly, we have limitatiorgemerating scenes
where multiple characters continuously interact. In thenegles shown, the char-
acters were allowed to adjust their movements without a timg. If the time
and locations of the interactions are strictly constrajrzeglobal planner that can
plan the sequence of all the characters at once will be reduigolving such a
problem using discrete optimization is one of the possiblat®ns.

6.8 Summary

We proposed a method to develop large-scale animationsewdinaracters have
close interactions. The user can obtain stylized intevastbetween the characters
by simply specifying the pattern of interactions. The iatgions between the
characters are saved by data structures called Interdeéitmies. The Interaction
Patches are spatio-temporally concatenated to compagedanle scenes. Once
the Interaction Patches are prepared, the process of camgpbe scene is fully
automatic. At the same time, the users can control the sceing our control
interface.

6.8. Summary 103

Figure 6.6: The scene that corresponds to the data flow shown in Figure 6.5 upper.
The blue character (Ch.1) sequentially interacts with Ch.2, Ch.3, Ch.4 and Ch.6.
This sequence of interactions is composed by temporal concatenation. Ch.4 falls

over Ch.5. This interaction is produced by spatial concatenation.

Ch.5
ch.3 [I k=~
ch.1 i T 187 R
Ch.2
ch.a 1

»Time

Figure 6.7: With characters recycled, we can create scenes in which characters
continuously interact with other characters. The dotted lines indicate that adjust-

ment motions may be required to connect two patches.

104

Chapter 6. Interaction Patches

E 1
’a
’.._.
O o o
4
\1_ lr.)
I - -

Figure 6.8: The standard pose (the circle at the center) acts as a hub to connect

different Interaction Patches. The dotted lines indicate that the characters in the

patches may need to adjust their locations and orientations for getting back to the

standard pose.

Scene

PatternsList

Fighting (one-to-many

Fighting (one-to-one)

American Football
Rat Avoiding

Crowd Falling

Luggage Carrying

{attack,defence attack, fall},

{attack, fall},

{attack,attack, fall},

{arbitrary motionfall, fall}
{attack,defence,

{attack, fall}

{run, tackle, avoid}

{arbitrary motionavoid, pushed awa}y,
{arbitrary motion pushed away pushed awaly,
{run, avoid},

{arbitrary motionavoid, fall}
{arbitrary motionfall, fall}

{carry,walk, handreceive turn,carry }

Table 6.2: The PatternList used to compose the Interaction Patches (The actions

of the second character are shown in bold font). Attack includes punch and kick,

and defence includes dodge and avoid.

6.8. Summary 105

Figure 6.9: Animation of one person fighting with many enemies generated by our
system. Interaction Patches are used to produce the fighting interactions between
the main character and the enemies, as well as the bumping interactions among

the enemies.

PUNCH PUNCH

Figure 6.10: Apart from automatic simulation, we also designed a user interface let
the user synthesize one-to-many fighting semi-automatically. The user first controls
the movement of the main character. Then, the system will plan the motion of the

enemies with Interaction Patches.

Scene Speed (fps)| Actions | Patches
Fighting (One-to-Many) 87 162 157
Fighting (One-to-One) | 104 162 279
American Football 194 217 21

Rat Avoiding 78 65 3716
Crowd Falling 72 39 4091
Luggage Carrying 162 108 72

Table 6.3: The computational speed, number of actions and number of Interaction
Patches of each experiment (Computational speed above 60 frame per second

(fps) is real-time)

106 Chapter 6. Interaction Patches

Figure 6.11: Animation of character falling onto one another generated by our
system. The user can control the overall pattern of falling by designing a bitmap
as shown on the floor. Characters standing on the pattern will fall while the others

remain standing.

Figure 6.12: Animation of hundreds of character falling onto one another generated
by our system. Despite of the large number of characters, the motions are planned

in real-time.

6.8. Summary 107

-

Figure 6.13: Animation of American Football generated by our system. Interaction
Patches are used to produce the interactions when one character running while
avoiding another tackling character. The user can control the direction of running

for the main character as shown in the arrow on the floor.

Figure 6.14: Animation of people avoiding a rat and bumping onto each other
generated by our system. Interaction Patches are used to produce the avoiding
interactions between the rat and the character, as well as the bumping motions

between the characters. The trajectory of the rat is controlled by the user.

Figure 6.15: Animation of two characters continuous fighting with each other gen-
erated by our system. We continuously apply temporal concatenation and reuse

the two characters such that they continue to interact.

108 Chapter 6. Interaction Patches

Figure 6.16: Animation of characters moving luggage cooperatively generated by
our system. The characters are reused when planning the scene such that they

interact multiple times when different luggage arrives.

User Defined Path
e——e Temporal Tree Expansion
o — - |nteractionGraph
L akcaks ® [nteraction Patches

Figure 6.17: With a predefined path to follow (grey thick line), the characters con-
trolled by the temporal tree expansion method can follow the most accurately (blue
solid line), those controlled by the Interaction Graph suffer from quantization error
(red dashed line), and those controlled by the Interaction Patches cannot follow the

path well (green dotted line).

Chapter 7
Conclusions

In this thesis, we presented our researches to syntheszatdractions among
multiple characters. Character interaction is an essdiidlin the gaming and
movie industries, but is still unsolved due to the difficedtito simulate the com-
plex behaviors during interactions. We successfully medigie interactions among
characters, and designed artificial intelligence algorgho synthesize coopera-
tive and competitive interactions among multiple chanacté/e demonstrated our
system with high quality scenes involving characters atBng with each other
like real humans.

Our system first segments the raw captured motions into Semnaations (Sec-
tion 3.1), and creates the action level Motion Graph (Sec8a@), which indicates
possible transitions between actions. Based on the graptiesigned the artificial
intelligence algorithms to control virtual charactersenaicting with each other.

We modeled the interactions between two characters as Maé@sion pro-
cesses. Inspired by game theory, we applied game tree eapanspredict the
future states of interaction, in order to select the optiawions for a character
to interact with its opponent. Pre-defined objective fumtsi were used to eval-
uate the reward of launching an action at a given state. Werebd that most
interactions involve both competitive and cooperativaureg. This leaded us to
design a multi-modal character controller by embeddingctimperative features
into the min-max search framework. For example, in our @rpanmts, the char-
acters can fight with each other competitively while follagiithe high-level in-
structions from the user cooperatively. We showed that theative functions
can be updated during run-time to simulate different styplemteractions. Fur-
thermore, by expanding game trees of different levels, weesaaulate characters

109

110 Chapter 7. Conclusions

with various intelligence levels.

Since the major computational overhead of the temporaktxpansion method
is performed during run-time, the system is too slow to baluseeal-time ap-
plications like games. In theory, we can precompute thenggtactions for all
possible situations, which are known as states, for a ctaraden it is facing
an opponent. However, due to the complexity of interactidhe state space
is too large to be exhaustively precomputed. We observedthieaactive areas
of the state space are small compared to the whole space,esighdd an off-
policy approach to sample the states that involve high tualieractions (Section
5.3). Based on the sampled states, we created a structure a#keddtion Graph,
which is a finite state machine with the nodes representaigstand edges rep-
resenting actions (Sectidn4). We precomputed the immediate rewards for all
state-action pairs in the Interaction Graph, and appliethdyic programming or
min-max search to evaluate the optimal actions that behefitharacter the most
in the future. As a result, the computational cost duringtrare is minimal, and
we can create controllable characters for cooperative antpetitive interactions
in applications such as 3D computer games (Se&ién

Although the precomputation algorithm in Interaction Grapn simulate char-
acter interactions in real-time, it only generates oneste-interactions due to the
limitation in the state space. We explored the possibilitg@mbining one-to-
one interactions to form many-to-many interactions sucthase appear in a war
scene, and introduced Interaction Patches (Se&i8y which are precomputed
short clips of interactions between two characters. Thenajvantage of Inter-
action Patches is that they can be concatenated tempaodityrh longer inter-
actions, and concatenated spatially to form interactionslving more characters
(Section6.4), with minimal computational overhead. We designed a sydte
synthesize the Interaction Patches off-line, and conesg¢ethem with optional
user instructions during run-time. We demonstrated outesydy generating
scenes that involve tens to hundreds of characters, imguitiose of fighting,
sports, and crowd simulation where characters fall onth etiver (Sectior6.6).

