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Abstract

In this thesis, we attack a challenging problem in the field ofcharacter animation:

synthesizing interactions among multiple virtual characters in real-time. Although

there are heavy demands in the gaming and animation industries, no systemic

solution has been proposed due to the difficulties to model the complex behaviors

of the characters.

We represent the continuous interactions among charactersas a discrete Markov

Decision Process, and design a general objective function to evaluate the immedi-

ate rewards of launching an action. By applying game theory such as tree expan-

sion and min-max search, the optimal actions that benefit thecharacter the most in

the future are selected. The simulated characters can interact competitively while

achieving the requests from animators cooperatively.

Since the interactions between two characters depend on a lot of criteria, it is

difficult to exhaustively precompute the optimal actions for all variations of these

criteria. We design an off-policy approach that samples andprecomputes only

meaningful interactions. With the precomputed policy, theoptimal movements

under different situations can be evaluated in real-time.

To simulate the interactions for a large number of characters with minimal

computational overhead, we propose a method to precompute short durations of

interactions between two characters as connectable patches. The patches are con-

catenated spatially to generate interactions with multiple characters, and tempo-

rally to generate longer interactions. Based on the optionalinstructions given by

the animators, our system automatically applies concatenations to create a huge

scene of interacting crowd.

We demonstrate our system by creating scenes with high quality interactions.

On one hand, our algorithm can automatically generate artistic scenes of interac-

tions such as the fighting scenes in movies that involve hundreds of characters. On

the other hand, it can create controllable, intelligent characters that interact with

the opponents for real-time applications such as 3D computer games.
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Chapter 1

Introduction

Character animation has become a popular research area due tothe demands in

the gaming and movie industries. For examples, three dimensional cartoons like

“Monster, Inc.” and “The Incredibles” use a lot of human-like characters to carry

out the story line. It is very common for these characters to interact with the

environments or even with other characters in the movie. While the audience focus

a lot on funny character models and realistic rendering effects, the movements

of the characters, especially the interactions among them,give the souls to the

character and implicitly catch the attention of the audience. Imagine watching

“The Incredibles” or ”The Lord of the Rings” without any fighting scenes. The

movies would become uninteresting and monotonic.

Although interactions among characters are popular, the industries still rely on

systems that require heavy manual works, making the production of such scenes

time consuming and costly. Recent researches propose a lot ofalgorithms to syn-

thesize the movements of a single character, but only a few ofthem focus on the

problem of the interactions among multiple characters because of the complexity

of the problems. In this chapter, we briefly review some of thetechnologies used in

producing character animations, and point out why it is difficult to generate inter-

actions among multiple characters. We will then suggest thethree major problems

we are going to solve in this thesis, and give an overview on our researches.

1.1 Demands for Character Interactions

In movies like “Final Fantasy: The Spirits Within” and “The Polar Express”, we

can see a lot of high quality human characters. A key aspect togenerate high qual-

1



2 Chapter 1. Introduction

ity animations is the movements of the characters. For example, when a character

is interacting with the environment, such as sitting on a chair in a moving train, the

movements of the body must be natural and obey the laws of physics. Although it

is possible to manually design the movements of the characters, which is known

as keyframe animation, it requires skilled animators to create natural and realis-

tic motions. Therefore, in the movies stated above, motion capture techniques

are used. Instead of creating motions using mouse and keyboard, the animator

capture the movements using three dimensional motion capturing devices. The

motion data are then imported to computer graphics softwareand rendered with

character models. The major advantage of applying motion capturing techniques

to create character animations is that the motion are alwaysnatural as they are

performed by real human. Furthermore, the intrinsic physical rules are always sat-

isfied. For example, we can capture an actor lifting a heavy object and use them

to control characters in a movie. We will find that the character keeps the body

balanced when lifting since the motions are captured.

The interaction among characters is one of the most important movements in

a scene. In games like “NBA Live” and “Winning Eleven”, players enjoys con-

trolling characters to fight with or play sports games with computer controlled

characters. In movies, high quality fighting scenes like those in “300” always

catch the attention of the audience. Although motion capturing is effective to gen-

erate realistic human motions, it is still a relatively new technique and has a lot

of limitations. One major problem is the difficulty to capture several actors in-

teracting with each other at the same time. If we use the popular optical motion

capture system, the actors will be occluded from the cameras, and hence parts of

the body segments will not be captured. On the other hand, if we use magnetic or

mechanical motion capture system, the actors need to wear bulky and heavy de-

vices on their bodies, which will seriously affect their interactions. Furthermore,

dense interactions such as fighting have a high chance to damage the capturing

devices. Therefore, instead of capturing the motion data and displaying them di-

rectly, people try to reuse the movements captured by a single character. A typical

approach is to create a motion database containing short motion clips captured by

a single character. Then, the animators give high level instructions for creating the

scene, and the system plan the motions of the characters suchthat they move as if

they are interacting with each other.

There are some researches on generating intelligent characters to achieve high
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level goals automatically, such as running around based on the animators’ design.

However, few of them can generate characters that interact with other characters.

The reason is that when creating a single character to explore or interact with an

environment, everything is static except the character itself, and hence planning

can be easily done. Once the planning is finished, the character simply carries out

the plan since nothing unexpected would happen. However, when we wish two

characters interacting with each other, both of them are dynamic to the opponent

and would move around. Planning becomes more complex since we need to take

into account the movement of the opponents. Due to such complexity, the interac-

tions we can find in games are usually in low quality, while those in movies rely

a lot on manual designs. A system that can automatically simulate high quality

interactions is needed.

There are several important requirements for a good interaction simulation

system. First, high quality interactions require intelligent characters that interact

with their opponents as if they are real humans. For example,in the fighting scene

of “The Matrix”, characters are not simply standing still and being hit. Instead,

they avoid opponents’ punches and counter attack. To simulate high quality com-

pletive interactions, each character has to acts as an individual and plan for its

own benefits in order to be “smart”. Second, real-time applications like computer

games require the simulation to be completed with minimal computational cost.

In games like “Tekken”, the players control their characters to fight with computer

controlled characters in real-time. While there are faster processors and better

graphics cards, we need better algorithms to finish the processes in such a short

time limit. Third, recent computer animations tend to use a huge number of char-

acters in the scene. In movies like “The Lord of the Rings”, there are thousands

of background characters fighting with each other. In such scenes, we wish each

character to interact with several of its neighbors at once with minimal manual

processing. Current researches lack a framework to handle such kind of crowd

interactions due to the large amount of information that needs to be considered. In

this thesis, we will propose new algorithms to address theserequirements.

In general, the technology we have to generate scenes of interactions among

multiple characters is far behind from what we need in the industries. The reason

of such lack of researches is due to the difficulty and complexity to control the

characters when they are interacting with each other. This thesis proposes a com-

plete framework to solve the problem, and hence generate high quality scenes up
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to the industrial standards.

1.2 Problems Definition and Methodology Overview

In this section, we define the three major problems we are going to solve in this

thesis, and give an overview of our methodology to tackle theproblems.

1.2.1 Simulating Interactions from Singly Captured Motions

While interactions are the key elements to create high quality character anima-

tions, it is difficult to produce such animations by keyframing because the move-

ments of a character would affect another. Also, capturing multiple characters in-

teracting with each other with motion capturing devices is almost impossible due

to the limitation of the technologies. We need an algorithm to produce scene of

dense interactions effectively by capturing the motion of asingle actor only. The

characters must behave intelligently as if they are real humans, and the animator

should be able to control the scenes.

1.2.1.1 Our Method

We first capture the motions of a single actor for easy and effective capturing. The

captured motions are rendered during run-time with virtualcharacters. We prefer

to capture long sequence of motions to preserve the naturalness of the motions.

Then, we segment the motions automatically into semantic actions, which are

used as entities during the interaction synthesis processes. When displaying the

actions, instead of simply displaying them in the order of capturing, we can reorder

them to create different behaviors. For example, for a set ofboxing actions, we

can reorganize the actions such that the character alternatively punches and kicks.

Furthermore, we can create two characters and tell them to perform a series of

actions such that they appear to be interacting. Hence, the problem to simulate

interactions can be considered as the problem to find out the right combination of

actions for the two characters. More details can be found in Chapter3.

A smart character interacting with its opponents must not simply perform the

actions that cause the best immediate benefit. Rather, it should make careful plan

and select the actions that benefit itself the most in the future. For example, during

boxing, a simple attack may cause minimal benefit as it will beblocked easily by
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the opponent. Instead, it may be wiser to wait for the opponent to punch first,

avoid such a punch and counter attack while the opponent’s arms are unable to

defence. To implement such intelligent, we apply artificialintelligence algorithms

used to simulate computer players in chess games. We design an algorithm called

temporal tree expansion, which uses the concept of game treeto evaluate the long

term benefits of performing an action. With the game tree, we predict the future

states of interactions after launching the possible choices of actions. We also pre-

dict what actions the opponent may perform to counteract in the future, assuming

that the opponent tries to perform the best actions. By this way, we can select

the actions that benefit the character the most in the future considering the possi-

ble reactions from the opponent. The game tree expansion approach can simulate

realistic interactions such as fighting and chasing among a few characters. By

changing the way to evaluate the benefits, we can adjust the behaviors of the char-

acters, such as simulating a character that wish to run away from its opponent. We

can simulate smarter characters that consider the further future, and less intelligent

characters that consider only immediate benefits, by adjusting the size of the game

tree. To control the movements of the characters, the animator can give high level

commands that are evaluated during the tree expansion process. More details can

be found in Chapter4.

1.2.2 Precomputing Interactions for Real-Time Applicatio ns

Real-time applications like computer games, similar to movies, often involve char-

acter interactions. There are tons of fighting games and sport games that require

dense interactions of multiple characters. The major focusof character interac-

tions in games, apart from motion quality, is the computational cost. Since the

characters in games must act in real-time, it is challengingto simulate high qual-

ity interactions in such a short time limit. We wish to dramatically decrease the

computational cost for simulating interactions between two characters. Although

simplifying the problem and creating interactions of lowerquality may be a so-

lution, we believe that it is possible to generate high quality interactions even in

real-time by applying precomputation techniques.
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1.2.2.1 Our Method

While the game tree approach can simulate high quality interactions, the most crit-

ical problem is that it is very computational costly. Simulating a few seconds of

interactions would take several minutes. Thus, it cannot beapplied in real-time

applications like computer games. In most simulation systems, the optimal choice

of actions depends on limited criteria, such as the distancebetween the two char-

acters, their relative orientations, and the actions performing by them. In theory, it

is possible to list out all the possible variations of these criteria, which are known

as states, and precompute the optimal actions for each of them. However, there

are too many states and precomputing them all will require anunreasonably long

time and large memory. Fortunately, we find that although there are a lot of states,

the characters mostly stay in a small subset of these states during interactions. For

example, during fighting, the characters always stay in a preferred distance with

respect to the opponent, and face the enemy during punches and kicks in order to

hit the opponent. Hence, we can simply precompute the optimal actions for such

small number of states that are relevant to the interactions. We propose a method

to sample the useful states by evaluating their quality withrespect to interactions.

Then, we design a finite state machine called the InteractionGraph to organize

the states, and hence precompute the optimal actions for each of them. With our

method, high quality interactions can be simulated in real-time. Furthermore, the

user can give high level control commands like those in computer games during

run-time, and the system can select the optimal actions based on precomputed

results immediately. More details can be found in Chapter5.

1.2.3 Simulating the Interactions for a Crowd

We find that there is an increasing trend to use a huge number ofcharacters in

a scene like wars in the animation industry. In such scenes, there are two re-

quirements. First, the characters must not only interact with a single opponent.

Rather, we wish to see scenes in which multiple characters interacting at the same

time. However, due to the complexity of interactions, it is very difficult to gen-

erate high quality interactions involving many characters. Second, computational

cost to generate such interactions must be small, because weneed to generate the

interactions for tens or even hundreds of characters. We wish to have a system that

can generate interactions within a crowd effectively.
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1.2.3.1 Our Method

Although the Interaction Graph can simulate high quality interactions in real-time,

due to the limitation in the complexity of the states, we can only simulate two char-

acters interacting with each other. Even if we put many characters into the scene,

they will only interact with one opponent at a time. This kindof one-to-one inter-

action will appear to be monotonic and unrealistic. Furthermore, the Interaction

Graph generates a lot of nodes and edges, making it difficult to control the qual-

ity of the interactions and manually authoring the graph. Wepropose a method

to combine one-to-one interactions to form many-to-many interactions for a large

number of characters. First, we generate short duration of interactions between

two characters using the temporal tree expansion approach and store the results

in a structure called the Interaction Patch. We define a standard interfaces for the

patches such that they can be concatenated to form longer interactions and inter-

actions that involve more characters. During run-time, with a set of precomputed

Interaction Patches, our system plan the best way to concatenate the patches with

reference to optional users’ preferences. The computational cost for concatenating

the patches is very small, and hence we can simulate a scene with tens to hundreds

of characters interacting with each other in real-time. We simulated scenes of

crowd fighting, falling onto each other like dominos, playing American football,

and helping each other to carry luggage. More details can be found in Chapter6.

1.3 Thesis Structure

The structure of this thesis is as follows. First, we review the related researches

in the field of character animations, and highlight those focusing on the inter-

actions among characters in Chapter2. We point out that there is a lack of re-

searches on high-quality dense interactions. We then explain our methodology

to capture motions from a single actor and simulate the interactions for multiple

characters. We first talk about the processes to capture and process the motion

data in Chapter3. Then, we explain the framework to simulate dense interactions

using artificial intelligence techniques called temporal tree expansion in Chapter

4. Although temporal tree expansion method can generate highquality interac-

tions, it is computational costly and is not suitable for real-time processes. Thus,

we propose a framework to precompute the interaction information into a data for-
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mat called Interaction Graph in Chapter5. Since the Interaction Graph can only

generate one-to-one interactions, we propose the Interaction Patches that represent

the interactions of two characters in a short duration in Chapter6. The Interaction

Patches can be precomptued and combined during run-time to create a huge scene

of crowd interactions in real-time. Finally, we conclude the whole thesis in Chap-

ter 7. AppendixA includes further information on fine tuning the movements of

the characters and rendering them in the scene.

1.4 Summary

High quality interactions for multiple characters are important aspects in the movie

and gaming industries. However, there is a lack of research due to the complexity

of the problem. We indicated that the requirements of the research area can be

divided into three problems. First, we have to simulate realistic interactions among

characters. Second, the process has to be made real-time to suit the needs of

computer games. Finally, we need a mechanism to create crowdinteractions that

involve tens to hundreds of characters. We gave an overview on the methodology

we proposed. We proposed three ideas to deal with the problems, namely the

temporal tree expansion, the Interaction Graph and the Interaction Patches. In the

following chapters we will go into details for each of the ideas.



Chapter 2

Related Works

Motion synthesis has become one of the major research areas in computer graph-

ics, robotics and biomechanics. Driven by the demand of computer games and

movies, the field evolved rapidly in the past decade.

There are two main streams of techniques to simulate motions. On one hand,

physical simulations, which are based on dynamics, model the motions with phys-

ical parameters such as force and angular momentum. Such simulations play a

key role in controlling robots and analyzing human movements, mainly due to

their accurate simulations of control forces. However, they are in general com-

putational costly and are unable to guarantee realistic motions. More discussion

can be found in Section2.1. On the other hand, data-driven approaches, which

are mainly based on kinematics, generate new motions with raw captured motions

from motion capture system. Because human performed movements are used,

it can simulate realistic motions with minimal computation. However, since the

internal dynamics are not captured, the motions cannot be adapted to different en-

vironments nor react to external perturbations. Section2.2explains in details how

data-driven approaches work.

While both streams of approaches can model and simulate the motion of a

single character, it is unclear how these algorithms can be extended to model mul-

tiple interacting characters. In recent years, there are some new approaches to

analyze the nature of interactions and apply them to controlvirtual characters.

Most of these researches, however, can only produce limitedinteractions among

characters, such as collision avoidance during walking. For those that can sim-

ulate denser interactions, they usually suffer from the complexity of interactions

and produce only sub-optimal results. More information is available in Section

9



10 Chapter 2. Related Works

2.3.

2.1 Physical Simulation Approaches

There are two major advantages of physical simulation approaches. First, with a

well defined physical model, they guarantee the physical correctness of the motion

generated. This is important to generate control signals inrobotics and evaluate

human motions for medical or biological concerns. Second, because the motions

are simulated based on dynamics, it is possible to adjust themotions by adding ex-

ternal perturbations to the characters. In computer games,characters are expected

to react to dynamic environment and external forces. Physical simulations provide

an excellent framework to simulate such behaviors.

We will discuss three popular areas of physical simulationsin character ani-

mations. The proportional-derivative (Section2.1.1) controller approximates the

control signal as a weighted combination of errors. It is fast and effective to sim-

ulate simple human motions. Inverse dynamics (Section2.1.2) is used to calcu-

late the control forces required to perform a predefined motion. Once the control

forces are optimized, the controller becomes independent to the reference motion.

Spacetime constraints (Section2.1.3) solve the body motions with multiple con-

straints by optimizing a set of objective functions, and guarantee the stability and

optimality of the synthesized motion.

2.1.1 Proportional-Derivative Controller

Forward dynamics has been used extensively for gait simulations [Raibert & Hodgins

(1991), Van De Panne(Mar 1996), Liu & Popović (2002)]. One of the popular im-

plementations of these systems is the proportional-derivative (PD) controller. In

PD control, the joint torque required is determined by comparing the current joint

angle and angular velocity to that of the desired posture:

τ = kp(θ−θd)+ kd(θ′−θ′d) (2.1)

whereτ is the torque applied to the joint,θ andθ′ are the joint rotation and angular

velocity respectively,θd andθ′d are the target joint rotation and angular velocity

respectively.kp is called the proportional gain, which governs the responserate,

andkd is the derivative gain, which is used to reduce overshoot. With PD con-
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troller, one can simulate the torque required for a character to perform different

motions.

The PD control system can be extended further to simulate walk-to-run and

run-to-walk transition [Hodgins(9-11 Apr 1991), Shiratori & Hodgins(2008)], as

well as walking with different step length [Hodgins & Raibert(Jun 1991)]. Usu-

ally a finite state machine is used to connect multiple PD controllers and handle

the transition between controllers. Apart from locomotion, athletic motions such

as cycling and handspring vaulting [Hodgins et al.(1995)], and somersault motion

[Playter & Raibert(7-10 Jul 1992)] are generated. Such systems require a certain

amount of manual design to generate different types of motions. PD control is also

suitable to generate responsive motions such as the fallingback motions when one

is being pushed [Zordan & Hodgins(2002)]. Since generating realistic full body

motions require carefully designed dynamics systems, it isproposed to control

characters by simply tracking captured human movements, such that the move-

ments can react to external forces [Abe & Popovíc (2006)]. For speeding up the

simulations, simplified polygons model can be used to represent the characters

with high degrees of freedom [Mitake et al.(2009)].

One problem of PD control is that the system overpowers the natural dynamics

of the object. This is because the forces applied by PD control are not optimized,

and tend to be larger than required. Recently, the gentle forces are proposed to

control fluids and deformable solids with optimal precomputed gain for each time

step [Barbǐc & Popovíc (2008)]. However, it is not confirmed if such an approach

works well when applied to human body with high degrees of freedom.

2.1.2 Inverse Dynamics

When controlling characters in a physical environment, we need to calculate the

control forces or torques to perform different actions. Oneapproach is capturing

the actions and applying PD control to estimate the control forces to be applied.

However, systems based only on such feedback forces are usually unstable due to

the high gains required. Instead, the control torques can becomputed by inverse

dynamics and applied in a feed-forward system to minimize touses of feedback

controls [Yin et al. (2007), Oshita & Makinouchi(2001)].

Quadratic programming is proposed to solve the torque optimization problem

for simplified walking characters [da Silva et al.(2008)]. Although such optimiza-
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tion is computational costly given the high degree of freedom for a human body,

it can be solved in real-time by considering only short horizon, and hence gen-

erate an interactive system [Marco da Silva(2008)]. Alternatively, optimizations

in high dimensional space can be solved in a properly reducedlow-dimensional

space for faster and more robust results [Barbǐc et al.(2009)]. With a combined

force and torque controller, realistic motion to restore balance when standing can

be simulated [Adriano Macchietto(2009)]. By training a higher level controller

based on stepping pattern, locomotion that satisfies different stepping constraints

can be generated [Coros et al.(2008)]. One may also combine controller trained

with different source motions to create a controllable character that is capable of

balancing from external forces and switching locomotion styles [Sok et al.(2007),

Tsai et al.(2009)].