7.1 Summary of Contributions

In this section, we summarize the contributions in thisithes

7.2. Future Research Directions 111

e We propose an algorithm to simulate dense interactions@ttvaracters by
applying game theory. We model interactions as a Markovsitatiprocess,
apply temporal tree expansion to predict future statestefaction, and use
min-max search to select the optimal actions. (Chajter

e We propose a multi-modal approach to create competitiveachkers with
cooperative features. We embed both competitive and catipeiobjective
functions into the min-max frameworks such that the charaatan compete
with each other while achieving common goals. (Chagjer

e We propose an off-policy approach to sample the huge statzesp inter-
actions between two characters. This is achieved by sagihienspace with
criteria that favor states with good connectivity and maorteriactions. The
samples are general enough to be used in different contiiolgs (Chapter
5)

e We propose a finite state machine called Interaction Gragitdoompute
the optimal action for a character to collaborate or compéte one an-
other, such that the character interactions can be sintLilatesal-time ap-
plications such as 3D computer games. (Chapyer

e \We propose a method to precompute realistic interactiotvedss two char-
acters for a short duration and save in a data structuredchiteraction
Patches. The interactions are simulated by expanding tne gae with a
predefined pattern of interactions specified by the useh Swimulation is
fast and easy to control. (Chap®@®r

e We propose an algorithm to synthesize a large-scale scevigch the char-
acters densely interact with each other by concatenatiegdction Patches.
We apply temporal concatenation to create longer interastiand spatial
concatenation to create interactions involving more dttara. (Chapte®)

7.2 Future Research Directions

In this section, we outline some possible future reseangctions, which are out
of the scope of this research.

112 Chapter 7. Conclusions

7.2.1 Group Interactions

One future direction of this research is to simulate mugtigtoups of characters
interacting intelligently. For example, in a football miateeach character must
cooperate with its teammates while counteracting the clemsin the opponent
team. With the Interaction Graph described in Chaptave can simulate a char-
acter interacting with one opponent by maximizing the logrgt rewards. How-
ever, when considering the optimal action of every team negnrba group to
interact with another group, the state space must includbektharacters in the
scene. Such a state space is too large to be handled.

As a result, instead of searching for the optimal actionsafbcharacters, we
have to simplify the problem to generate suboptimal res@tse possibility is to
apply two-level planning. In the higher level, we can plamskrategy of the whole
team, assuming each team member can achieve a predefinédlgettives, such
as moving to a nearby position. The planning in such tean ghauld take into
account the opponent team, and hence concepts like tentpegadxpansion and
min-max in Chapte#d can be applied. Then, in the lower level, each character
tries to complete the assigned objective, taking into astonly local information
such as opponent nearby. By this way, we can simulate two teéeisaracters
interacting with each other, and when focused on individhalacters, we can see
they interact intelligently as if they are real humans.

7.2.2 Intuitive User Interfaces

The theme of this research is to simulate interactions amamgple characters
automatically rather than creating user control interac®ne of the future re-
search directions is to provide intuitive crowd contrdflimterfaces, such as those
used to adjust the movements of a group of characters, aathatitally generate
realistic underlying interactions among the characteushSnterfaces are impor-
tant for controlling crowds in computer games such as thos®ving war scenes,
and can be used to ease the production processes of crowdtems

Recent researches create convenience user interface ¢m desimovements
of a crowd Kwon, Lee, Lee & Takahaslt2008, Takahashi et a(2009], but they
do not consider the dense interactions among charactersenfgcsome re-
searchers regard interactions as spatio-temporal caomsteand apply space-time
optimization to synthesize the movements of the charagkars et al. (2009)].

7.2. Future Research Directions 113

However, such constraints have to be defined by the user andrtktime cost for
the optimization is still too high for a large crowd. When teare a lot of interac-
tions, such as in a fighting scene between two armies, it isgsiple to explicitly
indicate the interactions required and solve for the moveme@uring run-time.

We believe that by combining these crowd controlling teghes with Interac-
tion Patches, we can create an intuitive user interfacedotrolling crowds with
dense interactions in real-time. The movements of the crasedcontrolled by
the user and optimized with Laplacian transformation. Tystesn then monitors
the situation of the characters during run-time, and apphéeraction Patches to
generate the underlying interactions among characteosreatically.

7.2.3 Hierarchical Character Controller

Precomputing the optimal actions in different situatiossuseful for real-time

applications. However, such method requires a managemaetstate space.
For example, in the Interaction Graph explained in Chabtéhe system has to
be carefully designed to limit the complexity of the probleams the state space
increases exponentially with such complexity in general.

One possible way to solve the problem is to design a hiereaitktate space
for complex problems. The lower level state space can peadédail information,
but we only consider the subset of the space that is frequeisited to limit the
complexity during training. Whenever the character comes $tate that is not
considered in the lower state space, we can refer to the highel state space,
which is simpler and acts as an abstraction of the lower onee €ample is
to represent the higher state space as a general locomatiroker, while the
lower state space as a specific interaction controller. ¢@yrhotion, only a few
information need to be considered, and hence the state sgpaeey simple. On
the other hand, interactions require detailed descriptiothe environment and
nearby opponents, which leads to a huge state space. Refiyraot of states in
such a space are not useful, such as those in which there aearwy opponents.
By combining the two spaces we can create a simpler contfolléaster training
and lower memory requirement. Although the hierarchy is uadlg designed in
the previous example, it is worth to research on automatiboaks to evaluate the
optimal hierarchy.

114 Chapter 7. Conclusions

7.2.4 Run-time Learning

The advantage of machine learning algorithms such as remiftent learning is
that we do not need to explicitly design an algorithm to colndr character. In-
stead, we only need to setup an environment and let the ¢dkatacexperience
the consequence of conducting different actions. Durirgdy $taining phase, the
characters can learn from experiences to perform acticasbinefit them the
most in the future. However, the training phase takes tog tonbe an on-line
process especially for complex problems. The behaviorhafacters have to be
precomputed and applied during run-time. As a result, thewer of the trained
character will not be updated during run-time. This is egdlgcmportant in ap-
plications like games, in which there may be unexpected beskavior, and the
trained character will continuously perform sub-optimetiens.

In theory, it is possible to run the training process during-time. However,
in practice, we can only get a few numbers of training samglesg run-time
for a reasonable duration. It is important to research on twgeneralize the
training process such that it can be performed in run-timee @ossible solution
is to parameterize the reward function. Instead of updadirsgibset of state, a
training sample will update the parameter of the reward tionahat affects the
whole space. By this way, the character can learn from rearéxqce based on
run-time information and behave intelligently.

7.2.5 Interaction Adjustment

Our research focuses on synthesizing realistic intenagtrather than adjusting
existing interactions. The Interaction Patches in Chaptepresent realistic seg-
ments of interactions, but how much we can adjust the patwhéds maintaining
the context of the interactions requires further reseache

In general, there could be two levels of adjustments. Fob#sgc level of ad-
justments, we target for adjusting the position and thentaigon of the characters
while maintaining the features of the interaction. Receséagches suggest that
interpolation of motions in the latent space can creatasteamotions that sat-
isfy low dimensional task constraintBifzer et al.(2008]. It would be interesting
to investigate the possibility to apply similar methods ttoe interactions of two
characters. On the other hand, the advance level of adjasdmegjuires switching
the actions during the interaction in order to keep the cdraéthe interaction.

7.3. Publications 115

For example, suppose there is an Interaction Patch in whiglattacker punches
the opponent. When the patch is edited and the attacker casngerlreach the
opponent, the attacker may need to switch the punch withkaikiorder to attack
its opponent. While it is still unclear how to represent thgidal similarity be-
tween discrete actions during interactions, further netes required to create a
general algorithm that can switch actions to maintain theed of interactions.

7.3 Publications

The concepts related to temporal tree expansion in Chéjatex included in:

e Hubert P. H. Shum, Komura Taku & Shuntaro Yamazaki (20074mtfat-
Ing competitive interactions using singly captured matipm ‘VRST '07:
Proceedings of the 2007 ACM symposium on Virtual reality wafe and
technology’, ACM, New York, NY, USA, pp. 65-72

The concepts related to Interaction Graph in Chape included in:

e Hubert P. H. Shum, Komura Taku & Shuntaro Yamazaki (2008)nt5
lating interactions of avatars in high dimensional staicsfyin ‘13D '08:
Proceedings of the 2008 symposium on Interactive 3D gragnd games’,
ACM, New York, NY, USA, pp. 131-138

The concepts related to Interaction Patches in Ch&ptee included in:

e Hubert P. H. Shum, Komura Taku, Masashi Shiraishi & Shuntamazaki
(2008), ‘Interaction patches for multi-character animatjin ACM Trans.
Graph. 27(5), pp. 1-8

7.4 Commercialization

As our research is closely related to the gaming and moviasimigs, it is impor-
tant to demonstrate the possibility in applying the workpractical applications.
This research is funded by the Initiating Knowledge Trankiend from the Uni-
versity of Edinburgh to commercialize the concepts relédddteraction Patches.
A patent has been applied and is now pending. We started a emratization
project in 2009 to create a user interface in Maya, one of tbstmpopular 3D

116 Chapter 7. Conclusions

computer graphics software, for generating crowd with dengeractions. The
project is on-going and a demonstration program is expeitdze available in
early 2010.

Appendix A
Runtime Synthesis

Although we use motions captured by real human to generatartimation, when
applying them for interaction simulation, the quality thesultant animation is
usually below standard. There are artifacts due to the itrangeriods of the
motion graph, unexpected collisions of body parts, and liaage of foot contact
states. Furthermore, instead of simply displaying thewapt motions, we wish
to make adjustments to create more realistic interactiéiws. example, when a
character is being hit, we push the colliding parts backedodemphasize the
impact.

We create a particle system based on the Open Dynamic Er@DiE)([Smith
(2008] framework to synthesize the body postures during runtimith reference
to the captured motion and the adjustment required to sientlee poses. The
ODE framework provides physical simulation, while we iratie the appropriate
forces and torques to be applied for each joint of the body. 9stem can simu-
late smooth, realistic motions capable of minor adjustsiémthe body posture.

A.1 Character and World Modeling

In our system, the body segments of a character are modekathple rectangular
polygons for faster collision detection. The body segmemésconnected with
ball joints, indicating that each body segment has 3 degrefiesedom in rotation.
Each character is represented by 25 joints and 19 segmertsr particle system,
each joint acts as a particle and each body segment act agstic spring. Since
the sizes of the body segments are constant, the elasti@tlytbe springs is zero.
We create an infinity large plane in the ODE world as the floanp| which

117

118 Appendix A. Runtime Synthesis

provide supporting force to the characters. Gravity is enpénted such that when
no control force is applied, the character falls onto theugtbas a rag doll. This
feature is used to model characters dying when being hit singlt

A.2 Soft Posture Constraints

In this section, we explain the process to define the reqpiostlure by soft posture
constraints. These soft constraints are presented ag¢fe¢ pesitions of all parti-
cles, which represent the joints of the character body.dgdtiat we only consider
the positions of the particles and do not enforce segmegthisrbetween them.
Hence, the positions may refer to a physically invalid posand require the pos-
ture solve explained in Sectioh4 to produce a valid posture. Furthermore, the
soft posture constraints only define the desired posturs. bt guaranteed that
such constraints will be met in the final result.

The target position of each joint is initialized with the pog of the next frame
in the captured motion data. Since the motions are storemirstsangles, forward
kinematics is use to calculate the joint positions. Theltesue used as the initial
target positions of the particles. The advantage of using joositions rather
than joint angles to describe the soft posture constrasritsait positions are more
trivial to human understanding, and hence ease the procesiust the required
postures.

Then, we adjust the target positions based on the simuleggprirements, such
as changing the hitting position of a punch. We only need josadhe subset of
joints that are explicitly related. For example, when atipgsa punch, we only
need to adjust the target position of the hand, although pipemuarm and lower
arm should be adjusted accordingly as well. Such implidates joints will be
handled by the posture solver in Sectidd. We apply adjustments of target
particle positions in four ways:

e During boxing, when one character hit its opponent, theckitig joint may
not be accurately landed to the opponent. In such situgtwasipdate tar-
get positions of the attacking joints, mostly hands and fieethe opponent
for the frames before the hit. Our posture solver will theoduce an ease-
in and ease-out effect such that the attacking joints gidomeve towards
the opponent before the hit and move away after the hit.

A.3. Hard Posture Constraints 119

¢ In the chasing and catching simulations, to simulate a cieraatching
another, we set the target positions of the hands to the bidithe @pponent
when the character is close to its opponent. When we solvéaéopasture,
the whole arms will be pulled towards the opponent.

e We apply joint adjustment to simulate parry motion in boxingfhenever
a character is being attacked, the character should trydtegritself if
possible. We simulate parry motions for the arms when anyeftfree,
that is, when the character is not using the arms to attactefence. When
the attacking joint of the opponent becomes close to theacher; we set the
positions of the forearms to the position of that attackoigtj The forearms
will then move towards the attacking joint as if blocking tatack, and
restore to the original positions after the attack.

¢ Inthe American football simulations, we control the leftresf the offensive
player such that it holds the ball. In such situation, thdigiarbased on a
fixed location referencing to the local coordinate of therabter. More
specifically, we define the joint positions for the whole lafin relative to
the pelvis position and orientation of the character duthmg simulating,
such that the left arm is bent towards the body as if holdinglh b

A.3 Hard Posture Constraints

Hard posture constraints are also defined by the targetigusiof particles. Un-

like the soft posture constraints, the hard constraint®algdefined for a subset
of particles, and are guaranteed to be met in the final passpuneduced by the
posture solver in SectioA.4.

The hard posture constraints are used to constraint theqosf particles. To
define a new hard constraint, we create a virtual ball joimtvben the specified
particle and the space, indicating that the particle cabedranslated. Alterna-
tively, we can create a virtual ball joint between two paetc indicating that they
are connected. The hard constraints are applied in two ways:

e The supporting feet pattern of all actions are precompuseexalained in
Section3.2 During run-time, if a foot is supported, we add a hard castr
to fix the foot on the floor. When it becomes unsupported, thstcaimt is
removed to resume the movement of the foot.

120 Appendix A. Runtime Synthesis

e When we simulate a character holding luggage, we fix the hantfetsur-
face of the luggage with hard constraints such that they taiaircontact
with the luggage. Using the same carrying motion with défeérhard con-
straint definition, we can simulate a character carryingctgj of different
sizes. However, when there is a dramatic change in the siteeaibjects,
we have to capture new motions since the whole body moverhentd be
different.

Notice that if multiple hard constraints are created, timeag be incompatibil-
ity among them, such as fixing the feet while requiring thedsato unreachable
positions. In such situation, the posture solver will faitlahe resultant posture
will appear broken as the segment lengths can no longer beairaed. Therefore,
we try to apply as few hard constraints as possible, and makselise required po-
sitions are valid.