2.1.3 Spacetime Constraints

Although frame-based motion editing methods such as PD control can generate

control signals, they may result in unstable motions with jittery movements. In

contrast, spacetime constraints [Witkin & Kass(1988)] are introduced to optimize

a motion segment in a given duration. When using the method, animators spec-

ify multiple constraints, which are usually represented asa set of keyframe pos-

tures, and apply a solver to compute the optimal control torques by minimizing

a predefined objective function based on dynamics. With spacetime constraints,

realistic motion like running and jumping can be generated [Popovíc & Witkin

(1999), Liu & Popović (2002), Liu et al. (2005)]. By applying non-linear con-

trollers to plan through contact state changes, agile locomotion can be generated

[Muico et al.(2009)]. The method is also used to generate transitions between mo-

tion segments [Rose et al.(1996)], and adapt previously created motions to new

situations and characters [Gleicher & Litwinowicz(1998)].

Although spacetime constraints can simulate stable and realistic motions, they

are very computationally costly due to the nonlinearity of the objective functions

used during the optimization stage. Work has been done to enhance the per-

formance by introducing hierarchical structure to the solver [Liu et al. (1994)],

and simplifying the system to a linear time process [Fang & Pollard(2003)]. By

combining spacetime constraints and motion displacement map, simulation can

be conducted in interactive time [Gleicher(1997)]. However, since the general
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concept of these researches is to generate a motion that minimizes a predefined

function, it is difficult to generate interactions for real-time application where the

constraints are not known in advance. As a result, it is suggested to dynamically

update the constraints in every time-step during run-time such that animation can

be generated with user interactions [Jain et al.(2009)]. It is also possible to apply

spacetime optimization in every time step to interactivelysynthesize the interac-

tions between characters and objects [Jain & Liu (2009)].

2.2 Data-Driven Motion Synthesis

Despite of the extensive uses in robotics, physical simulation is less popular in

character animations. One major concern is that physicallycorrect motions may

not always appear natural. This is because naturalness in human motion is dif-

ficult to be well represented with simple physical formulas.Another problem is

that these approaches are, in general, computationally costly due to the high de-

grees of freedom of the human body. For real-time applications such as computer

games, computational resources have to be distributed to different modulus such

as rendering and non-player characters (NPC) controls. A full system of physical

simulations may not be affordable.

On the other hand, with the improvement in motion capture technology, it

becomes easier to acquire 3D human motions using motion capture systems. Re-

cently, researchers have focused more on data-driven approaches, while apply-

ing physically constraints to enhance the captured motions. The data-driven ap-

proaches can be classified into motion interpolation (Section 2.2.1) and motion

rearrangement (Section2.2.2). The former interpolates motion segments to create

new ones, and the latter synthesizes motion by rearranging motion segments in a

motion database.

2.2.1 Motion Interpolation

With motion interpolation techniques, new motions can be synthesized by blend-

ing multiple captured source motion segments [Bruderlin & Williams(1995)]. Due

to the ability to create new motions, such approaches usually do not require a large

motion database, which is favorable to systems with limitedstorage like game con-

soles.
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With the simple Alpha blending algorithm, two motions are blended linearly

frame by frame as follow:

Mblend ( f ) = αM1( f ) + (1−α)M2( f )∀ f ∈
[

ft0, ft f

]

(2.2)

where ft0 and ft f represent the frame range for blending the two motion,α =
1− f

( ft f − ft0) is a value between 1 and 0,Mblend, M1 andM2 are the postures at the

blended motion, first motion and second motion, respectively.

Since the source motions may not be synchronized in speed andduration,

blending them frame by frame usually leads to unnatural behaviors. Dynamic

time warping is introduced to minimize the difference between two motions by

synchronizing them during blending [Kovar & Gleicher(2003), Hsu et al.(2005)].

The general idea is to evaluate the posture differences between two source mo-

tions in every possible combination of frames pairs. Then, dynamic programming

is applied to select the frame pairs with minimal differencefor blending. Apart

from synchronizing the source motions with minimal posturedifference, some

researchers suggest to consider the foot supporting state to determine synchro-

nization frames [Ménardais et al.(2004)]. Thus, multiple synchronization frames

are defined to indicate the change in supporting states, and blending is performed

within the periods where supporting states remain unchanged. By this way, the

foot skate of the characters, which is a common artifact for motion blending,

can be minimized. Similarly, for rhythmic motions such as dancing, the beat

patterns of the motions could be considered to synchronize the source motions

[Ménardais et al.(2004)].

Motions of different logical context, in general, cannot beblended together.

For instance, blending a punching motion with a kicking motion will lead to an

unnatural result. Therefore, it is suggested that source motions should be classi-

fied into groups and blending should only be applied within each group [Park et al.

(2004)]. Similarly, locomotion can be classified into different step patterns before

blending such that foot sliding can be avoided [Ikemoto et al.(2007)]. Since clas-

sifying motions requires a lot of manual work, automatic approaches are intro-

duced [Kovar & Gleicher(2004), Mukai & Kuriyama(2005)].

Dimensionality reduction techniques such as Principal Component Analysis

(PCA) or Scaled Gaussian Process Latent Variable Model (SGPLVM) can be ap-

plied to create a reduced space of high dimensional motions.Although interpo-

lation is not performed explicitly, each point in the reduced space represents an
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implicitly blended posture from multiple sources, and a trajectory in the reduced

space represents a blended motion of the source motion style[Brand & Hertzmann

(2000), Grochow et al.(2004)]. Furthermore, although it is difficult to control

a character based on blending in the high dimensional joint space, it is possi-

ble to solve the optimization problem in the reduced space, and then project the

posture back to the joint space [Safonova et al.(2004), Chai & Hodgins(2005),

Bitzer et al.(2008)]. In other words, dimensionality reduction techniques can be

considered as statistical means to group similar motion segments and generate new

motions by implicit blending.

2.2.2 Motion Rearrangement

With motion rearrangement, new motions are synthesized by rearranging shorter

motion segments in a sequence of captured motion. The MotionGraph approach

is an effective algorithm to organize captured motion and interactively reproduce

continuous motions based on a graph structure [Kovar et al. (2002), Lee et al.

(2002)]. The graph is automatically generated based on a set of motions, with

the nodes representing poses in the captured motion and edges representing mo-

tion segments. To create the graph, the similarity between arbitrary poses is

evaluated based on kinematical data such as the position andvelocity of joints

[Wang & Bodenheimer(2003)]. The similar pairs are connected with edges. By

traversing the graph, it is possible to generate long sequences of motion.

Since the Motion Graph produces a lot of edges and nodes without any con-

text, it becomes difficult to control the character based on the user wishes. Re-

cently, to reduce the complexity of the Motion Graph, some researchers proposed

to generate a simpler, hub-to-hub Motion Graph called Fat Graph [Gleicher et al.

(2003), Shin & Oh(2006)]. In such a graph, every node represents multiple sim-

ilar poses and every edge represents multiple similar motion segments. A simi-

lar approach is to apply the concept of motif, which is the pattern representation

used in deoxyribonucleic acid (DNA), to group similar actions into a single edge

[Beaudoin et al.(2008), Jingjing Meng & Wu(2008)]. With a simplified graph,

animators can easily modify the structure of the graph and even add in desired

motions. Another solution for organizing complex Motion Graphs is to integrate

behavior contexts into the captured motions and generate a hierarchical structure

of motion data [Lau & Kuffner (2005), Kwon & Shin (2005), Chiu et al.(2007)].
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Usually, motion segments of similar logical behavior are classified into the same

group as a node, while the edges indicate possible transition between the groups.

Motion planning with such graphs is more efficient since it can be carried out in

the behavior level instead of the motion data level.

It is possible to control a character using the Motion Graph by defining objec-

tive functions to select appropriate motion segments. Previous researches created

controllable characters performing different tasks such as running and exploring

a territory [Choi et al.(2003)]. The quality of the resultant motion and the con-

trollability of the characters, in general, depend a lot on the connectivity of the

Motion Graph [Reitsma & Pollard(2004, 2007)]. Hence, some researchers pro-

pose to enhance the connectivity by blending multiple motions [Zhao & Safonova

(2008)]. Furthermore, since these kinds of planning usually require a lot of com-

putational power, methods to precompute the optimal actions to be performed and

store them in a look-up table are proposed [Lau & Kuffner (2006)]. During run-

time, the motions of a large number of characters can be simulated in real-time by

referencing the precomputed look-up table. Roughly speaking, for such precom-

putation techniques, memory requirement increases exponentially with respect to

the complexity of the system. As a result, the bottleneck of the system shifts from

computational power to memory usage.

Recently, hybrid systems that combine the advantage of motion rearrangement

and motion blending by integrating blending parameters into a Motion Graph are

proposed [Safonova & Hodgins(2007), Heck & Gleicher(2007), Safonova & Hodgins

(2008)]. In such graphs, each node contains a set of source motionsfor blending,

and the edges denote the ability to transit from node to node.As a result, while the

Motion Graph provides natural transitions to generate longsequence of motions,

realistic variations of the source motions can be generatedby motion interpola-

tion. Furthermore, by embedding blending information intooptimization algo-

rithm such as reinforcement learning, characters can be controlled in a continuous

action space [Wan-Yen Lo(2008)].

While it is originally proposed to organize and rearrange human motion, Mo-

tion Graphs can also be applied to organize the motion of flocks of birds [Lai et al.

(2005)] by considering the whole group as a single object. Some researchers ap-

ply the graph to organize 2D human motion video [Flagg et al.(2009)] with the

consideration on pixel similarity. Also, Motion Graph can be used to organize

the movements of complex polygon meshes [James et al.(2007)] by dividing the
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meshes into smaller parts and create edges for each part.

2.3 Motion Planning For Interactions

Although it is popular to apply motion synthesis techniquesto control a single

character, controlling multiple characters to interact with each other remains an

open problem. Current researches on this topic can be classified into five cate-

gories. First, the crowd simulation methods (Section2.3.1) are shown to be effi-

cient to generate the behaviors of a crowd of characters. A critical problem is that

these methods cannot be easily extended to handle crowd withcomplex interac-

tions such as people pushing around. Second, response systems (Section2.3.2)

are strong at generating reactive behaviors by combining motion capture data with

physical dynamics. The drawback is that interactions simulated by these methods

are bound to be passive, such as characters being pushed or avoiding. The third

category is to generate motions based on statistical analysis (Section2.3.3). By

analyzing the behaviors of real humans, one can simulate characters with sim-

ilar behaviors. However, such kinds of statistics are, in general, difficult to be

acquired and limited in variations. Optimization-based methods (Section2.3.4)

can synthesize the required motion by optimizing pre-defined objective functions.

Approaches like reinforcement learning are effective in synthesizing interactive

behaviors. Nevertheless, more researches are required to generate realistic inter-

actions among large number of characters. Finally, topology based methods (Sec-

tion 2.3.5) are good at generate close interactions between two characters with

multiple keyframes, but it is unclear how these approaches can be integrated with

artificial intelligence controllers.

2.3.1 Crowd Simulation

The objective of crowd simulation is to model and simulate a large number of

characters in an environment. Although simple flocking model to simulate the

movements of flocks of birds and schools of fishes has been proposed decades ago

[Reynolds(1987, 1999)], it is until recently that more delicate approaches appear

to model the movement of humans. The use of social force is suggested to de-

scribe the internal motivation of the characters to performactions or movements

[Helbing & Molnar (1995)]. Based on the concepts of social forces, a dynami-
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cal model is proposed to simulate the movement of people in panic [Helbing et al.

(2000)]. Later on, a probabilistic model is introduced for the selections of motions

[Sung et al.(2004)]. Fluid dynamics is also used to determine the flow of people

moving in the space [Treuille et al.(2006)]. In such systems, the density of char-

acters in the environment is evaluated to generate a potential field. The positions

of the characters, and their corresponding movements, are then updated based on

the field.

Procedural based approached is proposed to simulate crowd with different

movement behaviors based on a set of predefined rules. A city can be modeled

as a 2D map and the pedestrians are assigned with the check-points to navigate

the city [Loscos et al.(2003)]. These check-points can be further classified as in-

terest points, for which the characters must pass through, and action points, for

which the characters would perform certain actions [Musse et al.(1998)]. Such

systems are extended to control the movements of a group of characters rather

than a single one by classifying characters into leaders andmembers. Only leaders

make decisions on check-points and members follow their corresponding leaders

[Musse & Thalmann(1997)]. Collision avoidance for the characters can be imple-

mented by checking the future trajectories of movements andsteering away from

potential collisions [Feurtey(2000), Loscos et al.(2003)]. The concept of proxy

agents, which are virtual, invisible characters that influence nearby characters, is

introduced to simulate social effects in a crowd such as giving places to the elderly

[Yeh et al.(2008)].

To enhance the scalability of the crowd simulation system, as well as decrease

the run-time overhead, patches based methods are introduced. The patches, which

represent short segments of motions in small areas, are in general precomputed,

and combined during run-time to create a huge scene. The motion patches is

proposed to simulate scenes such as office and playground, inwhich each patch

defines the movements of a character to interact with an object in a small rect-

angular area [Lee et al.(2006)]. When combining the patches during run-time, a

scenes in which a lot of characters interacting with different objects in the world

can be generated. Based on a similar concept, the crowd patches are created to

precompute the behaviors when multiple characters avoid each other when walk-

ing [Yersin et al.(2009)]. In our work, we also apply patch based method to create

a crowd scene. However, our patches define the dense interactions among multiple

characters rather than simple locomotion.
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The controllability of the crowd also becomes an important research topic in

crowd simulation. While procedural based approaches can adjust the behavior of

individual characters, there is a strong demand in games andmovies to control the

crowd of characters as a whole, such as maintaining the formation and moving in a

specific manner. A spectral-based approach is applied to interpolate the motion of

the characters in between multiply keyframes of crowd formation [Takahashi et al.

(2009)]. On the other hand, by representing the spatio-temporal relationship of a

group of moving characters as a mesh, mesh based deformationtechniques can be

applied to edit the movement of the whole crowd while minimizing the adjustment

required [Kwon, Lee, Lee & Takahashi(2008)]. A similar idea is proposed to edit

a crowd of character with multiple constraints [Kim et al. (2009)] by borrowing

the Laplacian transform in mesh editing that produce as-rigid-as possible transfor-

mation [Igarashi et al.(2005)]. In our experiments, we also implements interfaces

to control the characters in different levels.

In these works, the interactions between the characters arerather simple, such

as avoiding other pedestrians in a path, or walking along with another character.

Although crowd simulation is efficient to compute the movement of a large num-

ber of characters, due to the simplification of characters’ behaviors, it is difficult to

be applied for creating interactions when close contacts such as pushing, pulling

or hitting motions are involved. Unlike previous researches, our proposed algo-

rithm can generate a huge number of characters while capableof simulating the

dense interactions among them.

2.3.2 Response System

How a person behaves when being pushed, pulled or hit is recently attracting re-

searchers due to the demands in animation systems such as video games. Since

solving the body poses during impact by frame based optimization sometimes

leads to unstable body movements, optimization with space time constraints are

proposed to guarantee the stability of the motion throughout time [Liu et al.(2006)].

The drawback is that the computational cost is very large even for an off-line pro-

cess due to the high degrees of freedom for a human body. As a result, local op-

timization based on dynamics [Yamane & Nakamura(2000)] is proposed to solve

the body postures during impact in real-time [Abe et al.(2007)]. Dimensional re-

duction techniques such as Principal Component Analysis (PCA) are proposed to
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simplify the system and speed up the optimization process [Ye & Liu (2008)]. An-

other solution is to apply machine learning techniques for training a system that

could give plausible combinations of reactions [Arikan et al.(2005), Zordan et al.

(2007)].

One important research area of response system is to generate realistic bal-

ancing motions in the presence of external perturbations. The zero moment point

(ZMP) is an important criterion to balance the body of a character [Fujimoto et al.

(1998), Li et al. (1992), Nishiwaki et al.(2001)]. The Three-Dimensional Linear

Inverted Pendulum Mode (3DLIPM) is a popular method used in robotics to sim-

plify the linear dynamics of the lower body such that appropriate control torques

can be calculated efficiently [Kajita et al.(2002), Kajita, Matsumoto & Saigo(2001)].

Since angular momentum is not considered in 3DLIPM, angularmomentum gen-

erated due to noise or external perturbation has to be minimized to zero using feed-

back controllers [Kajita, Yokoi, Saigo & Tanie(2001), Napoleon et al.(2002)]. As

a result, an enhanced version of 3DLIPM called Angular Momentum inducing in-

verted Pendulum Model (AMPM), which can counteract angularmomentum in-

duced by external perturbations, is proposed [Kudoh & Komura(2003)]. Using

AMPM, it is possible to calculate reactive motions for bipeds that preserve dy-

namic balance during locomotion [Komura et al.(2004)]. By further considering

the difference of the moment of inertia between the current posture and the cor-

responding posture in a reference captured motion, it is possible to synthesize the

movement for counteracting external perturbations and gradually moving back to

the original gait motion [Komura, Leung, Kudoh & Kuffner(2005)].

Apart from dynamics based approaches, response motions during collision can

be generated by combining motion capture data with inverse kinematics or for-

ward dynamics [Komura et al.(2004), Komura, Ho & Lau(2005), Zordan et al.

(2005)]. The idea is to apply dynamics to simulate the effect of impact, and then

blend the posture to a captured reactive motion. Thus, realistic motions of falling

down, regaining balance or even avoiding collision can be generated effectively.

The general focus of response systems is the responsive movement of the char-

acter. Thus, it is not trivial to extend such systems to control characters that ac-

tively interact with other characters such as punching an opponent in boxing. In

our research, we apply response systems to simulate the movements during colli-

sions, and propose new methods to simulate active movements.
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2.3.3 Statistical Analysis

A straight forward approach to generate dense interactionsbetween characters is

to first capture the interactions of multiple humans with a motion capture system,

then extract statistical information such as the trajectories of movement from the

captured data, and finally use machine learning techniques to reproduce motions

under different situations [Sang Il Park & Shin(2004), Lee et al.(2007), Lerner et al.

(2007), Kwon, Cho, Park & Shin(2008)].

The drawback of a these methods is the difficultly to gather statistical data.

Even with the state-of-the-art technology, it is not easy toacquire the motion data

of multiple persons. Some researchers avoid the problem by limiting the system

to handle two characters [Sang Il Park & Shin(2004), Kwon, Cho, Park & Shin

(2008)]. This is because capturing multiple persons using motioncapture system

is very difficult due to collision of body parts and occlusion. Another method is to

limit the motions to be locomotion, and use overhead camerasto track the move-

ment of a crowd without capturing the details of the motions [Lee et al.(2007),

Lerner et al.(2007)]. Then, by statistically evaluating the translations of the peo-

ple, characters with similar behaviors can be synthesized.However, due to the

limitations on motion capturing, these algorithms cannot be applied directly to

generate motions of multiple interacting characters.

2.3.4 Optimization Based Approaches

Optimization based methods are effective in synthesizing character motions. Usu-

ally, machine learning techniques are used to train a character to optimize a pre-

defined objective functions. Based on reinforcement learning [Sutton & Barto

(1998)], the optimal control policy can be trained by letting a character to per-

form actions and observing the benefits. It is used to train a character to reach a

target location while avoiding collision with obstacles based on a Motion Graph

[Ikemoto et al.(2005)]. By embedding information for motion interpolation, a

more flexible controller that can blend multiple motions automatically can be

trained [Lo & Zwicker (2008)]. Reinforcement learning can also be used to en-

hance the controllability of a character by predicting the user control signals based

on the training samples [McCann & Pollard(2007)]. Alternatively, using active

learning, one can generate real-time highly-controllablecharacters by adaptively

capturing new actions that can improve the quality and responsiveness of the con-
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troller [Cooper et al.(2007)].

Reinforcement learning can be extended to simulate high quality interactions

among multiple characters based on singly captured motions. It is used to train

boxing characters to approach and hit a target [Lee & Lee(2004, 2006)] and to

train computer based players in a fighting game [Thore Graepel(2004)]. How-

ever, these researches focus mainly on relatively simple interactions due to the

high dimensionality, and hence complexity, of the human motion. By assuming a

continuous state space for human motion, and computing the optimal weights for

the bases of the motion trajectories, it is possible to represent human motion in a

lower dimensionality space [Treuille et al.(2007)]. However, this method cannot

be used for handling discrete actions such as pushing, pulling, and avoiding.

A general problem of these techniques is that they only provide solutions for

simulating the interactions of two or three characters. They do not provide a

method to simulate a scene of many characters, except from allocating a number

of pairs in the scene [Lee & Lee(2004, 2006)], or randomly allocating characters

in the scene and letting them interact with each other once their distance is close

[Treuille et al.(2007)]. In movies or games, we wish to see characters concur-

rently interacting with multiple neighbors in a crowd. Our proposed method can

generate such kind of many-to-many interactions effectively.