A.4 Posture Solver

In this section, we explain the process to solve for a valistyp@ with the given
soft and hard posture constraints.

Our posture solver is a particle system based on the ODE Wwarke We
define the control forces for each individual particle basethe soft posture con-
straints. On the other hand, the ODE maintains the segmegthend segment
connectivity defined by joints while applying the controtdes. Virtual joints de-
fined by hard posture constraints are also maintained. $iveceegment length is
fixed, when a force is applied to a patrticle, the rest of théigdas will be dragged
to such direction. For each time step, the control force &mheparticle is calcu-
lated by PD control:

F = Ke(Parget — Peurrent) + Kd(Pt/arga — Plurrent) (A1)

whereParge IS the target position of the particle as defined in the softtyre
constraints Payrrent IS the current position®;q¢ and Py, e are the respective
derivative,Ke is the elasticity gain an#y is the damping gain. A higke can
improve the responsiveness of the character, while aKigbroduce more stable
movements. We manually tune the smallest pos$ibkEndKy as a particle system
with high control forces is not stable. Furthermore, the niagle of the resultant

A.5. Summary 121

forceF is bounded by a predefined value to avoid unexpected highatdatce
while the target values are very different from the currer@® In case a character
is being pushed or hit, extra control force is applied to sateuthe impact. The
force is added to the particles being disturbed by refergnthe velocity of the
disturbing particles.

One problem for our particle system is that because thecpzstare gener-
ated directly using joint positions, we cannot represeatrtitational movements
along the body segments. One solution is to sample multipteges based on
fixed offsets from each joint. However, this increases thepexity of the system
unnecessarily. Instead, we construct a hybrid systemdakto account both con-
trolling forces and rotational torques, with the latterdgea supporting element.
The controlling torque of a particle is calculated as:

T = Ke(Bmotion — Bcurrent) + Ka(Omotion — Bcurrent) (A.2)

where Bmation IS the orientation of the joint defined in the source motiotaga
Bcurrent iS the current orientation of the corresponding partilgyi., and0g, et
are the respective derivativ&e and K5 are the hand tuned elasticity gain and
damping gain. Similar to the force calculation, the torqués bounded by a
predefined value.

Finally, a resultant posture is generated by the physicalisition engine of
the ODE. Collision detection is carried out between body sgmsuch that they
do not overlap when the control signals are applied. Theltargyposture is the
equilibrium state of the particles when all control forces applied. Thus, it rep-
resents the posture that can satisfy most of the soft camtstrahile maintaining
the hard ones.

A5 Summary

We designed a particle system based on the ODE framework. fyirdgethe

constraints of the required posture based on the motionatatasimulation re-
quirements, we can calculate the control force requiredetmh particle. The
control forces are applied to the physical simulation eagihthe ODE to solve
for the resultant posture. Our system can synthesize snamathrealistic move-
ments during run-time. We can also adjust the movement oéeifgpjoint, and

constraint joints such as the supporting feet.

Bibliography

Abe, Y., da Silva, M. & Popow, J. (2007), Multiobjective control with

frictional contacts,in ‘SCA ’'07: Proceedings of the 2007 ACM SIG-

GRAPH/Eurographics symposium on Computer animation’, Enaqolgics As-
sociation, Aire-la-Ville, Switzerland, Switzerland, gp19-258.

Abe, Y. & Popovt, J. (2006), Interactive animation of dynamic manipula-
tion, in ‘SCA '06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics

symposium on Computer animation’, Eurographics Assoaatore-la-Ville,
Switzerland, Switzerland, pp. 195-204.
Adriano Macchietto, Victor Zordan, C. R. S. (2009), ‘Momentaantrol for bal-
ance’,ACM Trans. Graph. .
Arikan, O. & Forsyth, D. A. (2002), ‘Interactive motion gamaéion from exam-
ples’, ACM Trans. Graph. 21(3), 483—490.

Arikan, O., Forsyth, D. A. & O’'Brien, J. F. (2005), Pushing pé® around,n
‘SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographicsgg-
sium on Computer animation’, ACM, New York, NY, USA, pp. 59-66.

Avis, D., Rosenberg, G., Savani, R. & Stengel, B. (2010), ‘Ematien of nash
equilibria for two-player gamesEconomic Theory 42(1), 9-37.
URL: http://ideas.repec.org/a/spr/joecth/v42y2010i 1p9-37.html

Barbi¢, J., da Silva, M. & Popo¥i J. (2009), ‘Deformable object animation using
reduced optimal controlACM Trans. Graph. 28(3), 1-9.

Barbic, J. & Popowt, J. (2008), ‘Real-time control of physically based simiolas
using gentle forcesACM Trans. Graph. 27(5), 1-10.

Beaudoin, P., Coros, S., van de Panne, M. & Poulin, P. (2008}joktanotif
graphsjn ‘Symposium on Computer Animation 2008’, pp. 117-126.

123

124 Bibliography

Bitzer, S., Havoutis, |. & Vijayakumar, S. (2008), Syntha@sisnovel movements
through latent space modulation of scalable control pedich ‘SAB '08: Pro-
ceedings of the 10th international conference on SimuiaifAdaptive Behav-
ior’, Springer-Verlag, Berlin, Heidelberg, pp. 199-209.

Boser, B. E., Guyon, I. M. & Vapnik, V. N. (1992), A training alginm for opti-
mal margin classifiersn ‘COLT '92: Proceedings of the fifth annual workshop
on Computational learning theory’, ACM, New York, NY, USA, gpi4-152.

Bouzy, B. & Chaslot, G. (2006), Monte-carlo go reinforcemeiairihéng experi-
ments,in ‘Computational Intelligence and Games, 2006 IEEE Symposiom
pp. 187-194.

Brand, M. & Hertzmann, A. (2000), Style machines,'SIGGRAPH '00: Pro-
ceedings of the 27th annual conference on Computer graphetegeractive
techniques’, ACM Press/Addison-Wesley Publishing Co., NewkYNY, USA,
pp. 183-192.

Bruderlin, A. & Williams, L. (1995), Motion signal procesginin ‘SIGGRAPH
'95: Proceedings of the 22nd annual conference on Compugghgs and
interactive techniques’, ACM, New York, NY, USA, pp. 97-104.

Carmel, D. & Markovitch, S. (1996), Learning and using oppudnmaodels in ad-
versary search, Technical Report CIS9609, Technion.
URL: http://mwww.cs.technion.ac.il/ shaulm/paper /pdf/Carmel-Mar kovitch-
C10609.pdf

Chai, J. & Hodgins, J. K. (2005), Performance animation from-timensional
control signalsjn ‘SIGGRAPH '05: ACM SIGGRAPH 2005 Papers’, ACM,
New York, NY, USA, pp. 686—696.

Chiu, B., Zordan, V. & Wu, C.-C. (2007), State-annotated motioapQgs,in
‘VRST '07: Proceedings of the 2007 ACM symposium on Virtuallitgasoft-
ware and technology’, ACM, New York, NY, USA, pp. 73-76.

Choi, M. G,, Lee, J. & Shin, S. Y. (2003), ‘Planning biped loaation using mo-
tion capture data and probabilistic roadmapg&€M Trans. Graph. 22(2), 182—
203.

Bibliography 125

Cooper, S., Hertzmann, A. & PopayiZ. (2007), ‘Active learning for real-time
motion controllers’ ACM Trans. Graph. 26(3), 5.

Coros, S., Beaudoin, P., Yin, K. K. & van de Pann, M. (2008), Bgsis of con-
strained walking skillsin ‘SIGGRAPH Asia'08: ACM SIGGRAPH Asia 2008
papers’, ACM, New York, NY, USA, pp. 1-9.

Cortes, C. & Vapnik, V. (1995), Support-vector networks'Machine Learning’,
pp. 273-297.

da Silva, M., Abe, Y. & Popow, J. (2008), Interactive simulation of stylized hu-
man locomotionin ‘SIGGRAPH '08: ACM SIGGRAPH 2008 papers’, ACM,
New York, NY, USA, pp. 1-10.

Donkers, H. H. L. M. (2003), Nosce Hostem: Searching with Qmnt Models,
PhD thesis, Universteit Maastricht.

Donkers, H. H. L. M., Uiterwijk, J. W. H. M. & van den Herik, H. J2001),
‘Probabilistic opponent-model searchif. Sci. 1353-4), 123-149.

Donkers, J., van den Herik, H. J. & Uiterwijk, J. W. H. M. (200#robabilistic
opponent-model search in ban, ICEC’, pp. 409-419.

Esteves, C., Arechavaleta, G. & Laumond, J.-P. (2005), Mofitanning for
human-robot interaction in manipulation tasks,Mechatronics and Automa-
tion, 2005 IEEE International Conference’, Vol. 4, pp. 1766#1 Vol. 4.

Fang, A. C. & Pollard, N. S. (2003), ‘Efficient synthesis of gloally valid human
motion’, ACM Trans. Graph. 22(3), 417-426.

Feurtey, F. (2000), Simulating the collision avoidancedwitr of pedestrians,
Master’s thesis, University of Tokyo, Department of Eleaic Engineering.

Fishman, G. S. (1996Monte Carlo: Concepts, algorithms, and applications,
Springer Series in Operations Research, Springer-Verlag, York.

Flagg, M., Nakazawa, A., Zhang, Q., Kang, S. B., Ryu, Y. K., E$s& Rehg,
J. M. (2009), Human video texturas,‘I3D '09: Proceedings of the 2009 sym-
posium on Interactive 3D graphics and games’, ACM, New York, NSA,
pp. 199-206.

126 Bibliography

Fujimoto, Y., Obata, S. & Kawamura, A. (1998), Robust bipedkmg with ac-
tive interaction control between foot and ground Robotics and Automation,
1998. Proceedings. 1998 IEEE International Conferencevh’ 3, pp. 2030—
2035 vol.3.

Gleicher, M. (1997), Motion editing with spacetime constts, in ‘SI3D '97:
Proceedings of the 1997 symposium on Interactive 3D grah¢€M, New
York, NY, USA, pp. 139-f.

Gleicher, M. & Litwinowicz, P. (1998), ‘Constraint-based tiom adaptation’The
Journal of Visualization and Computer Animation 9(2), 65-94.

Gleicher, M., Shin, H. J., Kovar, L. & Jepsen, A. (2003), Stagether motion:
assembling run-time animationis, ‘13D '03: Proceedings of the 2003 sympo-
sium on Interactive 3D graphics’, ACM, New York, NY, USA, pB81-188.

Grochow, K., Martin, S. L., Hertzmann, A. & PopayiZ. (2004), Style-based in-
verse kinematicsn ‘SIGGRAPH '04: ACM SIGGRAPH 2004 Papers’, ACM,
New York, NY, USA, pp. 522-531.

Heck, R. & Gleicher, M. (2007), Parametric motion graghsi3D '07: Proceed-
ings of the 2007 symposium on Interactive 3D graphics andeggrACM, New
York, NY, USA, pp. 129-136.

Helbing, D., Farkas, I. & Vicsek, T. (2000), ‘Simulating dymical features of
escape panic.Nature 407(6803), 487—490.

Helbing, D. & Molnar, P. (1995), ‘Social force model for petiégan dynamics’,
Physical Review E 51, 4282.

Ho, E. S. L. & Komura, T. (2008), Planning tangling motions for humanoidls,
‘Humanoid '07: Proceedings of the IEEE-RAS 2009 Internagiddonference
on Humanoid Robots’.

Ho, E. S. L. & Komura, T. (2008), Wrestle alone: Creating tangled motions of
multiple avatars from individually captured motions,'PG '07: Proceedings
of the 15th Pacific Conference on Computer Graphics and Appits, IEEE
Computer Society, Washington, DC, USA, pp. 427-430.

Bibliography 127

Ho, E. S. L. & Komura, T. (2008), ‘Character motion synthesis by topology
coordinates’ Computer Graphics Forum 28(2), 299-308.

Ho, E. S. L. & Komura, T. (2008), ‘Indexing and retrieving motions of characters
in close contact’) EEE Transactions on Visualization and Computer Graphics
15(3), 481-492.

Hodgins, J. (9-11 Apr 1991), ‘Biped gait transitionBobotics and Automation,
1991. Proceedings., 1991 IEEE International Conference on pp. 2092—-2097
vol.3.

Hodgins, J. K., Wooten, W. L., Brogan, D. C. & O'Brien, J. F. (199nimating
human athleticsin ‘SIGGRAPH '95: Proceedings of the 22nd annual confer-
ence on Computer graphics and interactive techniques’, ACaily Mork, NY,
USA, pp. 71-78.

Hodgins, J. & Raibert, M. (Jun 1991), ‘Adjusting step lengtin fough terrain
locomotion’, Robotics and Automation, | EEE Transactions on 7(3), 289—-298.

Hsu, E., Pulli, K. & Popow, J. (2005), ‘Style translation for human motioACM
Trans. Graph. 24(3), 1082—-1089.

Igarashi, T., Moscovich, T. & Hughes, J. F. (2005), ‘As-tigis-possible shape
manipulation’, ACM Trans. Graph. 24(3), 1134-1141.

Ikemoto, L., Arikan, O. & Forsyth, D. (2005), Learning to ne&utonomously in
a hostile worldjn ‘SIGGRAPH '05: ACM SIGGRAPH 2005 Sketches’, ACM,
New York, NY, USA, p. 46.

Ikemoto, L., Arikan, O. & Forsyth, D. (2006), Knowing when pait your foot
down, in ‘13D '06: Proceedings of the 2006 symposium on Interactiz 3
graphics and games’, ACM, New York, NY, USA, pp. 49-53.

Ikemoto, L., Arikan, O. & Forsyth, D. (2007), Quick transitis with cached multi-
way blendsin ‘13D ’'07: Proceedings of the 2007 symposium on Interactie 3
graphics and games’, ACM, New York, NY, USA, pp. 145-151.

Jain, S., Ye, Y. & Liu, C. K. (2009), ‘Optimization-based iraetive motion syn-
thesis’,ACM Transaction on Graphics 28(1), 1-10.

128 Bibliography

Jain, T. & Liu, C. K. (2009), Interactive synthesis of humdrjext interactionin
‘SCA '09: Proceedings of the 2009 ACM SIGGRAPH/Eurographicssy-
sium on Computer animation’, ACM, New York, NY, USA.

James, D. L., Twigg, C. D., Cove, A. & Wang, R. Y. (2007), ‘Meshemble mo-
tion graphs: Data-driven mesh animation with constraj®d€M Trans. Graph.
26(4), 17.

Jingjing Meng, Junsong Yuan, M. H. & Wu, Y. (2008), Mining riisfrom huma
motion,in ‘EUROGRAPHICS '08: Proceedings of the 2008 Eurographics’.

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Yokoi, K Hirukawa, H.
(2002), A realtime pattern generator for biped walking,Robotics and Au-
tomation, 2002. Proceedings. ICRA '02. IEEE International f€mnce on’,
\Vol. 1, pp. 31-37 vol.1.

Kajita, S., Matsumoto, O. & Saigo, M. (2001), Real-time 3d kirad) pattern
generation for a biped robot with telescopic legs,Robotics and Automa-
tion, 2001. Proceedings 2001 ICRA. IEEE International Comfegeon’, \ol. 3,
pp. 2299-2306 vol.3.