2.3.5 Topology Based Approaches

Simulating close interactions between multiple characters is difficult because of

the large number of contact points. Recently, the topology space has been pro-

posed to simplify close interactions synthesis. In the topology space, a human

body is defined by a set of string and the interactions of two characters are de-

fined by the tangles between the two set of strings representing the two bodies

[Ho & Komura (2009b)]. By combining singly captured motions with tangle in-

formation, one can simulate collision-free close interactions between two charac-

ters with a small number of keyframes [Ho & Komura(2007b)].

The topology space can also simplify the motion planning process during close

interactions. While path planning techniques like Rapidly-Exploring Random

Trees (RRT) [LaValle & Kuffner (2000), LaValle (1998)] in joint space can gen-

erate simple interactions between a character and an object[Shapiro et al.(2007),

Esteves et al.(2005)], applying RRT in the topology space of multiple characters
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can further guarantees collision free paths [Ho & Komura (2007a)]. Moreover,

being a global optimization technique, RRT requires huge computational cost. It

is shown that in the topology space, reasonable interactions can be generated even

if local, frame-based optimization is used [Ho & Komura(2009a)].

Although keyframe based close interactions can be simulated easily with the

use of topology space, it is unclear how such operations can be integrated with

artificial intelligence controllers. Furthermore, since the number of string pairs

increases exponentially with the number of characters, it would be difficult to

apply topology operations for more than two characters.

2.4 Summary

The two streams of motion synthesis techniques, physical simulation and data-

driven approaches, are capable of synthesizing motion of a single character. Re-

cently researchers are trying to apply such techniques to create scenes when mul-

tiple characters interacting with each other. However, theresults are still far from

satisfactory. We will propose a new method to simulate denseinteractions be-

tween a few characters, and extend the scheme to simulate real-time controllable

interacting characters and crowd with interactions.





Chapter 3

Data Preparation

In this chapter, we explain the processes to capture the motions of actors indi-

vidually, segment them into shorter semantic actions, classify them into different

categories, compose a data structure called action level Motion Graph, and embed

supplementary information into the actions.

We apply an optical motion system to capture human motion in 60 Hz with

35 markers. The positions of the markers are then converted to a character model

represented by a hierarchy of 25 joints using third party software. Each joint has

3 degrees of freedom for rotation and the pelvis joint has an additional 3 degrees

of freedom for translation. In other words, a pose can be represented by a 78

dimensional feature vector.

3.1 Motion Capture and Motion Segmentation

We capture long sequences of motions of a single human. Capturing the motion

of one person instead of those by two persons eases the collection of data. When

capturing the motions of two actors at the same time, there are many problems

especially for the popular optical motion capture system due to the occlusion of

the body segments. Usually, such data requires a huge amountof post-processing

to correct the positions of markers, and the quality of the motions is not as good

as those when one subject is acting. Another advantage of capturing alone is that

we can make various combinations of motions. If we simply replay the captured

motions, the type of interactions will be limited, and as a result, the final animation

will appear monotonic.

Here we define the term “motion” as the raw-captured data, andthe term “ac-
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tion” as a semantic segment of the motion we captured. In the field of fighting, an

action can be an attack (such as a left straight, jab or a rightkick), a defence (such

as parries, blocking or ducking), a movement (such as stepping to the left, step-

ping forward or back step), a reactive motion when being hit /pushed away, or the

combinations of them. We capture long sequences of motions instead of shorter

actions individually. The major advantage is that we can preserve of naturalness

of the movements. However, we have to segment them into shorter semantic seg-

ments for better character controls.

We develop an automatic motion analyzer to segment raw motions into actions.

It consists of three steps. First, for a captured motion, theacceleration of all joints

is calculated (Figure3.1 (a)). Second, the supporting feet patterns throughout

the motion are detected (Figure3.1 (b)). Details on determining supporting feet

pattern automatically will be explained in Section3.2. Third, we detect the periods

when the sum of squares of the acceleration of the joints is larger than a pre-

defined threshold (Figure3.1 (c)). In these high acceleration periods, the body

is expected to go through continuous movements such as attacks and defences.

Finally, segmentation is performed at the center of the double support phases.

However, we do not segment the motions during the high acceleration periods

detected in the previous step in order to preserve the continuity of high acceleration

movements (Figure3.1 (d)). Easy as it may sound, due to the large variety of

human actions, it is difficult to create a perfectly accuratesegmentation system.

Therefore, we allow users to fine tune the results.

We manually embed high level information into the segmentedactions. First,

for each action, there must be at least one movement class indicating the nature

of the action, such as “attack”, “avoid”, “block”, “movement”, etc. Notice that

there may be multiple movement classes within an action, such as blocking an

attack with the arms while avoiding. Second, for actions that required the usage

of specific joints, we record the names of the joints. For instance, in the action

“right hook punch”, the joint “right hand” is recorded to be the joint being used

in the action. Finally, we include high level descriptions for special actions. In

our system, such information includes the attacking direction for “attack” actions,

and the rough defending body parts for “block” and “avoid” actions. They help in

evaluating the suitability for performing the actions in different situations.
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Figure 3.1

The motion segmentation system. (a) The sum of square of acceleration for all

joints against time is plotted. (b) The supporting feet patterns of the motion are

detected. (c) By applying a threshold in the acceleration plot in (a), the periods

with high acceleration are extracted. (d) Actions are segmented at the centers of

the double supporting phases, except those cutting throughthe high acceleration

period extracted in (c).

3.2 Supporting Feet Patterns

We follow the algorithm proposed by Ikemoto et al. [Ikemoto et al.(2006)] to

detect supporting feet patterns in our capture motions. While the authors suggest

using a dedicated model with high dimensional feature space, we found that a sim-

plified model works reasonably well. We simplify the model intwo ways. First,

instead of using the joint positions all the lower body joints as a feature vector, we

only consider the speed and height of each individual foot. Second, we monitor a

single frame instead of a window of frames to maintain a low dimensional feature

space.

We apply a soft margin support vector machine (SVM) [Boser et al.(1992),

Cortes & Vapnik(1995)] as our classifier. A two dimensional feature vector is

used in the SVM to indicate the movement speed and height of a foot. Each

feature vector is associated with a class, which is either 1 for “supported” or -1 for

“unsupported”. During the training stage, the user indicates the supporting feet

for some actions, and the system generates training samplesby associating the

feature vectors with the classes of supporting feet. Then, the SVM calculates the

hyperplane that maximizes the margin of the two classes of data:

argmin1
2‖w‖2 +C ∑i ξi

subject toci(w ·xi −b) ≥ 1−ξi
(3.1)
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wherew is the normal to the hyperplane,ξi is the slack variable which measure

the degree of misclassification of the featurexi , C is a parameter for penalty on

error,ci is either 1 or -1 indicating the class ofxi , b determines the offset of the

hyperplane from the origin alongw. Our SVM apply radial basis function as the

system kernel:

K(xi ,xj ) = e−γ‖xi−xj‖
2

(3.2)

wherexi , xj are feature vectors,γ > 0 is a parameter for the kernel.

Notice thatC in Equation3.1 and γ in Equation3.2 need to be tuned. Our

system searches for the optimal values using brute force grid search. We train

a SVM for each possible quantized values ofC and γ. Then, we evaluate the

performance of the SVM using leave-one-out cross-validation. TheC andγ that

perform the best will be used.

Once the SVM is trained, we can apply it to classify the supporting feet of

any posture in the actions we have during run-time. Since theSVM is simple,

the computational cost is neglectable. Apart from the smallcomputational cost,

the major advantage of our simplified system is that the amount on training data

can be dramatically decreased. In the research of Ikemoto etal. [Ikemoto et al.

(2006)], around 9000 frames of training data is needed, which is equivalent to

150 seconds of motion data. It should be noted that most motion database in our

system contain only tens of seconds of data, and hence using such a large feature

space is not feasible. With our simplified system, around 20 seconds of training

data is enough to produce reasonably accurate classification.

3.3 Action Level Motion Graph

We build a Motion Graph [Arikan & Forsyth(2002), Lee et al.(2002), Kovar et al.

(2002)] in the action level rather than the frame level, as in [Gleicher et al.(2003),

Lau & Kuffner (2005), Kwon & Shin (2005)]. We call this data structure the ac-

tion level Motion Graph. Planning based on such a graph is similar to the way

human does, as people also use actions such as attack and defence as the funda-

mental entities during planning.

The processes to generate an action level Motion Graph are visualized in Fig-

ure 3.2. First, we extract the starting poses and the ending poses ofall actions.

Then, we apply K-mean to cluster similar poses together. Thesystem determines
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the number of clusters, K, iteratively with a predefined threshold indicating the

maximum pose difference within a cluster. Each cluster represents a group of

similar poses and becomes a node in our Motion Graph. Some starting poses and

ending poses may be grouped into the same cluster. This meansthat actions, which

are represented by edges, with such ending poses can be connected to actions with

such starting poses.

Figure 3.2

An action level motion graph that is generated from the boxing motion. (Upper)

Starting and ending poses of actions are extracted. The barsrepresent motions

and the colored regions represent actions. (Middle) Similar extracted poses are

grouped into nodes, and actions are represented as edges. (Lower) The resultant

action level Motion Graph.

We design our distance function as a weighted sum of six termsto calculate the

difference between two poses during the K-mean classification. The weights are

manually designed. For any two posesA andB, we first align them by translating

along the floor plane and rotating around the vertical axis. Then, we apply the

distance function to calculate their difference. The first two terms of the function
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evaluate the posture difference for the upper body:

Dupper = ∑
i
‖JA

i − JB
i ‖ (3.3)

Dupper′ = ∑
i
‖JA′

i − JB′
i ‖ (3.4)

whereJi is the three dimensional Euler angle of the jointi, J′i represents its deriva-

tive, andi represents the set of joints above the pelvis. The superscript represents

the two posesA andB respectively. The next two terms evaluate the posture dif-

ference for the lower body:

Dlower = |LA
l −LB

l ‖+ |LA
r −LB

r ‖ (3.5)

Dlower′ = |LA′
l −LB′

l ‖+ |LA′
r −LB′

r ‖ (3.6)

whereLl andLr are the three dimensional leg vectors [Komura et al.(2004)] point-

ing from the pelvis to the left and the right foot respectively, L′
l andL′

r are the

corresponding derivative. The final two terms evaluate the height difference for

the body:

Dheight = |HA −HB| (3.7)

Dheight ′ = |HA′−HB′| (3.8)

whereH is the height of the pelvis and(H)′ is its derivative. The final distance

function between the two poses becomes:

D(A,B) = wupperDupper +wupper′Dupper′ +wlowerDlower

+wlower′Dlower′ +wheightDheight +wheight ′Dheight ′
(3.9)

where thew terms are the corresponding weights. The design to separately weight

the upper body, the lower body and the height of the body is important to cope with

different motion data sets. For example, if we are considering fighting motions,

all terms are equally important. However, for locomotion such as jogging and

walking, the upper body and its derivative are far less important than the other

terms, and the corresponding weights can be set small.

3.4 Action Combination Table

When we simulate interactions in later sections, we define objective functions to

evaluate the suitability for the characters to perform any actions. The functions
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are useful in many aspects concerning interactions, but they fall short to represent

the implicit factors that affect the action selection process. These implicit factors

are difficult to be evaluated mathematically and require extra information from

the animators. In this section, we explain the action combination table, which

helps to determine the optimal actions to be performed basedon the action by the

opponent. The table is maintained manually. It (1) enables the system to take

into account subtle factors of interactions which cannot besimply expressed by

objective functions, and (2) provides interface to animators who want to pair up

specific actions.

Each record in the table contains three fields: the character’s action, the oppo-

nent’s action, and a suitability value that describes how effective the character’s

action is with respect to the opponent’s action. A positive value encourages the

character to perform such an action when the opponent is performing the oppo-

nent’s action, while a negative value means such an action would better be avoided.

In our system, the table is used to evaluate the quality of defensive actions

during fighting, which is difficult to be evaluated numerically. It is known in

boxing that sway back motion is effective for avoiding uppercuts and hooks, and

head slip is good for avoiding straight punches. There are various factors such as

the direction the punch is approaching from, and whether thedefender can see the

attacker all through the motion, that support these basic techniques. However, it

is tedious to represent all factors accurately with numerical functions. By using

the action combination table, we can indicate how appropriate a defence is with

respect to an attack, and hence see more effective defences like those appearing in

real boxing matches. The details on applying the table will be explained in Section

4.4.

The action combination table also provide animators an interface to embed

manually designed plausible close-contact interactions into the scene. There may

be special attacks and defences that look good while performed by two characters.

Such action pairs, however, may not be well evaluated by objective functions due

to their low effectiveness. With the table, the animator canmake such interactions

appear with minimal adjustments to the system. Although we only implement

the attack-defence relationship in our system, the table can similarly be applied to

pair up actions such as good-looking moves in dances, as wellas tackles-avoids in

soccer.
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3.5 Summary

In this chapter, we explain the concept of action, which is a semantic segment of

raw captured motions. We automatically segment actions based on the accelera-

tion profile of the movements and the supporting feet patterns. We train a support

vector machine to determine the supporting feet automatically. By applying K-

mean clustering, we create the action level Motion Graph. Wealso design the

action combination table to store high level relationship between actions.
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Temporal Tree Expansion

Synthesizing animations of multiple characters closely interacting with one an-

other has a high demand in the computer animation and the 3D computer games

industries. Due to the difficulties of directly capturing the motions of multiple

subjects simultaneously, many methods to synthesize such animation from singly

captured motions have been proposed. Most of them are based on optimal con-

trol: defining an objective function that represents the benefits when the charac-

ters perform the motions, and maximizing the long horizon rewards to control the

characters.

However, unlike traditional optimal control in which the environment is static,

simulating interacting characters requires the consideration of different possible

reactions performed by the opponents. Game theory providesan excellent frame-

work to model such planning process. In this chapter, we propose a new method-

ology based on game theory to synthesize animations of multiple characters in-

telligently competing with each other in a dense environment. We expand the

game tree to evaluate all the possible results in the future.Then, min-max search

is used to select actions that maximize the score of the controlled character and

minimize that of the opponent. With our proposed method, thecharacters behave

intelligently for interactions such as martial arts, tags and sport games.

A major problem of applying game theory to character controlin such a com-

petitive environment is the low controllability of the overall scene. If we design a

reward function that guides all the characters to behave in the way we want, the

opponents of the controlled character will try to penalize the character’s reward.

Therefore, it is difficult for the animators to control the scene. We propose a new

method to embed a cooperative term into the traditional min-max framework. In

33
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our system, the characters compete intelligently based on the competitive func-

tions, while cooperate with each other to follow the high level requests from the

animator.

To show the effectiveness of our method, we simulate variouscompetitive in-

teractions of the characters. We show examples of boxing matches, in which the

strength of each fighter can be adjusted by changing the depthof the game tree

expanded. We also adjust the control parameters of the characters to simulate dif-

ferent styles of fighting, including outboxing and infighting. The animators can

control the overall moving trajectories of the characters,as well as the frequency

of launching a specific action. Our method is effective for animators to design

scenes with a crowd of well controlled characters interacting like real humans.

4.1 Contributions in This Chapter

• We propose a new method to simulate dense interactions of intelligent char-

acters by techniques in applying game theory such as game tree expansion

and min-max search.

• We propose a multi-modal approach to enable the characters competing with

each other while cooperatively achieving common goals.

4.2 Outline of the Method

The outline of our system is shown in Figure4.1. It consists of five steps:

1. Capture the motion of a single actor.

2. Segment the motion into semantic actions, and organize the actions in an

action level motion graph.

3. Simulate the interactions of two characters by expandinga game tree, which

predicts the future states with respect to different choiceof actions.

4. Evaluate the game tree by min-max search and select the optimal action.

5. Let the character perform the optimal action, and hence generate a scene of

dense interactions.
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Steps 1 and 2 are precomputed, while steps 3 to 5 are performedin run-time

repeatedly. Whenever a character finishes its action, steps 3to 5 are performed so

that it selects the optimal action.

Figure 4.1: The outline of the temporal tree expansion method.

4.3 Multi-modal Character Control

In this section, we explain our multi-modal control method that enables the charac-

ters to compete with others while cooperate in the aspect to satisfy the requirement

of the animator. When a character is going to select a new action, a game tree is

expanded and the possible outcomes in the future are evaluated. Using min-max

search, a character can be controlled intelligently to compete with its opponents.

However, min-max search is surprisingly inefficient to control the overall scene,
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such as encouraging the interacting character to follow a predefined path. If we

apply an objective function to guide the characters to follow the path, they try to

prevent their opponents to follow such a path due to the min-max framework. As a

result, the deeper the tree is expanded, the smarter they areto block the opponents,

and the slower they follow the path. We propose a multi-modalevaluation system

that embeds cooperative evaluation functions into the min/max framework, such

that the characters have the intelligence to compete with each other while helping

each other to achieve common goals.

4.3.1 Game Tree Expansion

For controlling the characters, we adopt methods used for AIplayers in strategy

games such as chess. To control them intelligently, only considering the imme-

diate benefit is not enough. For example, in chess, a movementthat shows the

greatest effect in one ply, such as taking a valuable piece like a castle or a bishop,

is not necessarily the best choice for winning at the end. By expanding the game

tree and evaluating the static position after a few plies, one can make a choice that

benefits the player in long term. Here we apply a similar approach to evaluate the

long term benefit of performing an action.

The major difference between character interactions and chess is that the choices

made by the characters are performed in a continuous time domain. Every node in

our game tree represents the state of interaction between two characters when ei-

ther of them is about to select a new action. The edges from thenode represent the

possible choices of actions in such a state. Notice that the two characters perform

their selected action concurrently, and whenever any of them finish their actions,

a node is added and another expansion is performed. Figure4.2 shows an exam-

ple of an expanded game tree, with the vertical axis representing time. The blue

character starts the game tree expansion process with a choice of two actions,a1

anda2, at the timet1. Based on the choice of the blue character, the red character

has a choice of actions to counter act att2. Notice that the action selected by the

blue character is still continuing when the red character makes the selection, as

indicated by the blue dotted lines. The actiona1 ends att3, and another level of

nodes will be added for the blue character with edgesa3 to a6, based on the red

character’s choice of actions.

Since the actions in our game tree have different durations,the order of ex-



4.3. Multi-modal Character Control 37

Figure 4.2: An expanded game tree of fighting between two characters. The dis-

tance along the vertical axis represents time. The nodes represent the states of

fight of the two characters when any of them select new actions, and the edges

represent the choices of action. The dotted lines indicate the continuation of the

selected actions while the opponent selects its actions.

pansion is not always alternate between the two characters.If a character selects

an action with long duration, its opponent may perform several actions before its

next turn to select. In Figure4.3, the blue character selects a long actiona1 at t1.

When the red character expands a node att2, since it selects a short motionb1, it

can further expand another node whenb1 ends att3. Finally, when thea1 ends at

t4, the blue character expands the tree again.

Figure 4.3: The expansion of the game tree is not always alternate. Since the

action selected by the blue character is long, the red character expands two levels

of tree before the blue character further expands.

In some situations, a character may be forced to perform an action when some

criteria are satisfied. In terms of fighting, when a characteris being hit, it will ei-

ther be knocked down onto the ground immediately, or just lose balance and walk

a few steps to recover the balance and resume the fight. This response motion will

be decided based on the current state of the body and the impulse added to the

body, and the character being hit does not have a choice for the action. In our sys-

tem, according to the posture of the body and the direction and strength of impulse,

we simulate the initial reaction based on rigid body dynamics and then blend the



38 Chapter 4. Temporal Tree Expansion

motion with the reactive motion selected from the motion database [Arikan et al.

(2005), Zordan et al.(2005)]. Figure4.4shows an example of launching reactive

motion during game tree expansion. The blue character selects a1 and the red

character selectsb1. It turns out that the red character will be hit by the blue one

at t1. The red character is forced to discard the latter part ofb1 as shown in the

dotted part ofb1, and perform a falling back actionb2. Since the red character has

to perform the reactive motion, it loses its chance to expandthe game tree.

Figure 4.4: The character is forced to stop the current action to perform a reactive

action when being hit. Since the reactive motion is determined by the system rather

than selected by the character, there is only one outgoing edge.

4.3.2 Evaluating Competitiveness and Cooperativeness

We adopt the min-max framework to evaluate the long term benefit of launching

an action. The framework is updated in two aspects to fit in ourproblem. First, the

state evaluation for each leaf node is performed by evaluating the whole path from

the root node to the leaf node, rather than considering the leaf node only. Second,

we embed cooperative function into the evaluation process such that the character

can compete intelligently while cooperatively achieve a predefined goal.

For every edgee, we define two functions to evaluate the competitiveness

(Fcomp(e)) and the cooperativeness (Fcoop(e)). The details of the objective func-

tions will be explained in Section4.4. Suppose character A is competing with

character B and is expanding the game tree to select an action. The node expanded

by A is called a max node and that by B is called a min node. The competitive and

cooperative scores of a leaf nodel in the tree are defined as:

Scomp(l) = ∑
ei∈emax

Fcomp(ei)− ∑
e j∈emin

Fcomp(e j)

Scoop(l) = ∑
ei∈emax

Fcoop(ei)+ ∑
e j∈emin

Fcoop(e j)
(4.1)
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whereemax∪emax represents the set of edges from the root node to the leaf nodel,

with emax represents the set of edges expanded from the max nodes, andemax rep-

resents those from the min nodes. Figure4.5(Left) gives an example of leaf node

evaluation. In the figure, for the leaf nodel, Scomp(l)=Fcomp(e0)+Fcomp(e2)−Fcomp(e1)

andScoop(l)=Fcoop(e0)+Fcoop(e2)+Fcoop(e1).

Figure 4.5: (Left) The scores of the leaf nodes (squares in the figure) are evalu-

ated from the root node to the leaf nodes with Equation 4.1. (Right) Min-max is

conducted by recursively applying Equation 4.2 and 4.3 from leaf nodes to root

node.

As in traditional min-max evaluation systems, equation4.1 is applied to cal-

culate the scores of the leaf nodes only. For the internal nodes, the scores are

evaluated by propagating that of the leaf nodes recursivelyfrom the leaf nodes

towards the root node, as shown in Figure4.5 (Right). The cooperative score are

embedded into the min-max structure. It is evaluated differently for the min and

max nodes such that both characters regard the cooperative terms as benefits. For

an internal noden with its set of children nodesni, the optimal choicec of the

children nodes is evaluated as:

c =

{

argmaxi(S
comp(ni)+Scoop(ni)) if ni is a max node

argmini(S
comp(ni)−Scoop(ni)) if ni is a min node

(4.2)

and the scores of the internal nodesn are evaluated as:

Scomp(n) = Scomp(c)

Scoop(n) = Scoop(c)
(4.3)

Equation4.2and4.3are applied to evaluate all internal nodes recursively fromthe

leaf nodes towards the root node. Finally, Equation4.2 is applied to the root node

to select the optimal action to perform.
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4.3.3 Pruning Non-Plausible Choices

In order to reduce the computational cost and avoid non-plausible interactions, we

prune the mal choices of actions when expanding each node in the game tree. This

pruning can be applied alongside with traditional alpha-beta pruning as we follow

the min-max framework.

Although there are a huge number of choices for the actions tolaunch, many

of them never happen as they cause obvious disadvantages or illogical behaviors

(Figure4.6). The criteria to prune the actions based on the situation ofthe charac-

ters are listed below:

• Actions that cause penetration to the opponent: Collisions of the charac-

ters are examined. The actions that cause one character brutally overlapping

with the others are considered invalid. If none of the actions can avoid pen-

etration, we try to keep those that are penetration-free at the last frame, such

that the next interaction does not start with penetration.

• Actions that end up with wrong facing angles: We require the character

to face the opponent at the last frame of the actions. In our system, we apply

this criterion to ensure that the fighting and chasing characters do not turn

their back to their opponents when they finish any actions.

• Actions out of distance: It is meaningless to launch some actions if the

opponent is further than the reaching distance. This criterion is applied in

our fighting experiments such that the character does not attack nor defence

if the opponent is further than 1 and 3 meters respectively.

• Actions required to be launched: In some situations, only a specific set

of actions logically makes sense. This criterion is appliedin our fighting

system to enforce the characters selecting only defensive actions when the

opponent attacks.

The criteria listed above are in descending order of importance. If none of the

actions can satisfy all criteria, the subset that satisfies those of higher importance

will be selected. By pruning the actions as suggested, apart from ensuring that

animations appear natural, we reduce the computational cost of strategy making.

Empirically, we can prune at least half of the available choices using these pruning

policies. This would reduce the computational cost approximately byO(1
2AD),

whereA is the number of available actions andD is the depth of the game tree.
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Figure 4.6: Examples of actions launched by the green character that has to be

pruned: (Left) Penetrating the opponent (Middle) Turning the back to the opponent

while fighting (Right) Defending while opponent is far away

4.4 Objective Functions

In this section, we explain the objective functions used in Equation4.1 to evalu-

ate the competitiveness and cooperativeness of the interactions. The competitive

function evaluates how good an action is for a character to compete with its op-

ponent in a game. The cooperative function evaluates how good the character can

cooperate with its opponent by launching an action. By combining the two func-

tions, controllable characters with realistic behaviors can be generated. The exact

values of the parameters used in these functions can be foundin Table4.1 and

Table4.2.

4.4.1 Competitive Function

The competitive function evaluates how good each characteris competing with the

other characters during close interactions including fighting, chasing and sports.

The function consists of three terms: themovement term, thescoring term, and

the action combination term. In this section, we explain the objective of each

term, and detail the function design of each term in our system.

Themovement termevaluates the distance and facing angle. Since the char-

acter is supposed to compete with its opponent, the movementterm is defined with

respect to the opponent:

f mov1 = wθ(θ−θd)
2 +wr(r− rd)

2 (4.4)

whereθ, r are the relative orientation and distance from the opponentrespectively,

θd, rd is the preferred relative orientation and distance, andwθ, wr are the weight
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constants for each term. In our system, we always setθd = 0 such that the char-

acter tries to face the opponent.rd depends on the type of interaction and the

movement style. For example, in boxing, an infighter prefersto keep short dis-

tance with the opponent. In that case,rd is set to be small such that higher scores

are given to actions that bring the character closer to its enemy. On the contrary,

for an outboxer or a passive fighter who prefers to escape fromthe opponent, high

scores are given to actions that increase the distance between them.

The scoring term evaluates how effective the action is to compete with the

opponent based on the rules of the game. In general, it is defined as the weighted

sum of the damage the character giving to and receiving from the opponent:

f score = w+
DD+−w−

DD− (4.5)

whereD+ is the damage that the character gives to the opponent,D− is the dam-

age to be received, andw+
D, w−

D are positive weight constants for each term. In our

system of boxing, the damage is set proportional to the velocity of the attacking

segment at the moment it lands to the opponent. The weight constants depend on

the competing style of the character. For boxing, in case thefighter is an outboxer

that is less aggressive,w+
D is set small andw−

D is set large. In case a fighter is run-

ning out of time and is losing the fight, it has to fight more aggressively regardless

of the risk of being hit; in that case,w+
D is increased andw−

D is decreased.

Theaction combination termevaluates the suitability of performing an action

based on the action combination table explained in Section3.4. Considering the

action to be performed by the character and its opponent, we search the table to

see if such a pair of actions is defined:

f comb =

{

wSS if the action pair exists in the table

0 otherwise
(4.6)

wherewS is a weight,S is the suitability value as indicated in the table. In our

system, this term is only used to evaluate the quality of defensive action when the

opponent is attacking.

The competitive function is the sum of the three terms:

Fcomp = f mov1 + f score + f comb (4.7)

The competitive function is general enough to be used for various competitive in-

teractions such as fighting, chasing, and sports. For example, in a game of chasing,
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we can increase the preferred distance for the character running away, and shorten

it for the chaser. For sports like basketball, we can design ascoring function that

considers the probability to throw the ball into the basket,such that the character

will try to shoot when there is no opponent in front of it.

4.4.2 Cooperative Function

The cooperative function evaluates how much the charactersare cooperating to

achieve a common goal. In general, such a common goal is the requirement of

the animator. For example, the animator might want to specify the overall tra-

jectory of the two characters when moving. Alternatively, he/she might want the

characters to launch actions in some specific style. Such factors are evaluated by

the cooperative function. The cooperative function is composed of two terms: the

movement termand thespecial requirement term.

Themovement term is defined similarly to the one used in competitive func-

tion. The difference is that we now consider the global position and orientation of

the character after performing the action:

f mov2 = wγ(γ− γd)
2 +wp(p− pd)

2 (4.8)

whereγ, p are the global orientation and position of the character in the world

coordinate system,γd, p are the respective desired value,wγ andwp are the re-

spective weights. Empirically, we found that if we wish a character to follow a

predefined trajectory, instead of utilizing theγ term, it would be more effective

to define the trajectory as a series of check points, and update the value ofpd

whenever a checkpoint is reached.

The action requirement term gives high score to the character if a specific

action is performed:

f req =















wr whenA+ performed

−wr whenA− performed

0 otherwise

(4.9)

wherewr is the weight,A+ is the set of actions to be performed andA− is the set

of actions not to be performed. The animator can make use of the action require-

ment term to favor the use of good looking actions when they are successfully

performed. Also, by requesting a character to perform reactive motions, we im-

plicitly require such a character to be hit by the opponent, since reactive motions
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are not designed to be performed without being hit. By dynamically updatingA,

the animator can control the flow of the animation.

Finally, the two terms are summed to compose the cooperativefunction:

Fcoop = f mov2 + f req (4.10)

4.5 Experimental Result

An optical motion capture system was used to capture the motions of one actor

at a time. The frame rate was set to 60 postures per second. We have captured

the shadow boxing motion of an energetic kick boxer for 7 minutes, that of a tired

boxer for 7 minutes, and a running-around motion for 1.5 minutes. They were au-

tomatically segmented into 279, 240 and 215 actions, respectively. These motion

sets were used to control the virtual characters. Various experiments based on the

temporal expansion approach were conducted. The parameters of the competitive

and cooperative functions for each experiment are shown in Table4.1 and Table

4.2respectively.

The computation time depends on the size of the action set andthe connectiv-

ity of the Motion Graph. In general, using a computer of Pentium 4 Dual Core 3.0

GHz CPU and 2 GB of RAM, it takes 5 minutes to create a video of 30 seconds

when expanding the game tree for three levels to determine every action of the

characters. As discussed before, since the computational cost increase exponen-

tially with respect to the depth of the tree, expanding a gametree with more than

five levels is not advised.

When rendering the scene, we designed a particle system to handle unexpected

collisions among the characters and adjust the actions performed for better visual

effects. Further information can be found in AppendixA.

4.5.1 Kick Boxing

Firstly, we simulated a fight between two characters using the actions of the ener-

getic boxer. High quality interactions such as realistic attacks and defences were

shown (Figure4.7). Although both characters use the same action set, we can

simulate different levels of intelligence by altering the depth of the game tree ex-

pansion. We simulated a less intelligent fighter by setting the intelligence level

to two, and a smart fighter by setting the level to four. The intelligent fighter
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always wins the match as its decision is based on further expansion of the game

tree. When designing the weight of the objective function, since the purpose of the

movement term was just to guide the characters to their sweetspots for attacking,

its corresponding weight was set smaller than that of the scoring term.

Figure 4.7: High quality interactions simulated by the temporal tree expansion

method. The figures show realistic attacks and defences performed by the two

characters.

Secondly, we simulated a match between an energetic fighter and a tired fighter.

Since the motions of the tired fighter are slow, the tired character keeps being hit

by the energetic fighter when the intelligence levels are thesame (Figure4.8).

However, the tired character becomes stronger than the energetic fighter when it

expands the game tree much deeper than that of the energetic fighter. In our ex-

periment, we expand five levels for the tired boxer and two levels for the energetic

boxer. As a result, although the movements of the tired boxerare slow, the boxer

arranges an effective sequence of actions to hit the opponent (Figure4.9).

Thirdly, different styles of fighting were simulated by adjusting the objective

function. It is known that infighters prefer to fight in close distance, and hence use

short range attacks such as upper cuts and hooks more frequently. As a result, they

become more aggressive as the duration of such attacks are short, and stopping the

attacks will endanger the fighter as he/she will be in the reaching distance of the

opponent. On the other hand, outboxers prefer to keep distance from the oppo-

nent and use long range attacks such as straight punches and kicks more often.

They also move around more as they need to keep distance with the opponent. In

order to simulate such effects, we first classified the attacks into short and long

range ones based on the attacking positions. Then, an aggressive infighting style

is modeled by setting the preferred distance to short, and giving higher score to

successful short range attacks (Figure4.10(a)). The outboxing style is modeled
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Figure 4.8: Energetic boxer (the green character) fighting with a tired boxer (the

blue character). With the same intelligence levels, the tired boxer keeps being hit

due to (Left) the inefficient attacks and avoids, and (Right) slow movements such

as turning around.

Figure 4.9: Energetic boxer (the green character) fighting with a tired boxer (the

blue character). With a superior intelligence level, the tired boxer can hit the oppo-

nent with an effective arrangement of the slow punches.

by setting the preferred distance long and giving higher scores to successful long

range attacks (Figure4.11(b)).

Then, a scene of a crowd of fighters moving along predefined pathes while

fighting was simulated (Figure4.12). Each of the pathes is modeled as a series

of check points to be reached by a pair of characters. Each check point is defined

by a 2D position on the floor, an optional timing value, and theoptional require-

ments on action usage. Whenever a character reach the position of the current

check point, and wait until the indicated time has reached, we update the check

point to the next one. Since the movements of the characters are constraints statio-

temporally, we can design a scene with a lot of characters without any risk of un-

expected collision. We made use of the movement term in the cooperative function

in Equation4.10such that higher score is given to an action that guides the char-
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Figure 4.10: Infighters simulated by our system that prefer (Left) short distance to

opponent and (Right) short range attacks such as hook punches, upper cuts, elbow

punches and knee kicks.

Figure 4.11: Outboxers simulated by our system that prefer (Left) long distance to

opponent and (Right) long range attacks such as kicks and straight punches.

acters to the next check point. We also make use of the action requirement terms

to tell the blue characters knock down their opponents at thelast check points. On

the other hand, the fighting behaviors of the two characters are simulated by the

competitive functions in Equation4.7.

4.5.2 Chasing and Running Away

A scene where a character chases another was simulated (Figure4.13). The move-

ments of both characters are based on the running-around motion. The preferred

distance of the chaser is set short and that of the character that is running away is

set long. Moreover, based on the scoring function, when the chaser catches the op-

ponent, high score is given to the chaser and high penalty is given to the opponent.

As a result, the chaser tries to approach its opponent while the opponent tries to get

away. When we increase the intelligent level of the chaser to four and lower that
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Figure 4.12: TA crowd of characters fighting with the opponents competitively while

following predefined curve cooperatively using our multi-modal framework.

of the running away character to two, the chaser can catch theopponent quickly

(Figure4.14). By integrating the cooperative function, we can simulate catching

and running away characters while following a predefined trajectory (Figure4.15).

Figure 4.13: The green character chasing and catching the blue one. In this case,

they have similar intelligence levels, and hence the green character can rarely catch

the opponent.

We also simulated a scene where two characters chase one character. In this

case, the game tree is composed of nodes and edges which represent the actions of

three characters. The score of the each action is computed based on the status of

two characters. The score of the chaser is computed by the chaser’s action and the

current status of the character running away. The score of the character running

away is computed by its action and the status of the chasing character that is closer

to it. When evaluating the leaf nodes of the game tree, the scores of edges by the

chasers are summed. As a result, the chasers cooperate with each other to catch

the character that is running away (Figure4.16).
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wθ wr θd rd w+
D w−

D wS

General Boxer 101 101 0◦ 0.8m 105 105 102

Infighter 101 101 0◦ 0.5m 105/101 † 105 102

Outboxer 101 101 0◦ 2.0m 101/105 † 105 102

Boxer (Path) 101 101 0◦ 0.8m 105 105 102

Chaser 101 101 0◦ 0.1m 105 0 0

Runaway 101 101 0◦ 3.0m 0 105 0

Chaser (Path) 101 101 0◦ 0.1m 105 0 0

Runaway (Path) 101 101 0◦ 3.0m 0 105 0

† The parameters used for short range and long range attack respectively

Table 4.1: The parameter used in the competitive function to simulate various ef-

fects

wγ wp wa

Boxer (Path) 0 101 106

Chaser (Path) 0 101 0

Runaway (Path) 0 101 0

Table 4.2: The parameter used in the cooperative function (Unlisted simulations do

not require the cooperative function)
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Figure 4.14: The green character chasing and catching the blue one. The green

character is set of have a higher intelligent level, and hence is able to catch the

opponent quickly.

Figure 4.15: The green character chasing and catching the blue one. The catch-

ing and running away behaviors correspond to the competitive function, while the

behaviors to follow the path correspond to the cooperative function.

4.6 Discussions

4.6.1 Action Evaluation

The action combination term (f comb) in Section4.4 is currently defined as an el-

ement of the competitive function (Fcomp). This is because the term is used to

model the attack-defence relationship, and we wish the smarter character to per-

form better defensive motion. However, in case the animatorwants the two charac-

ters to cooperatively perform nice-looking interactions,the term has to be moved

to the cooperative function (Fcoop), otherwise the two characters will prevent their

opponents to act as indicated in the action combination table.
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Figure 4.16: The two green characters chasing and catching the blue one. Since

the score of the two green characters are summed, they form a team and catch the

blue character cooperatively.

4.6.2 Game Theory Related

In our model, we assume each character has perfect knowledgeon its opponent

in terms of the opponent’s strategy and action evaluation functions. Due to such

knowledge, the min-max search always gives optimal results. However, if the

knowledge on the opponent is incomplete and inaccurate, opponent-model search

[Carmel & Markovitch(1996)] and probabilistic opponent-model search [Donkers et al.

(2001)] may perform better. Opponent-model search can improve the performance

on decision making by building a profile on the opponent basedon a history of pre-

vious moves [Donkers(2003)]. On the other hand, probabilistic opponent-model

search assumes the actual profile of the opponent to be a mixture of several prede-

fined profiles [Riley & Veloso(2006), Donkers et al.(2004)]. Both methods take

advantages on the observation on the opponent and select theactual optimal ac-

tions. For example, in a chess game, the min-max search considers experienced

and novice opponents in the same way [Shannon(1988)], while opponent-model

search and probabilistic opponent-model search take into account the mistakes that

are made by the opponents [Donkers et al.(2001)].

To implement opponent-model in our system, one simple approach is to ob-

serve the actual moves made by the opponent. Then, during thetree expansion pro-

cess, we determine the probabilities of the opponent to launch its actions based on

the observed history, and evaluate the opponent nodes with the expectation values.

However, we prefer min-max rather than opponent-model in the our system. This

is because the temporal tree expansion method is slow and hence its application

is limited to computer animation rather than computer games. Opponent-model is
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useful in computer games, where the opponent is a human character, and the com-

puter controlled characters need to adapt to the behaviors of the human character.

However, in computer animation, we wish the characters to bewell controlled and

acts consistently. The behaviors of the characters are normally predefined by the

animators, and hence the opponent-model cannot benefit the system.

Nash equilibrium is considered to be a solution for most gametheory based

system. In such equilibrium, all players in the game cannot obtain better rewards

by changing their control strategies. It is proved that there exists at least one Nash

equilibrium point in any game with a finite set of actions [Neumann & Morgenstern

(1944), Nash(1951)]. While a lot of researches focus on computing the equilib-

rium points in a game [Avis et al.(2010), Solan & Vieille (2010)], we try to avoid

approaching equilibrium in our system. This is because whentwo characters are

close to an equilibrium point, they are very likely to stay atthe point for a long

duration, which leads to a monotonic animation. One exampleof the equilibrium

in a fighting game is that both characters defense themselvesforever, which is ob-

viously not what we wish to see [Thore Graepel(2004)]. Fortunately, since each

action in our system has specific attacking and defending points with different du-

rations, the state space in our system is highly irregular. This reduces the chance

that the characters stay at an equilibrium point. Furthermore, we give penalty to

actions that are recently used. With such a penalty function, even if the characters

reach an equilibrium point, the point will shift to other locations in the next time

step.

4.6.3 Usage Complexity

The proposed algorithm is easy to use. Still, animators are expected to have basic

understanding on the parameters that affect the tree expansion process, such as the

depth of the game tree and the parameters in the objective functions, in order to

generate the required style of animation. One advantage of the system is that it is

based on short horizon optimization. In other words, once the parameters are set,

the results can be generated almost immediately. Therefore, it is possible to tune

the parameters by trial and error.

Currently, we implemented functions to monitor the collisions of characters.

Such information is used in the objective function to determine valid attacks and

defenses in a fight, as well as valid catches during chasing. We also have func-
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tions to monitor the position and orientation of the characters, which are used to

determine the characters’ movements. Although these monitoring functions cover

a large area of interactions, some animators may wish to define other means to

evaluate the actions. In such a case, they need to implement additional monitor-

ing functions, and integrate them into the objective functions. This will require

in-depth understanding on the system.