Kajita, S., Yokoi, K., Saigo, M. & Tanie, K. (2001), Balanciaghumanoid robot
using backdrive concerned torque control and direct amgunmentum feed-
back,in ‘Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE In
ternational Conference on’, Vol. 4, pp. 3376-3382 vol.4.

Kim, M., Hyun, K. L., Kim, J. & Lee, J. (2009), ‘Synchronizedutti-character
motion editing’,ACM Trans. Graph. .

Komura, T., Ho, E. S. L. & Lau, R. W. H. (2005), ‘Animating reset motion using
momentum-based inverse kinematics: Motion capture amibvat, Comput.
Animat. Virtual Worlds 16(3-4), 213-223.

Komura, T., Leung, H., Kudoh, S. & Kuffner, J. (2005), A feadk controller
for biped humanoids that can counteract large perturbstouring gait,in
‘Robotics and Automation, 2005. ICRA 2005. Proceedings of 0@52EEE
International Conference on’, pp. 1989-1995.

Bibliography 129

Komura, T., Leung, H. & Kuffner, J. (2004), Animating reaetimotions for biped
locomotion,in ‘VRST ’'04: Proceedings of the ACM symposium on Virtual
reality software and technology’, ACM, New York, NY, USA, @g2-40.

Kovar, L. & Gleicher, M. (2003), Flexible automatic motiodehding with
registration curves,in ‘SCA '03: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation’, Enaolgics As-
sociation, Aire-la-Ville, Switzerland, Switzerland, pgj14—-224.

Kovar, L. & Gleicher, M. (2004), ‘Automated extraction andrameterization of
motions in large data setsACM Trans. Graph. 23(3), 559-568.

Kovar, L., Gleicher, M. & Pighin, F. H. (2002), ‘Motion graph ACM Trans.
Graph. 21(3), 473-482.

Kudoh, S. & Komura, T. (2003), C2 continuous gait-patternegation for biped
robots,in ‘Intelligent Robots and Systems, 2003. (IROS 2003). Praogsd
2003 IEEE/RSJ International Conference on’, Vol. 2, pp. 113%0 vol.2.

Kwon, T., Cho, Y.-S., Park, S. 1. & Shin, S. Y. (2008), ‘Two-chater motion anal-
ysis and synthesislEEE Transactions on Visualization and Computer Graph-
ics 14(3), 707-720.

Kwon, T., Lee, K. H., Lee, J. & Takahashi, S. (2008), Group iomotediting,
in ‘'SIGGRAPH '08: ACM SIGGRAPH 2008 papers’, ACM, New York, NY,
USA, pp. 1-8.

Kwon, T. & Shin, S. Y. (2005), Motion modeling for on-line lomotion syn-
thesis,in ‘SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation’, ACM, New York, NY, USA, pp-38.

Lai, Y.-C., Chenney, S. & Fan, S. (2005), Group motion graph'SCA '05: Pro-
ceedings of the 2005 ACM SIGGRAPH/Eurographics symposium ongiLer
animation’, ACM, New York, NY, USA, pp. 281-290.

Lau, M. & Kuffner, J. J. (2005), Behavior planning for chaeacanimation,in
‘SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographicsgg-
sium on Computer animation’, ACM, New York, NY, USA, pp. 271628

130 Bibliography

Lau, M. & Kuffner, J. J. (2006), Precomputed search treeanmhg for interac-
tive goal-driven animationin ‘SCA '06: Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics symposium on Computer animation’, Eaigics As-
sociation, Aire-la-Ville, Switzerland, Switzerland, #99-308.

LaValle, S. (1998), ‘Rapidly-exploring random trees: A newltfor path plan-
ning’.

LaValle, S. & Kuffner, J. (2000), ‘Rapidly-exploring randammees: Progress and
prospects’. In Workshop on the Algorithmic Foundations obBtics.

Lee, J., Chali, J., Reitsma, P. S. A., Hodgins, J. K. & Pollards N2002), ‘Interac-
tive control of avatars animated with human motion da®&M Trans. Graph.
21(3), 491-500.

Lee, J. & Lee, K. H. (2004), Precomputing avatar behaviomfltuman motion
data,in ‘SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics
symposium on Computer animation’, Eurographics Associatiare-la-Ville,
Switzerland, Switzerland, pp. 79-87.

Lee, J. & Lee, K. H. (2006), ‘Precomputing avatar behavionfrhuman motion
data’,Graph. Models 68(2), 158-174.

Lee, K. H., Choi, M. G., Hong, Q. & Lee, J. (2007), Group behaftiom video: a
data-driven approach to crowd simulatian,'SCA '07: Proceedings of the
2007 ACM SIGGRAPH/Eurographics symposium on Computer angnati
Eurographics Association, Aire-la-Ville, Switzerlandwi&erland, pp. 109—
118.

Lee, K. H., Choi, M. G. & Lee, J. (2006), ‘Motion patches: burilg blocks for vir-
tual environments annotated with motion datsCM Trans. Graph. 25(3), 898—
906.

Lerner, A., Chrysanthou, Y. & Lischinski, D. (2007), ‘Crowdg &le’,Com-
puter Graphics Forum (Proceedings of Eurographics) 26(3).

Li, Q., Takanishi, A. & Kato, I. (1992), Learning control obmpensative trunk
motion for biped walking robot based on zmp stability ciaer in ‘Intelligent
Robots and Systems, 1992., Proceedings of the 1992 |IEEE/RSdadtional
Conference on’, Vol. 1, pp. 597-603.

Bibliography 131

Liu, C. K., Hertzmann, A. & Popoj, Z. (2005), ‘Learning physics-based motion
style with nonlinear inverse optimizationACM Trans. Graph. 24(3), 1071—
1081.

Liu, C. K., Hertzmann, A. & Popow, Z. (2006), Composition of complex op-
timal multi-character motiongn ‘SCA '06: Proceedings of the 2006 ACM
SIGGRAPH/Eurographics symposium on Computer animationfpgaphics
Association, Aire-la-Ville, Switzerland, Switzerlandy [215-222.

Liu, C. K. & Popovic, Z. (2002), Synthesis of complex dynamic character motion
from simple animationsn ‘SIGGRAPH '02: Proceedings of the 29th annual
conference on Computer graphics and interactive techriigh@M, New York,

NY, USA, pp. 408—416.

Liu, Z., Gortler, S. J. & Cohen, M. F. (1994), Hierarchical spame control,
in ‘SIGGRAPH '94: Proceedings of the 21st annual conference angtier
graphics and interactive techniques’, ACM, New York, NY, U$#H. 35-42.

Lo, W.-Y. & Zwicker, M. (2008), ‘Real-time planning for paraterized human
motion’, ACM S GGRAPH / Eurographics Symposium on Computer Animation

Loscos, C., Marchal, D. & Meyer, A. (2003), Intuitive crowdHaiour in dense
urban environments using local laws, TPCG '03: Proceedings of the Theory
and Practice of Computer Graphics 2003’, IEEE Computer Sgdiéashing-
ton, DC, USA, p. 122.

Makar, R., Mahadevan, S. & Ghavamzadeh, M. (2001), Hiereatmulti-agent
reinforcement learningn ‘AGENTS '01: Proceedings of the fifth international
conference on Autonomous agents’, ACM, New York, NY, USA, pf6—253.

Marco da Silva, Yeuhi Abe, J. P. (2008), ‘Simulation of hunmaotion data
using short-horizon model-predictive controlComputer Graphics Forum
27(2), 371-380.

McCann, J. & Pollard, N. (2007), ‘Responsive characters frastion fragments’,
ACM Trans. Graph. 26(3), 6.