Designing the trajectories of movement is straight forward. We provide anima-

tors with functions to construct simple trajectories such as straight lines, arcs and

circles. The animator can then adjust the trajectories and insert action requirement

constraints if needed. Our system can highlight overlapping area among trajecto-

ries by considering both spatial and temporal information of the checkpoints, and

give the animators a better understanding on what will happen.

The proposed algorithm is fully automatic except adding semantic tags to clas-

sify the actions. Such tags are necessary for coupling the attacks and defenses, and

usually require the knowledge from specialist in the field. If we have a number

of tagged actions already, this process can be automated as the newly captured

actions can be tagged based on the similarity to existing actions.

4.6.4 Limitations

There are also some drawbacks in our system. Firstly, the invalid combinations

for pruning the sub-tree during the temporal expansion mustbe determined by the

expert who knows the nature of the interactions well. Secondly, we cannot cur-

rently handle continuous contacts such as those appearing in wrestling. However,

such continuous contact does not happen often in martial arts such as Karate, kick-

boxing, Taekwondo, or other sports such as basketball, soccer or rugby. In other

words, our method can be applied for most competitions.

4.6.5 Computational Cost

The process of expanding the game tree takes up a major part ofthe computa-

tional power. Fortunately, this process can easily be broken down into multiple

parallel processes. More specifically, we can implement a multi-thread system

with each thread expanding a sub-tree of the whole game tree.As multi-core pro-

cesser becomes cheap and popular, the performance of our method can be greatly

enhanced.
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When applying our method to generate an animation of mass crowd fighting,

expanding the game tree for all the characters in a single tree is computational

costly and quite a waste as characters far away cannot actually interact. We can

handle such cases by first finding out the small of group of people having interac-

tions and expand different game trees for each group. We can monitor and switch

in and out the members of the group in case the distance from each other becomes

smaller or larger.

4.7 Summary

In this chapter, we presented a method to simulate competitive scenes in which

multiple characters are densely interacting with each other using singly captured

motions. We proposed a method called temporal expansion approach to determine

the strategy of the character. We showed that various stylesof fighting and chasing

can be created by changing the parameters of the game tree such as its depth and

the evaluation function. We embedded the cooperative functions into the min-max

framework such that the characters can follow high level instructions cooperatively

when competing with each other. As a result, we can create intelligent characters

that can compete well and be controlled easily.
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Interaction Graph

Intelligent computer-controlled characters are essential in computer games and an-

imation. In many computer games, users can usually control acharacter to interact

with other computer controlled characters. The intelligence of the computer con-

trolled character is important as it can affect the quality of the game. On the other

hand, background characters in computer animation are alsousually controlled by

the computer. If their movements are unrealistic due to their poor intelligence, the

animator needs to manually edit them, which will result in a huge amount of extra

cost. In theory, the temporal tree expansion method in Chapter 4 is a perfect so-

lution to generate characters with realistic interactions. However, in practice, the

algorithm is too computational costly to be used for real-time applications such as

computer games. Moreover, if there are a huge number of characters in the scene,

the time required to plan the movements for all characters will be very long even

as an offline process.

Traditional techniques such as decision trees and flocking have been used to

control such characters. However, those techniques can only generate reactive

movements, and cannot realize strategic movements that benefit the characters in

the future.

Reinforcement learning enables real-time optimal control of characters. It has

been used to control pedestrians to avoid other obstacles orcharacters walking

in the streets [Ikemoto et al.(2005), Treuille et al.(2007)], control a boxer to ap-

proach and hit the target [Lee & Lee(2004)], make the transition of actions by the

user-controlled character smooth [McCann & Pollard(2007)], and train a com-

puter controlled fighter in computer games [Thore Graepel(2004)]. However,

there are two problems that we face when we try to use reinforcement learning

55
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to control human characters intelligently when they are interacting with another

character.

First of all, the state space is too large. The state space increases exponentially

with respect to the number of parameters. Parameters such asthe action the char-

acter is undertaking, its body position and orientation, and the timing to launch

the action are going to form the state space. The number is going to be doubled

if there are two characters. As a result, it is difficult for existing adaptive learning

techniques such as Q-learning [Watkins(1989)] to explore the whole state space

to search for optimal policies.

Another problem is that the way the people behave change according to vari-

ous factors such as their mood, habits, and preferences of actions; however, pre-

vious animation techniques used “on-policy” [Sutton & Barto(1998)] reinforce-

ment learning methods, which require the system to be retrained in case the reward

function is changed. For example, in boxing, there are boxers called infighters who

prefer to fight aggressively in short distance, and use punches such as upper cuts

and hooks more. On the contrary, there are outboxers, who prefer to stay away

from the opponent and as a result, prefer to use straight punches which are effec-

tive in long distance. If we train a virtual boxer by an on-policy reinforcement

learning approach, it will not be able to compete well with other fighters who have

different styles of fighting. The system needs to be pre-trained for various types of

fighters, and the policy needs to be switched according to thetype of the opponent,

which will be very computationally costly.

In this research, we make use of the fact that the subspace of meaningful in-

teractions is much smaller than the whole state space of two characters. We ef-

ficiently collect samples by exploring the subspace where dense interactions of

the characters exist and favoring samples which have high connectivity with other

samples. Using the samples collected, a finite state machine(FSM) called Inter-

action Graph is composed. In order to control the character in an optimal way, a

min-max search / dynamic programming is conducted on the Interaction Graph.

Our character controlling policy is close to the optimal policy, although we

plan actions only on a subset of the whole state space. As the way the space is

explored is independent of the reward function for strategymaking, we can also

recompute the policy of the characters in run-time based on the user’s preference.

We can simulate various activities by two characters such asfighting, chasing,

playing sports, or carrying luggage together. Our method can plan strategic move-
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ments for Non-Player Characters (NPCs) in 3D computer games. For example,

we can control virtual fighters in boxing games, or the background crowd moving

or fighting with each other in computer animations, or characters collaboratively

working, such as carrying a box.

5.1 Contributions in This Chapter

• We propose a new off-policy learning approach that can sample a huge state

space by using criteria that favor states with good connectivity and more

interactions.

• We propose a finite state machine called the Interaction Graph to precom-

pute the optimal actions for a character to collaborate or compete with an-

other character intelligently.

5.2 Outline of the Method

The outline of Interaction Graph is shown in Figure5.1. It consists of five steps:

1. Capture the motions of a single person conducting the target motion.

2. Generate the action level Motion Graph structure out of the motion data.

3. Explore the combined state space of two characters by simulating the inter-

actions of the two characters and expanding the game tree.

4. Generate the Interaction Graph of the two characters and find the most ap-

propriate movements of the characters at each node by dynamic program-

ming or min-max search.

5. At each state, the corresponding character selects the precomputed optimal

action. If the animator/user wants to change the policy/strategy of the con-

trol, the information in the lookup-table is recomputed by re-running dy-

namic programming or min-max search. This can be done in a fewseconds,

and can be run in background while simulating the interactions.

Steps 1 to 4 are precomputed during the preprocessing stage,while step 5

is done during run-time. Since the optimal policy to controlthe characters is
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precomputed, the run-time overhead is very small. Hence, our system can simulate

interacting characters in real-time.

Figure 5.1: The outline of the Interaction Graph.

5.3 Sampling the State Space

In this section, we explain how we explore and collect sampledata in the state

space of two interacting characters.

5.3.1 State Representation

Here we explain how the status of two interacting charactersis represented; the

approach is general enough so that any kind of interactions can be applied. The
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state space we consider here is composed of statuses when either character has

finished an action and is about to start a new action. It can also be statuses when

an action of the character is interrupted by the other character and is forced to start

a new action.

Suppose we define the two characters byA andB. We express the state when

characterA is about to select the next action by the following vector:IA = (r, θa,

θb, Next(Ma), Mb, Fb) wherer is the distance between the two characters,θa and

θb are the angles made between the facing direction of character A and B, and the

line connecting the two, respectively,Ma is the action just finished by character

A, Mb is the action character B is currently undertaking,Next(Ma) is the set of

actions that can be launched afterMa, andFb is the frame number character B is

at in actionMb (Figure5.2). The facing direction of each character is determined

by its orientation of the head. We can define a state where characterB is about to

select an action in the same way:IB = (r, θb, θa, Next(Mb), Ma, Fa), where the

variables are defined in the same way as those of characterA.

Figure 5.2: Elements of the state that represent the relationship of the two charac-

ters interacting

5.3.2 Data Sampling

The data samples are collected by simulating the interactions of the two characters

as explained in Section4.3, and saving the state samples ofIA and IB. During

the simulation, when a character ends its action, it selectsan action among the

next available actions inNext(M{a|b}). Instead of continuously simulating the

interactions along the time line as done in other adaptive reinforcement learning

approaches, we collect the samples by selectively expanding the game tree (Figure

5.3). The nodes of the tree represent the states such asIA andIB, and the edges

represent the actions that can be chosen by the character.

The most important issue in this research is how to select a sample in the game
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Figure 5.3: An expanded game tree. The nodes represent the states of interaction

when either fighter launches new actions. Each edge represents the action that

has been selected by the fighter.

tree, and how to further expand the tree. We need to explore the space well enough

to find the policy that can give the optimal solution to the character. On-policy

methods such as SARSA [Rummery & Niranjan(1994)] have been used to train

the computer controlled characters [Thore Graepel(2004)]. In on-policy meth-

ods, the samples collected are dependent on the reward function. Such methods

will selectively explore the subspace which gives better rewards. For the simu-

lation of two characters interacting, the user might preferto change the behavior

of the characters by adjusting the reward function. In such acase, if we use on-

policy approaches, we need to retrain the system all over again. Instead, we use an

off-policy approach here, in which the way we explore and collect samples is inde-

pendent of the way the actions are rewarded. Using such an approach, the samples

obtained can be used for different reward functions. As a result, we can change

the behavior of the human character controlled by the systemduring run-time.

However, we cannot use well-known off-policy approaches such as Q-learning

[Watkins(1989)], in which the selection of the action is strongly affectedby a ran-

dom factor. This is because the state space is too large. In this research, we explore

the state space in a specialized way for the interactions of two characters. We use

an off-policy approach in which the criteria of selecting the space to explore are

independent of the reward function. We need to explore the subspace that includes

a lot of meaningful interactions between the characters.

Starting from an appropriate state, we expand the game tree.We favor states

which (1) have high connectivity with other samples, and (2)results in dense in-

teractions of the characters.

Criterion (1) can be evaluated by counting the number of edgesgoing out
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from the state that redirect the characters to existing states in the state archive. Let

us define this number byJ1. We adopt criterion (1) because we require a graph

with high connectivity to increase the controllability of the character. A state of

low connectivity is less useful as the chance to visit it is low and it is difficult to

get back to other important states. If the number of states with low connectivity

increases, the character needs to pass through a lot of extrastates to finally start an

effective action. This drops the performance of the character and eventually the

animation will also appear unnatural.

Regarding criterion (2), the way to evaluate the quality of interactions between

the characters must be defined by the user: this can be simple if we are handling

activities in which objective is clear. For example, it is easy to define the quality

of collaborative interactions such as carrying luggage together or competitive in-

teractions such as fighting. The first way to evaluate an interaction is by setting

constraints. For example, when carrying luggage together,the two characters must

not be too far away from each other as the luggage will fall down onto the ground.

Actions leading them to get too close also cause problems. Therefore, thresholds

to keep the distance between the two characters are set. Actions that violate such

constraints can be considered as unsuitable and can be givenlow scores. For com-

petitive actions such as boxing, the objective is to hit eachother, or block / avoid

those attacks which will otherwise cause the character to fall down. For boxing,

we evaluate the amount of dense interactions by the sum of attacks in the reaching

distance and effective defence actions by both characters.Let us define the amount

of interaction byJ2.

At every state visited, we computeJ1+J2 of all the actions that can be launched.

The children nodes are sorted based on the score, and the top 30% nodes will be

further expanded. All the nodes explored in the game tree aresaved in the sample

archive.

The exploration continues until either the number of samples in the archive

reaches a maximum limit, or until the number of newly createdsamples that do

not duplicate with those already in the archive becomes smaller than a predefined

threshold.
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5.4 Interaction Graph

Based on the samples collected in the previous section, we compose a FSM whose

states represent the interactions of two characters. We call this FSM the Interac-

tion Graph. Once the Interaction Graph is composed, by defining the objective

function that evaluates the action chosen by each character, we can search for the

optimal action by using dynamic programming or min-max search. It is also pos-

sible to change the way each character behaves by editing thereward function and

recomputing the policy in run-time.

In the following subsections, we explain about composing the states of the

Interaction Graph based on the collected samples, connecting the states by edges,

and finally searching for the optimal action at every state onthe graph.

5.4.1 Creating States of Coupled Actions

After producing sufficient samples of interactions, the similar ones are grouped

together using K-mean, and the states of the Interaction Graph are produced. A

distance functionD is defined as follows to calculate the difference between two

samplesIi = (ri, θi
a, θi

b, Next(Mi
a), Mi

b, F i
b) andI j = (r j, θ j
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(5.1)

whereσr and σθ are constants to normalize the effects of the distance and the

rotation angles respectively, andF ′
e is a threshold value.

Empirically, we found thatσr = 0.5m, σθ = π/6 give good results. A state of

the Interaction Graph is produced for every clustered group, which is represented

by the average sample (Figure5.4).

One important issue is how to determine the tolerance for grouping samples.

If this value is too small, there are going to be too many states, and if this value

is too large, there are going to be too many artifacts, such asfoot sliding, sudden

rotation of the body, and fast transition from one posture toanother. Since foot

sliding is the most noticeable artifact, we determine the threshold in a trial and

error manner based on the amount of foot sliding that can occur.
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Figure 5.4: Grouping samples to form nodes in the Interaction Graph. Using the

samples created by tree expansion, the nodes are composed by grouping similar

samples.

5.4.2 Creating the Edges of the Interaction Graph

An edge in the Interaction Graph represents an action performed by the character,

and points from the original state before the action to the resultant state after the

action. Recall one of the elements in the state,Next() is the set of next available

actions by the corresponding character. For every action inNext(), as a result

of launching it, we might arrive to another state in the Interaction Graph. If that

happens, the two states are connected by an edge. However, since the graph does

not cover the whole state space, there is a chance that no state is available in the

graph after an action is launched. In that case, the edge is not generated, and the

character will not launch such an action at the state. After scanning through all the

Next() actions in all the states and linking the states by edges, thecomposition of

the Interaction Graph is completed (Figure5.5).

5.4.3 Search on the Interaction Graph

Once the Interaction Graph is created, we can do strategy-making by using dy-

namic programming or min-max algorithm. If the two characters are collabora-

tively working, they will select actions that maximize a common return function.

Such a problem can be solved by dynamic programming. In case of competi-

tive activities such as boxing, each character will try to maximize its own return

value and minimize the opponent’s return value. Such a problem can be solved by

min-max search. In either case, we first need to define the reward function that

evaluates the individual interaction. The rewards for eachaction at each state are
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Figure 5.5: Creating the edges of the Interaction Graph: (Left) the state sampled

by tree expansion in the state space (Right) the Interaction Graph generated by

connecting the sampled states with actions as edges

precomputed, and therefore, its computational cost does not affect the run-time

performance.

To simulate two characters intelligently interacting witheach other, we need

to find the optimal policy to control the characters. More specifically, at each time

stepi, suppose the character selects an action and gets areward defined byri.

Theoptimal policy π offers an action at every state that maximizes the following

return value:

R = ∑
i

γiri (5.2)

whereγ is called thediscount factor, with the range defined as 0≤ γ ≤ 1.

Let us define the reward function for carrying luggage as an example of col-

laborative activities. If we want the characters to proceedto a specific direction

with respect to their average facing direction, we can compute the rewardrφ as

follows:

rφ = wθθ2 +wd(d −dp)
2 +wv(v− vφ)

2 (5.3)

whereθ is the relative orientation of the carriers with respect to their partners,d is

the distance with the opponent,dp is the desired distance between the two,v is the

average velocity of the two characters,vφ is the preferred average velocity of the

two characters that define the desired direction of movement, andwθ,wd,wv are

the weight constants for each term. We computerφ for eight different directions, as

we would prefer to interactively control the two charactersto different directions
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during runtime. Using the reward function, we can compute the return value at

each state by Equation5.2using dynamic programming.

For competitive interactions such as boxing and chasing, weuse the simplified

version of the objective functions defined in Section4.4. Let us briefly review

the reward function that evaluates the action of fighters. Itis composed of three

criteria: (1) the relative orientation (θ) and distance (r) of the fighter from the

opponent, (2) the damage the fighter has given to the opponent(D+), and (3) the

damage the fighter received from the opponent(D−). The reward we use has the

following form:

rbox = wθθ2 +wd(d −dp)
2 +w+

DD+−w−
DD− (5.4)

wheredp is the preferred distance by the fighter,D+ is the damage that the fighter

has given to the opponent,D− is the damage received, andwθ,wd,w
+
D,w−

D are the

weight constants for each term.

In case of competitive activities, we do min-max search instead of dynamic

programming, on the Interaction Graph. Let us explain how todo such a min-max

search on the Interaction Graph. AssumeWi, j to be the reward of thej-th transition

going out from statei and is computed by the reward functions (Equation5.4 for

fighting). The value tells us how much the character earns or loses by launching

the j−th action at stateSi. For all state-action pairs,Wi, j are precomputed so that

there is no need to evaluate the interactions of characters during run-time. Suppose

the best score the character can obtain from stateSi as a result of searchingd levels

ahead isVi,d, and we knowVi,d for all the nodes already. The value ofVi,d+1 can

be computed by checking all the out-going edges from stateSi, sum the reward

of the edge(Wi, j) with the return value of child state for depthd, and find out the

edge that returns the largest (if it is a max node) or smallest(if it is a min node)

value (Figure5.6):

Vi,d+1 = {max/min}(Wi, j +Vs(i, j),d) (5.5)

The ID of the best next state is saved inEi,d+1. The pseudo code of this procedure

is shown in Algorithm 1.

The computational cost for finding the optimal path for min-max search is

O(N×D), whereN is the total number of states in the FSM andD is the maximum

depth of the min-max search.

All Ei,d, which are the best states to transit to next at each state, are saved

in a look-up table. This min-max computation has to be done only once for the
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Algorithm 1 Min-max on the Interaction Graph

/* Initialize the score of 0-depth to 0 */

for i = 0 to N −1 do

Vi,0 = 0

end for

/* Evaluate the optimal action */

/* For each depth of search */

for d = 0 to D−1 do

/* For each stateSi of the FSM */

for i = 0 to N −1 do

/* Scan the children ofSi */

/* si j is its index of thej-th child of Si */

if Si is a max nodethen

Vi,d+1 ⇐ max j{Vsi j,d +Wi, j}

Ei,d+1 ⇐ si j s.t. max j{Vsi j,d +Wi, j}

else{ Si is a min node}

Vi,d+1 ⇐ min j{Vsi j,d +Wi, j}

Ei,d+1 ⇐ si j s.t. min j{Vsi j,d +Wi, j}

end if

end for

end for
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Figure 5.6: Every node has a table which keeps Vi,d , which is the best score the

character can obtain from state Si as a result of searching d levels ahead. The

number of out-going edges from Si is Ni, the ID of the state on the other end of the

j-th edge from state i is si j.

whole graph unless the evaluation function is changed. Thishappens only when

the user wants to change the parameters or sub-functions in Equation5.4. Even if

that is the case, it can be done in a very short time as all the parameters required

to recompute them are embedded in the data structure of the transition.

5.5 Experimental Results

We have simulated scenes of fighting as examples of competitive interactions and

scenes of carrying luggage as examples of collaborative interactions. We have

captured the shadow boxing of a boxer for 2.5 minutes, and motions to carry

objects for 2.5 minutes. Each motion was segmented into 137 and 167 actions,

respectively, and was classified into different groups. A simulation based on the

game tree expansion was first done to compute and collect the samples. Using the

obtained samples, Interaction Graphs of different categories were created.

As in the previous chapter, a particle system was used to handle unexpected

collisions among the characters and adjust the actions performed for better visual

effects. Further information can be found in AppendixA.
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5.5.1 Competitive Interactions: Kick Boxing

We created a motion database of kick boxing. Then, we generated an Interaction

Graph of 79,855 states and 3,392,297 edges. The construction of the Interaction

Graph took around 180 minutes using a Pentium 4 Dual Core 3.0 GHz CPU and

2 GB of RAM.

5.5.1.1 Game-Style One-to-One Fighting

In order to show the real-time performance of our system, we have implemented a

game-style interface which the user can control a characterto fight with the com-

puter controlled character (Figure5.7). The user can give high level commands

such as “move forward / backward ”, “turn left / right ” “punch”, “kick”, “dodge”,

and “avoid” to the character; the best action that belongs tosuch categories are

selected based on the Interaction Graph. The action of the opponent character is

selected based on min-max search in the graph. All these searches can be under-

taken just by looking up the table, and therefore, the computer controlled character

can react in real-time.