Ménardais, S., Kulpa, R., Multon, F. & Arnaldi, B. (2004), Syrathization for
dynamic blending of motiongn ‘SCA '04: Proceedings of the 2004 ACM

132 Bibliography

SIGGRAPH/Eurographics symposium on Computer animationfpgtaphics
Association, Aire-la-Ville, Switzerland, Switzerlandy.825-335.

Mitake, H., Asano, K., Aoki, T., Marc, S., Sato, M. & Hasegavi& (2009),
‘Physics-driven multi dimensional keyframe animation #otist-directable in-
teractive characterComputer Graphics Forum 28(2), 279-287.

Muico, U., Lee, Y., Popow, J. & Popowvt, Z. (2009), ‘Contact-aware nonlinear
control of dynamic charactersACM Transactions on Graphics 28(3).

Mukai, T. & Kuriyama, S. (2005), ‘Geostatistical motion enpolation’, ACM
Trans. Graph. 24(3), 1062-1070.

Musse, S. R., Babski, C., Capin, T. & Thalmann, D. (1998), Crowd etiodg)
in collaborative virtual environment& ‘VRST '98: Proceedings of the ACM
symposium on Virtual reality software and technology’, ACNew York, NY,
USA, pp. 115-123.

Musse, S. R. & Thalmann, D. (1997), A model of human crowd bemaGroup
inter-relationship and collision detection analysis,Proc. Workshop of Com-
puter Animation and Simulation of Eurographics97’, pp. 38—

Napoleon, Nakaura, S. & Sampei, M. (2002), Balance contralyais of hu-
manoid robot based on zmp feedback controlintelligent Robots and System,
2002. IEEE/RSJ International Conference on’, Vol. 3, pp. 28342 vol.3.

Nash, J. (1951), ‘Non-cooperative gamdsie Annals of Mathematics 54(2), 286—
295.
URL.: http://dx.doi.org/10.2307/1969529

Neumann, J. V. & Morgenstern, O. (1944heory of Games and Economic Be-
havior, Princeton University Press.
URL: http://jmvidal .cse.sc.edu/library/neumannd4a. pdf

Nishiwaki, K., Sugihara, T., Kagami, S., Inaba, M. & Inoue, (2001), On-
line mixture and connection of basic motions for humanoitkimg control by
footprint specificationin ‘Robotics and Automation, 2001. Proceedings 2001
ICRA. IEEE International Conference on’, Vol. 4, pp. 4110-4%&b4.

Bibliography 133

Oshita, M. & Makinouchi, A. (2001), ‘A dynamic motion contrechnique for
human-like articulated figuresGomputer Graphics Forum (EUROGRAPHICS
2001, Manchester, United Kingdom, September 2001), Vol. 20 20(3), 192—-202.

Park, S. I., Shin, H. J., Kim, T. H. & Shin, S. Y. (2004), ‘Omdé motion blend-
ing for real-time locomotion generation: Research articl€smput. Animat.
Virtual Worlds 15(3-4), 125-138.

Parr, R. & Russell, S. (1998), Reinforcement learning with dngnies of ma-
chines,in ‘NIPS '97. Proceedings of the 1997 conference on Advances in
neural information processing systems 10’, MIT Press, Caigbr MA, USA,
pp. 1043-1049.

Playter, R. & Raibert, M. (7-10 Jul 1992), ‘Control of a biped svsault in 3d’,
Intelligent Robots and Systems, 1992., Proceedings of the 1992 IEEE/RSJ In-
ternational Conference on 1, 582-589.

Popovt, Z. & Witkin, A. (1999), Physically based motion transfation, in
‘SIGGRAPH '99: Proceedings of the 26th annual conference omgioer
graphics and interactive techniques’, ACM Press/Addisasiy Publishing
Co., New York, NY, USA, pp. 11-20.

Raibert, M. H. & Hodgins, J. K. (1991), ‘Animation of dynamiegged locomo-
tion’, SGGRAPH Comput. Graph. 25(4), 349-358.

Reitsma, P. S. A. & Pollard, N. S. (2004), Evaluating motiorapyrs for
character navigationin ‘SCA '04: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation’, Enaqolgjcs As-
sociation, Aire-la-Ville, Switzerland, Switzerland, [9-98.

Reitsma, P. S. A. & Pollard, N. S. (2007), ‘Evaluating motisaghs for character
animation’,ACM Trans. Graph. 26(4), 18.

Reynolds, C. (1999), Steering behaviors for autonomous ctesin ‘Game
Developers Conference 1999'.

Reynolds, C. W. (1987), ‘Flocks, herds and schools: A distedubehavioral
model’, SGGRAPH Comput. Graph. 21(4), 25-34.

134 Bibliography

Riley, P. F. & Veloso, M. M. (2006), ‘Coach planning with oppomenod-
els for distributed execution’Autonomous Agents and Multi-Agent Systems
13(3), 293-325.

Rose, C., Guenter, B., Bodenheimer, B. & Cohen, M. F. (1996), Efficien-
eration of motion transitions using spacetime constraintSIGGRAPH '96:
Proceedings of the 23rd annual conference on Computer gsaphd interac-
tive techniques’, ACM, New York, NY, USA, pp. 147-154.

Rummery, G. A. & Niranjan, M. (1994), On-line Q-learning ugiconnectionist
systems, Technical Report CUED/F-INFENG/TR 166, Cambridgavessity
Engineering Department.

Safonova, A. & Hodgins, J. K. (2007), Construction and optisgarch of inter-
polated motion graphsn ‘SIGGRAPH '07: ACM SIGGRAPH 2007 papers’,
ACM, New York, NY, USA, p. 106.

Safonova, A. & Hodgins, J. K. (2008), ‘Synthesizing humartiorofrom intuitive
constraints’ Sudiesin Computational Intelligence 159/2008 15-39.

Safonova, A., Hodgins, J. K. & Pollard, N. S. (2004), Synthieg physically
realistic human motion in low-dimensional, behavior-spespacesjn ‘SIG-
GRAPH '04: ACM SIGGRAPH 2004 Papers’, ACM, New York, NY, USA,
pp. 514-521.

Sang Il Park, Taesoo Kwon, H. J. S. & Shin, S. Y. (2004), ‘As&yand synthesis
of interactive two-character motions’.

Shannon, C. E. (1988), ‘Programming a computer for playiressh pp. 2—13.

Shapiro, A., Kallmann, M. & Faloutsos, P. (2007), Interaéetmotion correction
and object manipulationn ‘13D '07: Proceedings of the 2007 symposium on
Interactive 3D graphics and games’, ACM, New York, NY, USA, pp7-144.

Shen, J., Gu, G. & Liu, H. (2006), Multi-agent hierarchicainforcement learn-
ing by integrating options into maxm ‘IMSCCS '06: Proceedings of the First
International Multi-Symposiums on Computer and Computaidciences -
Volume 1 (IMSCCS’06)’, IEEE Computer Society, Washington, DGGA)
pp. 676—682.

Bibliography 135

Shin, H. J. & Oh, H. S. (2006), Fat graphs: constructing aeratdtive character
with continuous controlsin ‘SCA '06: Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics symposium on Computer animation’, Enalgics As-
sociation, Aire-la-Ville, Switzerland, Switzerland, #91-298.

Shiratori, T. & Hodgins, J. K. (2008), Accelerometer-basedr interfaces for the
control of a physically simulated characten,‘'SIGGRAPH Asia '08: ACM
SIGGRAPH Asia 2008 papers’, ACM, New York, NY, USA, pp. 1-9.

Smith, R. (2008), ‘Open dynamics engine’. http://www.odg/o
URL: http://www.ode.org/

Sok, K. W,, Kim, M. & Lee, J. (2007), Simulating biped behagdrom human
motion datajn ‘SIGGRAPH '07: ACM SIGGRAPH 2007 papers’, ACM, New
York, NY, USA, p. 107.