Figure 5.7: Using the game style interface, the user can control a character to fight

with the computer controlled character by the Interaction Graph.

A screen shot of such a scene is shown in Figure5.8. The strength of the

computer controlled character can be adjusted by the depth of the search on the

Interaction Graph; if we want to keep it weak, we can set it to 1, which means the

computer controlled character will only select the action with the best immediate

effect. It can be made stronger by increasing the depth of thesearch.
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Figure 5.8: Using the high level commands, the user interacts with the computer

controlled character based on Interaction Graph.

5.5.1.2 Multiple Characters Fighting

We can easily increase the number of boxers and create a scenewhere many char-

acters are fighting with their opponents (Figure5.9). The characters are split into

two teams, and each character fights with the closest character in the opposite

team.

Figure 5.9: Using the Interaction Graph, we can simulate a lot of characters fighting

with each other in real-time.

During the simulation, sometimes other boxers get closer than the opponent

the boxer is currently fighting with. In such a case, the boxerswitches the oppo-

nent. Therefore, in some cases there are scenes where one character appears to be

fighting with two or more characters. Also, there are cases that multiple characters

fight with the same enemy due to the lack of enemies. Each of them will therefore

consider the enemy is fighting solely to itself. However, since the state space only

defines two characters, the enemy will only decide its actionbased on one of its

many opponents, which is the closest one.
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5.5.1.3 Changing Fighting Styles During Run-Time

In order to show the effect of changing the reward function during run-time, we

have enabled the computer controlled character to change the style of fighting

while fighting with the user-controlled character. When the style of fighting is

switched to outboxing, if the user character approaches to the computer character,

it will step backward or to the side to keep the distance between the two. On the

other hand, when the computer character’s style is switchedto infight, it becomes

more aggressive and always tries to hit the user fighter. Snapshots are shown in

Figure5.10and Figure5.11. Regarding the parameters of the reward function, we

used the same values as those in Chapter4.

Figure 5.10: Computer controlled character fighting with outboxing style

Figure 5.11: Computer controlled character fighting with infighting style. Fighting

Styles can be switched during run-time.

The computation of new rewards for different fighting stylestakes merely a

few seconds. We can compute the new rewards using a background thread when-

ever the user requests a change on style. Alternatively, we can precompute two

Interaction Graphs of different reward functions, and switch between the graphs

during run-time.
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- Human Static Game Tree 2 Game Tree 3

Interaction Graph 1 -15 34 -37 -53

Interaction Graph 3 23 54 14 -19

Interaction Graph 5 28 55 28 -4

Table 5.1: The score table of the matches between the Interaction Graph controlled

character and the human player (Human), a character trained based on static ob-

jects (Static), and game tree search with expansion of two levels (Game Tree 2)

and three levels (Game Tree 3). Each row shows the scores when the depth of the

search on the Interaction Graph is 1, 3 and 5.

5.5.1.4 Comparison of Different Controllers

We held matches between a character controlled by the Interaction Graph with

three sorts of boxers; a human-controlled character, a computer controlled char-

acter trained to hit a static object [Lee & Lee(2004)], and a computer controlled

character by game tree expansion with the full character state space. The character

trained to hit the static object is considered to be the weakest, as it has no idea of

defence. The character based on the game tree expansion is the strongest, as it

evaluates all possible combinations by expanding the game tree; however, it can-

not select an action in real-time when the depth level is≥ 3. The results are shown

in Table5.1. The scores are calculated by subtracting the number of successful

attacks by the Interaction Graph controlled character fromthe successful attacks

by the opponent.

It can be observed that an Interaction Graph controlled character is already

too strong for the human controlled character to compete with when the depth

level is over three. The character trained based on the static object also cannot

perform well as it does not have any concept of defence. The Interaction Graph

controlled character is weaker than that controlled by gametree expansion. The

strength of the fifth level Interaction Graph character is about the same as the

three level game tree boxer. This is because the game tree boxer’s action is based

on the precise simulation of the fight. On the other hand, the choice of actions

by the Interaction Graph includes quantization error. When the depth of the level

increases, the quantization error starts to accumulate. Five levels of expansion is

equivalent to a movement of 2.5 seconds in average. In activities such as fighting,

each action is very quick and short; 2.5 seconds is already very long ahead in the
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future compared to the duration of each individual action. Therefore, we can say

our results are satisfactory, taking into account that the characters can perform

near-optimally by simply using a look up table.

In order to check how many of the important states the Interaction Graph is

covering, we have examined how many of the states visited by the game tree ex-

pansion approach are covered by the Interaction Graph. If this ratio is high, that

means the Interaction Graph has a control policy comparableto that of game tree

expansion. The result was 93%, which is very high, considering the actual size of

the state space.

5.5.2 Collaborative Interactions: Carrying Luggage

We created a motion database for carrying luggage. In fact, the database only con-

tains the motions of a single character walking around, while the arm movement

of carrying luggage is generated by inverse kinematics. An Interaction Graph of

128,804 states and 4,685,246 edges was generated. The construction of the Inter-

action Graph took around 200 minutes using a Pentium 4 Dual Core 3.0 GHz CPU

and 2 GB of RAM.

5.5.2.1 Avoiding Balls While Carrying Luggage

Rewards were set to move the characters to eight locations around the characters,

and eight different policies were computed to move to each location. Once the

policies are obtained, the user can interactively specify the direction the characters

should move, and the optimal action is chosen from the corresponding policy. The

user can control the characters to move to arbitrary directions to avoid being hit

by balls rolling in random directions. Screen shots of the characters controlled to

avoid the obstacles are shown in Figure5.12.

5.6 Discussions

5.6.1 State Sampling

Due to the exponentially growing size of the state space withrespect to the di-

mensionality, reinforcement learning could not be efficiently applied for dense

interactions such as fighting, in which the characters need to take into account
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Figure 5.12: Screen shots of the characters controlled to avoid the ball while

holding a box.

the full status of the opponent. However, the subspace that meaningful samples

exist is biased. By searching samples in the high density subspace, it is possible

to compose a FSM called the Interaction Graph that enables intelligent control in

real-time.

In our method, as the criteria to determine the subspace to explore is indepen-

dent of the reward function that evaluates each action, the Interaction Graph can

be used for different rewards, and it can be adjusted even during run-time. As a

result, we can simulate the movements of different styles ofinteractions, such as

infighters or outboxers who have different preferences for attacks and defences.

5.6.2 Action Evaluation and Selection

The proposed method is deterministic; the action to be selected is determined

based only on the min-max score computed over the Interaction Graph. The sys-

tem can easily be switched to a probabilistic system, as donein previous works

[Lee & Lee (2004)]. We can set the probability that the character selects each

action according to the min-max score, and use the Russian roulette approach to

determine the action. We can also decrease such probabilityaccording to the num-

ber of times that that action has been selected at that state.For applications such

as games, this approach can be a good method to randomly determine the actions

of the computer controlled character.

In our experiments, we do not include the discount factor when evaluating the

actions at each state. This is because the depth of the searchis only up to five lev-

els, and the predictions are reasonably accurate. If a deeper search is required, we

can use the discount factor when recursively computingVi,d+1 in the Interaction
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Graph at Algorithm 1. In such a case, Equation5.5will be calculated asVi,d+1 =

{max/min} (Wi, j + γVs(i, j),d) whereγ is the discount factor.

5.6.3 Game Theory Related

Since the Interaction Graph can be applied in computer games, there is a demand

to model the behavior of the human player and apply opponent-model search

[Carmel & Markovitch(1996)] or probabilistic opponent-model search [Donkers et al.

(2001)] instead of min-max search. By this way, the computer controlled charac-

ters can adapt to different human players. However, as thereis a strong rela-

tionship between the actions launched and the corresponding states, modeling the

human player is tough due to the high dimensional state space. Further research

will be required to generalize the history of launched actions in the state space,

and model the player with minimal resources.

5.6.4 Comparison to Reinforcement Learning

The Interaction Graph is a machine learning based approach,and has a lot of

similarities with reinforcement learning [Sutton & Barto(1998)]. Like temporal

different learning, we rely on dynamic programming to evaluate the state values.

Moreover, similar to off-policy temporal different learning methods such as Q-

learning, we maintain two policies. The behavior policy is used to explore the state

space while the estimation policy is used to estimate the state values. The major

difference is that in our system, the state sampling processand the state evaluation

process are completely independent. We do not revise the estimation policy until

sampling is completed. This framework has an advantage on simplicity when we

wish to change the estimation policy to model different behaviors.

One popular approach to deal with high dimensional state space is to apply

Monte Carlo Reinforcement Learning [Fishman(1996), Bouzy & Chaslot(2006)].

This approach is shown to be effective in Go, where the complexity is up to 10360.

Instead of explicitly sampling the whole state space in order to evaluate the value

of a state, we may randomly assign a actions to such state and observe the average

rewards. By repeating this process, it is possible to get an accurate estimation of

the state values. Unfortunately, such an approach is not feasible in our system.

This is because unlike Go, the action evaluation functions in our system are far

more complex, and involve computational costly processes such as the collision
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detections functions. As a result, evaluating the state value by Monte Carlo ap-

proach will take even longer than sampling the state space.

Another popular approach to deal with high dimensional state space in rein-

forcement learning is to set up a hierarchical system with options [Stolle & Precup

(2002)], hierarchies of abstract machines (HAMs) [Parr & Russell(1998)], or the

MAXQ framework [Makar et al.(2001), Shen et al.(2006)]. We will discuss these

three methods with respect to our problem.

First, reinforcement learning with options creates temporally extended actions.

With a set of starting states and a set of destination states,multiple successive

actions are combined as an option [Stolle & Precup(2002)]. One example is that

when training a robot to navigate a huge room, we may divide the room into

different areas, and train the robot to move from one area to another. Each option

contains a starting area, a destination area, and a series ofactions for the robot

to perform. By this way, a complex problem can be decomposed into a set of

smaller problems, and the optimal solution of each smaller problem is learned

with reinforcement learning. However, in our fighting problem, since the rewards

function depends on collision detection of attacking body parts, a small change in

state may result in a large change in reward. This creates a highly irregular state

space. Using the robot example, our environment is full of tunnels and warping

points. It is therefore difficult to effectively divide the state space into systemic

areas and apply options.

Second, the hierarchies of abstract machines (HAMs) constrains the actions

that an agent can take in each state, and provides a hierarchical means of ex-

pressing these constraints at different levels of detail [Parr & Russell(1998)]. For

example, when training a robot to navigate a narrow corridor, instead of allowing

the robot to move in all direction, we can tell the robot to only move forwards and

backwards. By this way, we can effectively reduce the action space. In our system

of fighting, the hard constraints serve a similar propose. Instead of allowing the

character to do any action, the actual actions a character can do is limited by dif-

ferent conditions defined in the state space. For example, for all states in which the

opponent is attacking, the character should do nothing other than defense. Simi-

larly, in those states where the opponent is far away, the character should not attack

nor defense.

Finally, MAXQ represents a problem with subtasks and subgoals, and cor-

responds the values of parent tasks with those of subtasks [Makar et al.(2001),
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Shen et al.(2006)]. A typical example is to train a robot picking up rubbish and

putting the rubbish into rubbish bins in a given environment. Instead of training

the robot in the full state space, we can divide the task into subtasks such as navi-

gating, picking up rubbish, and putting rubbish into a bin. Each subtask is trained

using standard reinforcement learning, and a global controller is trained to assign

the correct task to the robot. In our moving luggage system, we apply similar

concepts to decompose a huge task. Instead of training the characters to avoid

any obstacles with the luggage, we train the characters to move to one of the eight

quantized directions, such that the training becomes a lot simpler. The animator

acts as a global controller to assign movement directions tothe characters such

that they avoid the obstacles.

5.6.5 Usage Complexity

We create simple user interfaces for the animators, such as the game-style control

panel, to ease the animation generating process. With theseinterfaces, it is easy to

give high level commands to the characters in the scene. However, if lower level

controls are required, our interfaces may fall short. In fact, it is a tough problem

to enable the animators to control the whole scene in different level of details,

especially in a real-time basis. Such an issue would requirefurther research.

The criteria to determine the quality of interactions during the behaviors of the

characters must be specified by the animators. As the animators are only allowed

to give an abstract idea of the interaction, this might not bea difficult task. Espe-

cially in case the interactions are competitive, an abstract idea of the way the two

characters compete can already become a good hint for the criteria.

Once the criteria to evaluate the quality of interactions are specified, generating

the Interaction Graph is an automatic process. However, evaluating the quality of

the graph is difficult before this process is completed, and the graph requires hours

to be built. Thus, it is better to be careful when setting up the criteria. This is a

general problem for learning based approaches.

Similar to the tree expansion method in Chapter4, the animators need to spec-

ify how to reward the actions. This again depends on the nature of the interactions,

and the animators need to adjust it to obtain a satisfactory scene. Since the topol-

ogy of the graph is independent of the reward, the animators can interactively edit

the function and view the effect in the animation in a few seconds.
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5.6.6 Possible Extensions

Our method can be easily combined with existing FSM frameworks to control

characters in computer games such as wrestling. In such games, usually there is

one FSM for each individual character. We can let the users freely control the

characters based on the individually prepared FSM when theyare apart from each

other, and let them go into the Interaction Graph only when the dense interactions

start. Some game designers might prefer to manually design such motions so that

they appear plausible. It is also possible to design a coupled state and insert it into

an Interaction Graph.

This research can also be extended to simulate the behavior of real humans

when they are competing with each other. In scenes of competition, usually the

person does not have full knowledge about the opponent, but gradually learns it

through the interactions. The person also takes advantage of such a condition by

launching fake actions to trick the opponent. By enabling thesystem to simulate

such behaviors, it will be possible to create a virtual reality system that the athletes

can use to train their skills and simulate matches with otherathletes.

5.7 Summary

We presented a real-time approach to simulate scenes in which multiple characters

are densely interacting with each other. We proposed a method to precompute

the complex interactions of the characters by favoring states that result in more

interactions with the character and that have higher connectivity with other states.

Using our method, it is possible to cope with problems with high dimension-

ality, such as fighting. Our method can be used to control NPCs in 3D computer

games as the optimal action at every state is precomputed. Wecan even simulate

various styles of interactions as the samples collected areindependent of the cost

function used to select the optimal action.





Chapter 6

Interaction Patches

Scenes of battlefields, panicked crowds and team sports in movies and TV pro-

grams involve a huge number of interactions of multiple characters. Existing

methods have problems creating such interactions. Manually composing the scene

using singly captured motions or keyframed motions requires a huge amount of

labor by the animator. Flocking-based methods [Reynolds(1987), Helbing et al.

(2000)] have problems simulating close interactions that involve a lot of kinematic

constraints. Previous optimization-based methods [Lee & Lee(2004), Treuille et al.

(2007)] suffer when creating artistic interactions, as the objective functions are de-

signed just to benefit each character.

The Interaction Graph in Chapter5 can generate a large number of characters

with realistic interactions in real-time. However, the method suffers from two

problems. First, due to the limitation in the state space, the Interaction Graph can

only simulate interactions between two characters. Although we can extend the

algorithm and put more characters in the scene, each character only consider one

opponent during interaction at a time. Second, the graph generates a lot of nodes

and edges, making it difficult to monitor the quality of interactions, as well as

adjust the graph manually. We need an algorithm to model the interactions among

a large number of characters effectively.

When we watch fighting scenes in movies, we immediately realize that there

are a variety of interactions appearing stylized; artisticand logically clear as if

they are designed by an artist. At the same time, we also realize that the patterns

of interactions are very simple. For example, in a scene where a main character

fights with many background characters, most interactions between them follow

the rule of “background character: attack”, “main character: avoid”, “main char-
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acter: counter attack” and “background character: knockeddown”.

This observation leads us to develop an algorithm that is flexible enough for

the user to design his/her favorite interaction, while sufficiently automated so that

the user can create a large-scale animation involving a number of characters with

the least effort. Our system simulates the minimal unit of interactions between

two characters based on abstract instructions given by the user, and stores the

result as structures called Interaction Patches. The Interaction Patches are spatio-

temporally concatenated to compose a large-scale scene in which the characters

interact with each other, such as one person fighting with many enemies (Fig-

ure6.9), a group of characters falling down onto each other like dominos (Figure

6.11), an American football player holding a ball and escaping from tackling de-

fenders (Figure6.13) and a group of people passing luggage one to another (Figure

6.16).

Our work is inspired by the idea of Motion Patches [Lee et al.(2006)], where

the large-scale scene is composed of building blocks. Usingtheir approach, it

is possible to generate an animation where the characters interact with the en-

vironment. However, it is not possible to generate an animation where multiple

characters densely interact with each other. In this research, we precompute the

complex interactions of multiple characters and use them asthe building blocks to

compose the final scene.

6.1 Contributions in This Chapter

• We propose a method to synthesize realistic interactions between characters

by expanding the game tree, based on the pattern of interactions specified by

the user. Since the pattern is specified, the number of combinations is small,

and we can obtain realistic interactions with a limited amount of computa-

tion. These interactions are saved as Interaction Patches to be used during

runtime.

• We propose a new algorithm to synthesize a large-scale scenein which the

characters densely interact with each other. The precomputed Interaction

Patches are spatio-temporally concatenated to compose a large-scale scene.
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6.2 Outline of Method

The outline of Interaction Patches is shown in Figure6.1. It consists of five steps:

1. Capture the motion of a single person using a motion capturesystem.

2. Create the action level Motion Graph, in which the actions are all annotated.

3. Compose the set of minimal units of interactions, which we call the Inter-

action Patches, by specifying the pattern of interactions and expanding the

game tree.

4. Generate two tables that list how each Interaction Patch can be temporally

and spatially concatenated with other Interaction Patchesto compose large-

scale scenes.

5. Compose a scene by concatenating the Interaction Patches.This is the only

online process, which allows the user to optionally give high-level com-

mands and see what they can get immediately.

Steps 1 to 4 are performed during the preprocessing stage. The only run-

time process is the low computational cost process at step 5.As a result, we can

simulate a huge number of characters in real-time.

6.3 Interaction Patches

The Interaction Patch is composed of the initial condition of the two characters

and the list actions performed by each of them. The initial condition includes the

distance between the two characters (r), the relative orientation of each character

with respect to the other (θ1 andθ2), and the delay in either of the characters to

start the first action (tdi f f ).

In the rest of this section, we first explain how we preprocessthe motion cap-

ture data, and then explain how the Interaction Patches are generated. Finally we

explain how they are evaluated.

6.3.1 Preprocessing Motion Data

We assume the motion data is preprocessed and stored as an action level Motion

Graph. The list of annotations used in this research is shownin Table6.1.
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Figure 6.1: The outline of the Interaction Patches.

6.3.2 Composing Interaction Patches

The process of composing Interaction Patches is to let the user specify the pat-

tern of actions, sample the initial condition of the two characters and simulate the

interactions between them. An overview, showing the composition of an Inter-

action Patch is shown in Figure6.2. Each process is explained in the following

subsections.

6.3.2.1 Specifying Pattern of Interactions

A user first gives a list, defined here as aPatternList, that describes the pattern of

the interaction between two characters:PatternList = { (CharID1, Annotation1),

..., (CharIDn, Annotationn) }, whereAnnotationi is the annotation embedded in
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the action level Motion Graph,CharIDi is the identity of the character who per-

forms this action, which is either 1 or 2, andn is the total number of actions in the

pattern. In our system, multiple actions may share the same annotation. Therefore,

an annotation represents a cluster of actions, rather than aspecific action. Figure

6.2 (upper left) shows an example ofPatternList. It should be noted that the list

defines only the starting order of the actions, and does not mean each character

has to wait for the other character to finish its action to start a new action.

6.3.2.2 Sampling Initial Conditions

Once the pattern of interaction is determined, the initial conditions of the char-

acters are sampled based on the annotation of the first actions for each character

(Figure6.2, middle left). For most of the actions, there is a range in theinitial con-

dition parametersr, θ1, θ2, tdi f f when the action becomes successful. For attacks

or tackles, the other character must be in the front at some distance and the valid

range is relatively narrow. On the other hand, avoiding actions are valid as far as

the character can get away from the opponent, which means therange is larger.

We predefine the valid range of each parameter for each annotation. The system

computes the intersection of the valid range for the characters’ first actions, and

performs uniform sampling in the intersection. In our system, distance is sampled

every 20cm, angles are sampled every 20◦, and time difference is sampled every

0.1s.

6.3.2.3 Expanding Game Tree

When simulating the interactions between the two characters, each character is

controlled by its own action level Motion Graph. Starting from the sampled initial

Scene Annotations

Fighting punch, kick, avoid, dodge, transition, falling

American Football run, jump, avoid, tackle

Rat Avoiding avoid, pushed

Crowd Falling falling

Luggage Carrying carry, walk, hand, receive, turn

Table 6.1: The table of annotations used to annotate captured motions
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Figure 6.2: Given the PatternList (upper left), the system sets the initial condition

(middle left). Using these data, the action level Motion Graphs are traversed by

both characters (upper right). The traversal process is equivalent to expanding the

game tree (lower right) as there are multiple choices for the same annotation. The

good interactions are stored as Interaction Patches (lower left).

condition, each character traverses its own action level Motion Graph according

to the pattern of annotations given by thePatternList (Figure6.2, upper right). As

the annotation represents a cluster of actions, we have multiple choices of actions

for each annotation. SincePatternList contains a list of annotations, there are

exponential combinations of instances perPatternList. The process to evaluate all

possible combinations is equivalent to expanding a game tree (Figure Figure6.2,

lower right). In this game tree, each node represents an action to be launched by

the corresponding character, and each edge directs the subsequent action by either

character.

When expanding the game tree and evaluating the sequence of actions, some

combinations are considered invalid for the following reasons:

• Invalid distance: We avoid interactions in which the characters stand too

close, as they can cause serious penetrations.

• Incorrect order of actions: As the duration of each action is different,
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Figure 6.3: Two cases of temporal concatenation of Interaction Patches. Two

characters finishing the previous Interaction Patch rejoin in the next patch (upper).

One character starts to interact with a different character after finishing the previous

patch (lower).

sometimes the overall order of the actions does not coincidewith the pattern;

such series of actions are discarded.

Close interactions involve a lot of close contacts of body segments. We need

to evaluate whether the segments collide or not. We represent the body segments

with rectangular bounding boxes and check if any segments are overlapping. If

the colliding segment has large linear or angular momentum,response motion of

being pushed or falling down is immediately launched. We compare every posture

of the response motion with the posture at the moment when theimpulse is added

to the body. The best matching frame is used as the starting frame of the response

motion [Zordan et al.(2005)]. If the segments unintentionally collide, such as

when a character is supposed to successfully avoid the attack according to the

given pattern but gets hit, this sequence of actions is discarded.
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Figure 6.4: The condition for applying the spatial concatenation to the Interaction

Patches: Either the series of actions in the initial and final part of the patches must

overlap (upper) or the whole series of actions of one interaction patch overlaps with

part of the other Interaction Patch (lower).

6.3.3 Evaluating the Interactions

After expanding the game tree, we evaluate the interactionsusing a cost func-

tion. Any paths connecting the root and leaf nodes of the gametree form a series

of interactions between the two characters. The set of interactions with a score

above a threshold are stored as Interaction Patches. The design of the evaluation

scheme is specific to the type of interactions. We used the linear combination of

the following objective functions in our experiments.

• Contact criterion: For some actions such as holding the hand, punching

the face, and tackling the body of the other person, some parts of the bodies

must contact either for a moment or throughout the timeline.Better scores

are given to a series of actions that result in desired contacts.

• Relative distance / orientation criterion: For actions such as dancing, the

characters need to stay close and face each other for some period. Similarly,
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for interactions such as one character punching and the other avoiding, the

defender should get away from the punch, but needs to face theattacker

while avoiding it. For these interactions, there are desired distances and

relative orientations of the root of the body at some moment /throughout

the motion. We can evaluate the interactions based on the difference of the

resulting values and the desired values.

• Timing criterion: Some combinations of actions performed by both char-

acters need to be well synchronized. We consider those interactions with

small timing differences to be better.

All the interactions designed in our experiments are modeled by different combi-

nations of the above functions. The blending ratios are manually tuned for each

example.

6.3.4 Computational Efficiency

Since the process of constructing the Interaction Patches involves game tree ex-

pansion, the computational cost is of exponential order. Ingeneral, when fully

expanding the game tree to evaluate the interactions of characters, the computa-

tional cost isAD, whereA is the average number of available actions, andD is

the depth of the tree to be expanded. However, we can greatly reduce the cost by

making use of the following features:

1. As the patterns of actions are given, the number of actions to be expanded

at each level is much fewer than that of doing a full search. Assuming the

actions are evenly divided intoN types of annotation, the computational

cost will be reduced to( A
N )D. At the same time we can get high quality

samples, as the pattern of interaction is a very important factor to determine

the realism of the interaction.

2. As the PatternList is short, the depth of the expanded tree,D, is limited.

This is because only short Interaction Patches are requiredin our system. We

can generate longer interactions, and those of more than twocharacters, by

concatenating the Interaction Patches based on the method explained later

in Section6.4.
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6.4 Connecting Interaction Patches

We compose large scale scenes by connecting the InteractionPatches. Long series

of interactions can be created by temporally concatenatingthe Interaction Patches.

Animations of more than two characters concurrently interacting can be composed

by spatially concatenating the Interaction Patches. We check if such concatena-

tions are possible for every pair of Interaction Patches, and save this information

in a table. The details of checking the eligibility of temporal and spatial concate-

nations are explained in the following subsections.

6.4.1 Temporal Concatenation of Interaction Patches

Two Interaction Patches A and B can be temporally concatenated if (1) both of the

characters finishing patch A start interacting again in patch B (Figure6.3, upper),

or (2) one of the characters finishing patch A joins patch B andstarts to interact

with a different character (Figure6.3, lower).

The patches must satisfy two further conditions to be temporally concatenated:

Firstly, the motions when switching from patches A to B must be continuous; this

can be examined by checking the continuity of actions in the Motion Graph. Sec-

ondly, if the characters in the two patches are different, asin Figure6.3(lower), we

must make sure the leaving character in patch A does not collide with the joining

character in patch B. The leaving character either leaves thescene or joins another

Interaction Patch with another character. For example, in Figure6.3(lower), after

patch A, character 1 goes away and character 3 joins in patch B.Collision detec-

tion based on the two bounding boxes that surround character1 and character 3 is

carried out for all actions in the patch. Only if there is no collision can patch A

and B be temporally concatenated.

6.4.2 Spatial Concatenation of Interaction Patches

The animator might need a scene where more than two characters concurrently in-

teract; we can compose such a scene by spatially concatenating Interaction Patches

of two characters. For example, the animator might need a scene in which a foot-

ball player jumps up and avoids tackles from two opponents, one from the left

and another from the right. This scene can be composed using two Interaction

Patches, in which (1) a character jumps and avoids the tacklefrom the left, and (2)
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a character jumps and avoids the tackle from the right. Thereare two conditions

for such a concatenation (Figure6.4). First, the two uncommon characters in the

two patches (character 1 and 3 in Figure6.4) must not collide into each other. This

condition is the same as the one in temporal concatenation. Second, the common

character in the two patches (character 2 in Figure6.4) must conduct the same

series of actions for a continuous duration. The duration ofoverlap does not have

to cover the whole Interaction Patch. If the ending part of one patch and the initial

part of another patch overlap (Figure6.4, upper) or if the whole series of actions

in the shorter patch completely overlaps with a part of the longer patch (Figure

6.4, lower), this condition is satisfied.

6.5 Scene Composition

Once we know the set of Interaction Patches that can be concatenated, we can

automatically compose large-scale scenes by spatio-temporally concatenating the

patches. In this section, we explain the process of composing the scene: First, we

explain the criteria for selecting the next Interaction Patch among all the available

ones, and then explain how these criteria are applied to generate the scene. Fi-

nally, we explain how to reuse characters that exited Interaction Patches for other

Interaction Patches later in the scene.

6.5.1 Selecting Patches

Among all the patches that can be connected to the currently played one, our

system excludes those which result in collisions, and then selects the best one

among the rest based on an objective function explained in this subsection.

First, we exclude the patches that result in collisions. If apatch requires the

system to add a new character to the scene, we need to ensure that the newly

added character does not collide with any other characters present in the scene.

This is done by representing each character as a bounding boxand checking if the

new character overlaps with those in the scene. Then, we evaluate the Interaction

Patches based on the following factors:

• Density of characters: Because there are going to be a large number of

characters involved in the interactions, we favor patches that allocate char-
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acters in open space. This is evaluated as follows:

sd(p) =
1

dp +1

wheredp is the current density of characters at the region where the candi-

date Interaction Patchp will occupy.

• Frequency of the usage:As we prefer the characters not to keep repeating

similar movements, lower scores are given to patches which have been re-

cently used. We define a parameterfp to represent the usage of the patch

p; once a patch is used, its correspondingfp value is increased by one. On

the other hand, the value is decreased by 10% each time other patches are

selected. The usage score of the patch is calculated as follows:

s f (p) = (1−min( fp,1))

• User preference: We provide a simple interface for the user to select the

preferred type of actions represented by action annotations. The patches that

include such types of action are given better scores:su(p) = 1 if the action

satisfies the user’s preference andsu(p) = 0 if it does not.

The final score of a patch is defined as the weighted sum of the above factors:

S(p) = wdsd(p)+w f s f (p)+wusu(p) (6.1)

wherep is the patch to be evaluated,wd, w f , wu are the weights for each factor,

which we set aswd = 10,w f = 1000 andwu = 10000. The patch that returns the

highest score is selected.

6.5.2 Concatenating Interactions

Here we explain how to generate scenes of continuous interactions involving many

characters by concatenating the Interaction Patches.

When an Interaction Patch is about to end, we automatically select the patch

that can be temporally concatenated by evaluating all the connectable patches us-

ing Equation6.1. If there are any patches which are spatially connectable, such

patches are also evaluated by Equation6.1and the one with the best score is con-

catenated.
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Figure 6.5: Creating scene by applying spatio and temporal concatenations on

Interaction Patches. We can generate scenes in which a main character interacts

with many background characters. We assume the background characters comes

from background before the interactions, and return to background after the inter-

actions.

Then, the movements before and after the interactions for the characters are

generated by a locomotion engine that controls the character in a greedy manner.

The locomotion engine selects a movement which is collisionfree and transfers

the character as close as possible to the target position. The movements of the

characters are determined backward and forward in time starting from the mo-

ment of the interaction. For those characters that appear from the background,

the starting point is set at a location outside the scene in the radial direction. The

motions of the characters whose interactions happen first are decided first. There-

fore, when deciding the locomotion of each character, we only need to avoid the

characters that are already in the scene. Although more elaborate locomotion en-

gines based on model predictive control [Lau & Kuffner (2005)] or reinforcement

learning [Lo & Zwicker (2008)] might perform better, our controller works well

for the scenes we simulated.

An example of an overall time line is shown in Figure6.5, in which character

1 (Ch.1) interacts with character 2, 3, 4 and 6 (Ch.2, Ch.3, Ch.4 and Ch.6) with

temporal concatenation. The Interaction Patch shared by Ch.1 and Ch.4 is spa-

tially concatenated with another patch shared by Ch.4 and Ch.5. A corresponding

fighting scene is shown in Figure6.6. Ch.1 (blue) first attacks Ch.2 (green) at

the right side of the image, and next Ch.3 (grey) at the top, then Ch.4 (violet) at

the left, and finally Ch.6 (orange) at the bottom. When Ch.4 fallsdown, this mo-

tion is spatially concatenated with another Interaction Patch, in which it falls over

character Ch.5 (cyan). Once the Interaction Patches are fixed, the motions of the

characters entering the scene are decided.
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6.5.3 Recycling Characters

When multiple characters continuously interact, they need to repeatedly enter and

exit Interaction Patches (character 1 to 3 in Figure6.7). For instance, if we want

to design such a scene for two characters, both characters going out from a patch

need to rejoin in the next patch. However, sometimes these kinds of patches cannot

be found due to the distinct initial condition to start an Interaction Patch. We

solve this by giving the characters the degrees of freedom toadjust their locations,

orientations and postures.

First, we introduce the concept of standard pose, which is a pair of postures for

two characters, from where the two characters can easily findways to enter various

Interaction Patches (Figure6.8). This corresponds to the hub nodes [Gleicher et al.

(2003)] in the Motion Graph. We first categorize the initial and final postures of the

Interaction Patches according to their relative distance,orientation and postures.

The average poses of all the categories are computed and theybecome the standard

poses. Then, we can concentrate on planning how to reach the standard poses. We

use the locomotion engine for moving the characters to the desired locations when

it is far away from the standard pose. The characters move towards the nearest

standard pose to start another Interaction Patch.

We define a distance function that evaluates the difference between the current

pose (Pc) and each standard pose (Ps) as follows:

F(Pc,Ps) = (
rc − rs

r′
)2 +(

θ1
c −θ1

s

θ′
)2 +(

θ2
c −θ2

s

θ′
)2 (6.2)

whererc is the distance between the characters,θ1
c andθ2

c are the angles between

the line connecting the two characters and the direction each character is facing,

rs, θ1
s , θ2

s are the corresponding values in the standard pose. The constantsr′ and

θ′ are used to normalize the effects of distance and angle, and are set to 300cm and

180◦ respectively. The distance between the current status of the characters and

each standard pose is calculated and the one with the smallest distance is selected:

argminPj F(Pc,Pj) (6.3)

wherePj is the j-th standard pose, andPc is the current status of the two characters.

Once the target standard pose is selected, each character approaches the char-

acter it is to interact with by using the locomotion engine. When the characters are

at the required relative distance and orientation, each character expands the game
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tree to find the action that brings its posture to that in the standard pose. Since (1)

the connectivity of the action level Motion Graph is high, and (2) the posture of

each character in the standard pose is a commonly used posture, we can usually

arrive at the target pose in one step. If the graph connectivity is low, and complex

path planning is required for arriving at the standard pose,it is possible to apply

dynamic programming to find the path in real-time.

As a result, even if there is no available Interaction Patch that can be imme-

diately launched, the characters can move around and adjusttheir poses to start

the next desirable Interaction Patch. As for timing, if one character arrives at the

corresponding posture in the standard pose slightly earlier than the other character,

we let the character wait there so that it is synchronized with its opponent before

launching the next Interaction Patch.

6.6 Experimental Results

Using our method, we have simulated two types of scenes, which are generated

by (1) only concatenating Interaction Patches, and (2) using the standard poses to

let the characters continuously interact. The first group ofscenes can be generated

by the method explained in Section6.5.2, and the second group of scenes further

requires the techniques explained in Section6.5.3. The set ofPatternList used to

generate the Interaction Patches are shown in Table6.2.

A particle system was designed to handle unexpected collisions among the

characters and adjust the actions performed. Further information can be found in

AppendixA.

6.6.1 Scenes Generated By Concatenating Interaction Patch es

We simulated scenes where (1) a main character fights with many background

characters (Figure6.9, Figure6.10), (2) a group of people fall down over each

other like dominos (Figure6.11, Figure6.12), (3) an American football player

holding the ball avoids the defenders and runs towards the goal (Figure6.13), and

(4) a mouse runs into a crowd and the frightened people avoid it and bump onto

each other (Figure6.14). Although our system can automatically select all the

actions for all the characters, usually the user prefers to give high level commands.

Therefore, for scenes (1), (3) and (4), we have prepared an interface for the user
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to provide basic commands such as transition and rotation ofthe character, as

well as field-specific commands such as punch, kick, and avoids. The commands

correspond tosu(p) in Equation6.1.

6.6.1.1 A Character Fighting With A Lot Of Enemies

We created a scene in which a stronger character fighting witha lot of weaker en-

emies (Figure6.9). During the animation, the stronger character avoids or dodges

the attacks of the weaker enemies, and counter attacks the enemies. One features

of this animation is that when designing the Interaction Patches, we require the en-

emies die after the interaction. By this way, we do not need to handle the motions

of the enemies after the interactions.

Apart from the interactions between the stronger characterand its enemies, we

also apply Interaction Patches to handle the motions while weaker enemies bump-

ing onto other weaker enemies. These Interaction Patches are designed by com-

bining PD control and motion of being pushed away or falling down [Arikan et al.

(2005), Zordan et al.(2005)]. More specifically, when expanding the game tree

to generate such Interaction Patches, the appropriate reactive motions are selected

and blended to the motions of the characters whenever the twoof them collide.

Although our system can generate the fighting scene automatically, some users

may have specific preference on how the scene looked like. Therefore, we design a

user interface for the user to control the actions of the stronger character. Such user

defined actions will then act as constraints when selecting the Interaction Patches,

which correspond tosu(p) in 6.1. Then, our system automatically searches for the

appropriate Interaction Patches to plan the movements of the weaker characters

(Figure6.10).

6.6.1.2 Characters Falling Onto One Another

A scene in which a large number of characters falling onto oneanother like domi-

nos was created (Figure6.12). In this experiment we only use the Interaction

Patches in which one character falling onto another character. During run-time,

spatio concatenation is used in two ways. First, we concatenate patches such that

one character falls onto two or more characters. Second, Interaction Patches are

also concatenated such that the newly falling characters continue to fall onto other

characters.
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The Interaction Patches are automatically concatenated sothat the area speci-

fied by a given bitmap on the floor is filled with characters falling to the ground. As

the interactions between the characters are precomputed, even for large numbers

of characters, we can obtain the results in real-time. Afterplanning the motions

for the falling down characters, the standing characters are added to fill up unused

areas in the scene.

We also generated a scene in which hundreds of characters falling onto each

other (Figure6.12). In this case, we create one starting point of falling for each

letter on the floor, and define the time for which to being.

6.6.1.3 American Football

We created a scene in which an American football player runs to the goal line

while avoiding tackling defenders (Figure6.13). Each Interaction Patch contains

a short clip of running motion for the offensive player, the tackling motion of

the defensive player, and the avoid motion of the offensive player. By repeatedly

temporal concatenating the Interaction Patches based on the offensive player, we

can simulate a continuous running and avoiding motion.

We allow the user to indicate the running directions of the offensive player, as

shown in the arrow on the floor. The system then chooses the appropriate patch

with the most similar running direction.

6.6.1.4 Characters Avoiding A Rat

We synthesized a scene in which a group of characters avoid a rat and bump into

each other. We defined twoPatternList. The first one defines the interactions be-

tween the rat and the avoiding character, while the second one defines the bumping

interactions between two characters.

In our system, the rat is a simplified character with only one joint for the body.

We let the user define the movement trajectories of the mouse,which consists of

a lot of shorter movement steps. Then, the scene is generatedautomatically by

applying Interaction Patches that contain the movement steps of the rat.

6.6.2 Scenes Where Characters Are Recycled

We simulated scenes where (1) two characters are continuously fighting (Figure

6.15) and (2) a group of characters are passing luggage one after another to the
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characters next to them (Figure6.16). Since for both of the experiments, we re-

quire the characters to interact more than once, we need to reuse the character in

the scenes.

6.6.2.1 Two Characters Continuously Fighting

When generating a scene in which two characters continuouslyfighting (Figure

6.15), after finishing an Interaction Patch, the characters either immediately enter

another patch, or search for a standard pose which leads themto a set of other

patches. A fighting scene where the characters keep on attacking and defending

can be generated. Although the temporal tree expansion and Interaction Graph ap-

proaches can generate scenes of continuously fighting as well, those generated by

Interaction Patches are more stylized due to the uses ofPatternList. For example,

due to the use of Interaction Patches, we can generate a scenewith intensive and

well synchronized interactions.

6.6.2.2 Many Characters Carrying Luggage Cooperatively

We created a scene in which many characters carrying luggagecooperatively (Fig-

ure 6.16). Each character continuously interacts with one of its neighbors when

the luggage arrives. Each Interaction Patch includes the motion of the first charac-

ter standing, walking to receive the luggage, carrying and handing it to the second

character, and going back to the original location. Spatio concatenation is used

such that when one character receives the luggage with the first patch, it passes the

luggage to another character with the second patch. Different Interaction Patches

are selected according to the size and the weight of the luggage. We define a set of

standard poses which are suitable for passing and receivingluggage. Using these

Interaction Patches and standard poses, we have generated ascene where a large

number of characters pass luggage one after another to the next person.

6.6.3 Computational Costs

The computational speed and the number of actions and patches of each experi-

ment are shown in Table6.3. The computer used comes with a Pentium 4 Dual

Core 3.0 GHz CPU and 2 GB of RAM. The reason for large numbers of Interac-

tion Patches in the “Mouse” and “Crowd falling” demo is that weneed to generate

characters colliding from all directions for different orientations of the characters.
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Excluding the rendering, all the animation can be generatedin real-time, once the

instructions from the user are given.