Solan, E. & Vieille, N. (2010), ‘Computing uniformly optimatrategies in two-
player stochastic gamegconomic Theory 42(1), 237-253.
URL.: http://ideas.repec.org/a/spr/joecth/v42y2010i 1p237-253.htm

Stolle, M. & Precup, D. (2002), Learning options in reinfencent learningin
‘Proceedings of the 5th International Symposium on Absima¢c Reformula-
tion and Approximation’, Springer-Verlag, London, UK, [#1.2—-223.

Sung, M., Gleicher, M. & Chenney, S. (2004), ‘Scalable betvaior crowd sim-
ulation’.

Sutton, R. S. & Barto, A. G. (1998Reinforcement Learning: An Introduction,
MIT Press, Cambridge, MA, USA.

Takahashi, S., Yoshida, K., Kwon, T., Lee, K. H., Lee, J. &15l%. Y. (2009),
‘Spectral-based group formation controComput. Graph. Forum 28(2), 639—
648.

Thore Graepel, Ralf Herbrich, J. G. (2004), Learning to fight,Proceedings
of the International Conference on Computer Games: Atrtificigdlligence,
Design and Educatio’.

Treuille, A., Cooper, S. & Popogj Z. (2006), ‘Continuum crowdsACM Trans.
Graph. 25(3), 1160-1168.

136 Bibliography

Treuille, A., Lee, Y. & Popow, Z. (2007), ‘Near-optimal character animation with
continuous control’ACM Trans. Graph. 26(3), 7.

Tsai, Y.-Y,, Lin, W.-C., Cheng, K. B., Lee, J. & Lee, T.-Y. (2009Real-
time physics-based 3d biped character animation using\emtéd pendulum
model’, IEEE Transactions on Visualization and Computer Graphics.

Van De Panne, M. (Mar 1996), ‘Parameterized gait synthgSahputer Graphics
and Applications, |EEE 16(2), 40—49.

Wan-Yen Lo, M. Z. (2008), Real-time planning for parametedihuman motion,
in‘SCA '08: Proceedings of the 2008 ACM SIGGRAPH/Eurographiaagy-
sium on Computer animation’.

Wang, J. & Bodenheimer, B. (2003), An evaluation of a cost roétni selecting
transitions between motion segments,SCA '03: Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on Computer animati&uiro-
graphics Association, Aire-la-Ville, Switzerland, Svatiand, pp. 232-238.

Watkins, C. J. C. H. (1989), Learning from Delayed Rewards, Rt&E3is, King's
College, Cambridge, UK.

Witkin, A. & Kass, M. (1988), Spacetime constrainis, SIGGRAPH '88: Pro-
ceedings of the 15th annual conference on Computer graphecegeractive
techniques’, ACM, New York, NY, USA, pp. 159-168.

Yamane, K. & Nakamura, Y. (2000), Dynamics filter: Concept andlementa-
tion of online motion generator for human figuras|ICRA: Proceedings of the
IEEE International Conference on Robotics and Automatiot, Mppp. 688—
694.

Ye, Y. & Liu, C. K. (2008), ‘Animating responsive characterglwdynamic con-
straints in near-unactuated coordinaté&€M Trans. Graph. 27(5), 1-5.

Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D. &, L.
(2008), Composite agents) ‘SCA '08: Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics symposium on Computer animation’, ACM.

Yersin, B., Mam, J., Pette, J. & Thalmann, D. (2009), Crowd patches: popu-
lating large-scale virtual environments for real-time laggiions,in ‘13D "09:

Bibliography 137

Proceedings of the 2009 symposium on Interactive 3D grapdacl games’,
ACM, New York, NY, USA, pp. 207-214.

Yin, K., Loken, K. & van de Panne, M. (2007), ‘Simbicon: Sirafiped locomo-
tion control’, ACM Trans. Graph. 26(3), Article 105.

Zhao, L. & Safonova, A. (2008), Achieving good connectivitymotion graphs,
in ‘Proceedings of the 2008 ACM/Eurographics Symposium on CaengAn-
imation’.

Zordan, V. B. & Hodgins, J. K. (2002), Motion capture-driveimslations
that hit and react,in ‘SCA '02: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation’, ACMyNerk,
NY, USA, pp. 89-96.

Zordan, V. B., Majkowska, A., Chiu, B. & Fast, M. (2005), ‘Dynamiesponse
for motion capture animationACM Trans. Graph. 24(3), 697-701.

Zordan, V., Macchietto, A., Medin, J., Soriano, M., Wu, C.-Bletoyer, R. &
Rose, R. (2007), Anticipation from exampia,'VRST '07: Proceedings of the
2007 ACM symposium on Virtual reality software and technglpgCM, New
York, NY, USA, pp. 81-84.

	Introduction
	Demands for Character Interactions
	Problems Definition and Methodology Overview
	Simulating Interactions from Singly Captured Motions
	Precomputing Interactions for Real-Time Applications
	Simulating the Interactions for a Crowd

	Thesis Structure
	Summary

	Related Works
	Physical Simulation Approaches
	Proportional-Derivative Controller
	Inverse Dynamics
	Spacetime Constraints

	Data-Driven Motion Synthesis
	Motion Interpolation
	Motion Rearrangement

	Motion Planning For Interactions
	Crowd Simulation
	Response System
	Statistical Analysis
	Optimization Based Approaches
	Topology Based Approaches

	Summary

	Data Preparation
	Motion Capture and Motion Segmentation
	Supporting Feet Patterns
	Action Level Motion Graph
	Action Combination Table
	Summary

	Temporal Tree Expansion
	Contributions in This Chapter
	Outline of the Method
	Multi-modal Character Control
	Game Tree Expansion
	Evaluating Competitiveness and Cooperativeness
	Pruning Non-Plausible Choices

	Objective Functions
	Competitive Function
	Cooperative Function

	Experimental Result
	Kick Boxing
	Chasing and Running Away

	Discussions
	Action Evaluation
	Game Theory Related
	Usage Complexity
	Limitations
	Computational Cost

	Summary

	Interaction Graph
	Contributions in This Chapter
	Outline of the Method
	Sampling the State Space
	State Representation
	Data Sampling

	Interaction Graph
	Creating States of Coupled Actions
	Creating the Edges of the Interaction Graph
	Search on the Interaction Graph

	Experimental Results
	Competitive Interactions: Kick Boxing
	Collaborative Interactions: Carrying Luggage

	Discussions
	State Sampling
	Action Evaluation and Selection
	Game Theory Related
	Comparison to Reinforcement Learning
	Usage Complexity
	Possible Extensions

	Summary

	Interaction Patches
	Contributions in This Chapter
	Outline of Method
	Interaction Patches
	Preprocessing Motion Data
	Composing Interaction Patches
	Evaluating the Interactions
	Computational Efficiency

	Connecting Interaction Patches
	Temporal Concatenation of Interaction Patches
	Spatial Concatenation of Interaction Patches

	Scene Composition
	Selecting Patches
	Concatenating Interactions
	Recycling Characters

	Experimental Results
	Scenes Generated By Concatenating Interaction Patches
	Scenes Where Characters Are Recycled
	Computational Costs

	Discussions
	Patches Creation
	Scene Generation and Controllability
	Usage Complexity
	Comparisons On Different Control Systems
	Limitations

	Summary

	Conclusions
	Summary of Contributions
	Future Research Directions
	Group Interactions
	Intuitive User Interfaces
	Hierarchical Character Controller
	Run-time Learning
	Interaction Adjustment

	Publications
	Commercialization

	Runtime Synthesis
	Character and World Modeling
	Soft Posture Constraints
	Hard Posture Constraints
	Posture Solver
	Summary

	Bibliography