6.7 Discussions

6.7.1 Patches Creation

Although we use thePatternList to generate the Interaction Patch, animators can

manually design the Interaction Patches action by action. In fact, many animators

prefer to design complex elaborate interactions between the characters which are

difficult to be generated automatically. The design of the Interaction Patches is

simple, because they are short and only involves two characters. The designed

Interaction Patches can be added into the database togetherwith the automatically

generated ones.

Interaction Patches can also be created by capturing the motion of two per-

sons. This method works for sparse interactions such as two persons avoiding

each other while walking, and two persons shaking hands. However, it is not rec-

ommended for dense interactions such as fighting due to the technical difficulties

of motion capturing devices. Another disadvantage is related to spatio concatena-

tion, in which two patches can only be concatenated when partof the first patch is

effectively the same as part of the second one. While it is difficult to perform an

action exactly the same in two trials, captured patches suffer from the low rate of

successful spatio concatenation.

When generating the Interaction Patches, although we limited the number of

characters in each Interaction Patch to two, those of three or more characters can

also be generated. In that case, we can generate the Interaction Patch of multiple

characters by expanding the game tree for all of them, and then concatenating them

as done in this research. However, more computational time will be needed to

expand the game tree. We believe spatio concatenation is a more efficient method

to generate multi-character interactions.

We assume the interactions between the characters are short. In our experi-

ments, we limit the total number of actions inside the Interaction Patches to be

four. This condition helps the system from two aspects: Firstly, the computational

cost to generate the Interaction Patches can be minimized. We will be able to scan

a huge number of combinations which increases the chance of finding plausible in-
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teractions. Secondly, shorter interactions are better to be fit into the scene, as they

are more compact and less influential to the other extra characters in the scene.

This helps the final process to compose the scene, as long interactions become a

constraint for the other characters. To generate longer sequences of interactions,

we suggest the use of temporal concatenation.

6.7.2 Scene Generation and Controllability

For scenes where the main character interacts with many the background charac-

ters, we assume the interaction between two different characters occur only once.

Therefore, the number of characters appearing in the scene is proportional to the

number of interactions, which may cause the scene to be filledup by characters.

Although the collisions of characters will not occur as the motions of the charac-

ters are subsequently determined, there is a potential riskthat they behave in an

unnatural way due to the lack of space. This problem is avoided by letting the

background characters fall down onto the ground or disappear from the scene af-

ter the interaction. The fact that the interactions betweentwo characters continues

at least for a few seconds also helps to keep the number of characters appearing

in the scene to be limited. We can also reuse some characters if the scene is too

crowded. As a result, we do not face problems of unusual movements even though

we do not explicitly implement any function to control the number of characters

in the scene.

There are two possible extensions to enhance the controllability of the charac-

ters. The first method is to greatly increase the number of Interaction Patches and

introduce a hierarchical structure to store the patches. Inthat case, according to

the input by the animator, the corresponding cluster will beselected first, and then

the best patch in the cluster will be selected subsequently.The second method is

to introduce parametric techniques to deform and interpolate the existing patches.

Using such a method, we will be able to produce a large number of variations from

a small number of patches.

6.7.3 Usage Complexity

The patch generation process is fully automatic except the need of a pattern list.

It is easy to define a valid pattern list during the patch generation process. How-

ever, to generate artistic interactions, it is more about arts than technology. The
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animators must be familiar with the movie industry and have good creativity.

Similar to the tree expansion method in Chapter4, the objective functions to

evaluate the quality of a patch are problem specific. Implementing extra objective

functions will require in-depth understanding on the system. One possible solution

is to manually select good-looking patches. If only a few tens of patches are

required, the selection process is in fact not time consuming.

We created different interfaces for the animators to control the patch concate-

nation process. These interfaces are very easy to be used. However, similar to

the experiments of the Interaction Graph in Chapter5, since there may be a lot of

characters in the scene, it is difficult to control every single detail. For example,

when making the one-to-many fighting scene, our system automatically concate-

nate patches in which one character falling onto another. This is because we wish

the animator focus on the main characters.

Generating the scene can be a trial and error process, mainlybecause our algo-

rithm runs in real-time. For inexperienced animators, theycan simply randomly

press some buttons in our control interface and see the resultant scene. Usually,

after a few trials, the animators would understand how the scene is created, and

could generate the scene they want.

6.7.4 Comparisons On Different Control Systems

The Interaction Patches system requires far fewer samples than other optimization-

based systems. For example, in Interaction Graph explainedin Chapter5, the

number of samples produced is over 50,000. With this large number of samples,

it is difficult to monitor the quality of the interactions. For the experiments in

this research, fewer than 300 Interaction Patches are needed to create a stylized

fighting scene. Methods such as the Interaction Graph are targeted for real-time

applications such as computer games. In order to make the computer-controlled

character strong, the controllability of the character must be high, which means the

character needs to be able to launch various kinds of movements, including subtly

different stepping and attacks. This results in dense sampling of the state space.

On the other hand, the objective of this research is to createa stylized animation

of characters interacting. The system does not need high controllability of the

characters, but only needs to be able to satisfy the high level commands given by

the animator. In addition to that, as our system first determines how the characters
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are going to interact, the characters have a lot of degrees offreedom to adjust their

movements before and after the interactions. As a result, wecan greatly reduce

the number of interaction samples.

We can evaluate the systems in terms of accuracy on control. That is, given

the control signals by the animators, how accurate can the characters follow the

signals. In this case, the Interaction Patches system performs poorly. Because of

the small number of available patches, it is difficult to tellthe characters perform

exactly what the animators want, such as moving to a predefined position. On the

other hand, with the Interaction Graph explained in Chapter5, the animator can

control the characters much more accurately. This is because we can quantize the

possible control signals can compute the optimal policy forevery quantized signal.

Still, the accuracy depends on the level of quantization. Ifwe quantize the control

signals heavily, the accuracy will be low. Otherwise, with aset of finely quantized

control signal, the accuracy will be high, but the system will require a huge amount

of memory. The temporal tree expansion method explained in Chapter4 performs

the best in terms of accuracy on control. This is because the method is essentially

a short horizon optimization system. That is, we always planfor a short duration

based on the exact current situation. Hence, we do not need toquantize the control

signals at all. An example is shown in Figure6.17. Suppose the animators require

a pair of fighting characters to follow a predefined path, the characters controlled

by temporal tree expansion will follow the most accurately.Those controlled by

the Interaction Graph can follow the path, but the accuracy depends on the level of

quantization. Those controlled by the Interaction Patchescannot follow the path

well since there are only a small number of patches.

When comparing the computation cost of different systems we proposed, the

temporal tree expansion method performs the worst. This is because the cost of

every action selection increase exponentially with respect to the depth of the game

tree, and usually we require three levels of tree expansion to create a smart char-

acter. Both Interaction Graph and Interaction Patches use precomputed tables for

action selection, and thus the computation cost increase linearly with respect to

the size of the tables. Since the Interaction Patches methoduse a far smaller table,

it is even more computational efficient than the InteractionGraph. Another advan-

tage of the Interaction Patches method is that each patch defines multiple actions

for two characters. Therefore, when planning a scene with a predefined number of

characters and duration, the Interaction Patches requiresmuch fewer table lookups
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when comparing to the Interaction Graph.

If we wish to implement or extend the character control systems in this thesis,

the temporal tree expansion method requires the smallest effort. We simply need

to implement the objective functions and the min-max framework. Tuning the

objective functions can be a trial and error process, as the effects are shown im-

mediately. Both Interaction Graph and Interaction Patches are built on top of the

temporal tree expansion method. The Interaction Graph requires much more effort

to be implemented. This is because even if the framework is available, training the

graph takes a lot of time, and in case things goes wrong, we will need to retrain

the graph. This is a general problem of learning based methods. However, once

the graph is successfully trained, we can tune the way we evaluate the actions and

see the effect almost immediately. For example, when creating different style of

fighting, we simple need to tune the parameter. The whole graph can be updated in

seconds, and the resultant animation can be generated in real-time. Finally, imple-

menting the Interaction Patches method requires building the patch concatenation

framework. Once the framework is completed, we can easily create Interaction

Patches by tree expansion. The framework works well with only a few patches,

and hence building the patches requires only a short time.

The Interaction Patches system can become an alternative tocreating realistic

interactions by using infinite horizon optimization methods such as reinforcement

learning. In theory, it is possible to produce realistic interactions between charac-

ters if each of them select motions based on what benefits themthe most. However,

in practice, such smartness can make the scene less stylizedas the characters will

never conduct actions that do not benefit them. The characters become too careful

and as a result, they will never launch risky movements that can make the interac-

tions more attractive. On the other hand, the animators or the audience want to see

energetic movements. It is much easier to produce such interactions by using our

short-horizon method as the users can explicitly specify the pattern of interaction

they want to see. Another advantage is that the computational cost is limited by

the short depth of the game tree.

6.7.5 Limitations

There are some limitations with our method. First of all, theprocess of specifying

the pattern can cause problems if the actions by the characters are abstract and
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aimless as they are difficult to annotate. Our method is more suitable for actions

which are easy to annotate. Secondly, we have limitations ingenerating scenes

where multiple characters continuously interact. In the examples shown, the char-

acters were allowed to adjust their movements without a timelimit. If the time

and locations of the interactions are strictly constrained, a global planner that can

plan the sequence of all the characters at once will be required. Solving such a

problem using discrete optimization is one of the possible solutions.

6.8 Summary

We proposed a method to develop large-scale animations where characters have

close interactions. The user can obtain stylized interactions between the characters

by simply specifying the pattern of interactions. The interactions between the

characters are saved by data structures called InteractionPatches. The Interaction

Patches are spatio-temporally concatenated to compose large-scale scenes. Once

the Interaction Patches are prepared, the process of composing the scene is fully

automatic. At the same time, the users can control the scene using our control

interface.
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Figure 6.6: The scene that corresponds to the data flow shown in Figure 6.5 upper.

The blue character (Ch.1) sequentially interacts with Ch.2, Ch.3, Ch.4 and Ch.6.

This sequence of interactions is composed by temporal concatenation. Ch.4 falls

over Ch.5. This interaction is produced by spatial concatenation.

Figure 6.7: With characters recycled, we can create scenes in which characters

continuously interact with other characters. The dotted lines indicate that adjust-

ment motions may be required to connect two patches.
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Figure 6.8: The standard pose (the circle at the center) acts as a hub to connect

different Interaction Patches. The dotted lines indicate that the characters in the

patches may need to adjust their locations and orientations for getting back to the

standard pose.

Scene PatternsList

Fighting (one-to-many) {attack,defence, attack, fall},

{attack, fall},

{attack,attack, fall},

{arbitrary motion,fall , fall}

Fighting (one-to-one) {attack,defence},

{attack, fall}

American Football {run, tackle, avoid}

Rat Avoiding {arbitrary motion,avoid, pushed away},

{arbitrary motion,pushed away, pushed away},

{run,avoid},

{arbitrary motion,avoid, fall}

Crowd Falling {arbitrary motion,fall , fall}

Luggage Carrying {carry,walk, hand,receive, turn,carry}

Table 6.2: The PatternList used to compose the Interaction Patches (The actions

of the second character are shown in bold font). Attack includes punch and kick,

and defence includes dodge and avoid.
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Figure 6.9: Animation of one person fighting with many enemies generated by our

system. Interaction Patches are used to produce the fighting interactions between

the main character and the enemies, as well as the bumping interactions among

the enemies.

Figure 6.10: Apart from automatic simulation, we also designed a user interface let

the user synthesize one-to-many fighting semi-automatically. The user first controls

the movement of the main character. Then, the system will plan the motion of the

enemies with Interaction Patches.

Scene Speed (fps) Actions Patches

Fighting (One-to-Many) 87 162 157

Fighting (One-to-One) 104 162 279

American Football 194 217 21

Rat Avoiding 78 65 3716

Crowd Falling 72 39 4091

Luggage Carrying 162 108 72

Table 6.3: The computational speed, number of actions and number of Interaction

Patches of each experiment (Computational speed above 60 frame per second

(fps) is real-time)
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Figure 6.11: Animation of character falling onto one another generated by our

system. The user can control the overall pattern of falling by designing a bitmap

as shown on the floor. Characters standing on the pattern will fall while the others

remain standing.

Figure 6.12: Animation of hundreds of character falling onto one another generated

by our system. Despite of the large number of characters, the motions are planned

in real-time.
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Figure 6.13: Animation of American Football generated by our system. Interaction

Patches are used to produce the interactions when one character running while

avoiding another tackling character. The user can control the direction of running

for the main character as shown in the arrow on the floor.

Figure 6.14: Animation of people avoiding a rat and bumping onto each other

generated by our system. Interaction Patches are used to produce the avoiding

interactions between the rat and the character, as well as the bumping motions

between the characters. The trajectory of the rat is controlled by the user.

Figure 6.15: Animation of two characters continuous fighting with each other gen-

erated by our system. We continuously apply temporal concatenation and reuse

the two characters such that they continue to interact.
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Figure 6.16: Animation of characters moving luggage cooperatively generated by

our system. The characters are reused when planning the scene such that they

interact multiple times when different luggage arrives.

Figure 6.17: With a predefined path to follow (grey thick line), the characters con-

trolled by the temporal tree expansion method can follow the most accurately (blue

solid line), those controlled by the Interaction Graph suffer from quantization error

(red dashed line), and those controlled by the Interaction Patches cannot follow the

path well (green dotted line).
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Conclusions

In this thesis, we presented our researches to synthesize the interactions among

multiple characters. Character interaction is an essentialfield in the gaming and

movie industries, but is still unsolved due to the difficulties to simulate the com-

plex behaviors during interactions. We successfully modeled the interactions among

characters, and designed artificial intelligence algorithms to synthesize coopera-

tive and competitive interactions among multiple characters. We demonstrated our

system with high quality scenes involving characters interacting with each other

like real humans.

Our system first segments the raw captured motions into semantic actions (Sec-

tion 3.1), and creates the action level Motion Graph (Section3.3), which indicates

possible transitions between actions. Based on the graph, wedesigned the artificial

intelligence algorithms to control virtual characters interacting with each other.

We modeled the interactions between two characters as Markov decision pro-

cesses. Inspired by game theory, we applied game tree expansion to predict the

future states of interaction, in order to select the optimalactions for a character

to interact with its opponent. Pre-defined objective functions were used to eval-

uate the reward of launching an action at a given state. We observed that most

interactions involve both competitive and cooperative natures. This leaded us to

design a multi-modal character controller by embedding thecooperative features

into the min-max search framework. For example, in our experiments, the char-

acters can fight with each other competitively while following the high-level in-

structions from the user cooperatively. We showed that the objective functions

can be updated during run-time to simulate different stylesof interactions. Fur-

thermore, by expanding game trees of different levels, we can simulate characters

109
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with various intelligence levels.

Since the major computational overhead of the temporal treeexpansion method

is performed during run-time, the system is too slow to be used in real-time ap-

plications like games. In theory, we can precompute the optimal actions for all

possible situations, which are known as states, for a character when it is facing

an opponent. However, due to the complexity of interactions, the state space

is too large to be exhaustively precomputed. We observed that the active areas

of the state space are small compared to the whole space, and designed an off-

policy approach to sample the states that involve high quality interactions (Section

5.3). Based on the sampled states, we created a structure called Interaction Graph,

which is a finite state machine with the nodes representing states and edges rep-

resenting actions (Section5.4). We precomputed the immediate rewards for all

state-action pairs in the Interaction Graph, and applied dynamic programming or

min-max search to evaluate the optimal actions that benefit the character the most

in the future. As a result, the computational cost during run-time is minimal, and

we can create controllable characters for cooperative and competitive interactions

in applications such as 3D computer games (Section5.5).

Although the precomputation algorithm in Interaction Graph can simulate char-

acter interactions in real-time, it only generates one-to-one interactions due to the

limitation in the state space. We explored the possibility of combining one-to-

one interactions to form many-to-many interactions such asthose appear in a war

scene, and introduced Interaction Patches (Section6.3), which are precomputed

short clips of interactions between two characters. The major advantage of Inter-

action Patches is that they can be concatenated temporally to form longer inter-

actions, and concatenated spatially to form interactions involving more characters

(Section6.4), with minimal computational overhead. We designed a system to

synthesize the Interaction Patches off-line, and concatenate them with optional

user instructions during run-time. We demonstrated our system by generating

scenes that involve tens to hundreds of characters, including those of fighting,

sports, and crowd simulation where characters fall onto each other (Section6.6).

7.1 Summary of Contributions

In this section, we summarize the contributions in this thesis.
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• We propose an algorithm to simulate dense interactions of two characters by

applying game theory. We model interactions as a Markov decision process,

apply temporal tree expansion to predict future states of interaction, and use

min-max search to select the optimal actions. (Chapter4)

• We propose a multi-modal approach to create competitive characters with

cooperative features. We embed both competitive and cooperative objective

functions into the min-max frameworks such that the characters can compete

with each other while achieving common goals. (Chapter4)

• We propose an off-policy approach to sample the huge state space of inter-

actions between two characters. This is achieved by sampling the space with

criteria that favor states with good connectivity and more interactions. The

samples are general enough to be used in different control policies. (Chapter

5)

• We propose a finite state machine called Interaction Graph toprecompute

the optimal action for a character to collaborate or competewith one an-

other, such that the character interactions can be simulated in real-time ap-

plications such as 3D computer games. (Chapter5)

• We propose a method to precompute realistic interactions between two char-

acters for a short duration and save in a data structure called Interaction

Patches. The interactions are simulated by expanding the game tree with a

predefined pattern of interactions specified by the user. Such a simulation is

fast and easy to control. (Chapter6)

• We propose an algorithm to synthesize a large-scale scene inwhich the char-

acters densely interact with each other by concatenating Interaction Patches.

We apply temporal concatenation to create longer interactions, and spatial

concatenation to create interactions involving more characters. (Chapter6)

7.2 Future Research Directions

In this section, we outline some possible future research directions, which are out

of the scope of this research.
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7.2.1 Group Interactions

One future direction of this research is to simulate multiple groups of characters

interacting intelligently. For example, in a football match, each character must

cooperate with its teammates while counteracting the characters in the opponent

team. With the Interaction Graph described in Chapter5, we can simulate a char-

acter interacting with one opponent by maximizing the long term rewards. How-

ever, when considering the optimal action of every team member in a group to

interact with another group, the state space must include all the characters in the

scene. Such a state space is too large to be handled.

As a result, instead of searching for the optimal actions forall characters, we

have to simplify the problem to generate suboptimal results. One possibility is to

apply two-level planning. In the higher level, we can plan the strategy of the whole

team, assuming each team member can achieve a predefined set of objectives, such

as moving to a nearby position. The planning in such team level should take into

account the opponent team, and hence concepts like temporaltree expansion and

min-max in Chapter4 can be applied. Then, in the lower level, each character

tries to complete the assigned objective, taking into account only local information

such as opponent nearby. By this way, we can simulate two teamsof characters

interacting with each other, and when focused on individualcharacters, we can see

they interact intelligently as if they are real humans.

7.2.2 Intuitive User Interfaces

The theme of this research is to simulate interactions amongmultiple characters

automatically rather than creating user control interfaces. One of the future re-

search directions is to provide intuitive crowd controlling interfaces, such as those

used to adjust the movements of a group of characters, and automatically generate

realistic underlying interactions among the characters. Such interfaces are impor-

tant for controlling crowds in computer games such as those involving war scenes,

and can be used to ease the production processes of crowd animations.

Recent researches create convenience user interface to design the movements

of a crowd [Kwon, Lee, Lee & Takahashi(2008), Takahashi et al.(2009)], but they

do not consider the dense interactions among characters. Recently, some re-

searchers regard interactions as spatio-temporal constraints and apply space-time

optimization to synthesize the movements of the characters[Kim et al. (2009)].
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However, such constraints have to be defined by the user and the run-time cost for

the optimization is still too high for a large crowd. When there are a lot of interac-

tions, such as in a fighting scene between two armies, it is impossible to explicitly

indicate the interactions required and solve for the movements during run-time.

We believe that by combining these crowd controlling techniques with Interac-

tion Patches, we can create an intuitive user interface for controlling crowds with

dense interactions in real-time. The movements of the crowdare controlled by

the user and optimized with Laplacian transformation. The system then monitors

the situation of the characters during run-time, and applies Interaction Patches to

generate the underlying interactions among characters automatically.

7.2.3 Hierarchical Character Controller

Precomputing the optimal actions in different situations is useful for real-time

applications. However, such method requires a manageable size of state space.

For example, in the Interaction Graph explained in Chapter5, the system has to

be carefully designed to limit the complexity of the problem, as the state space

increases exponentially with such complexity in general.

One possible way to solve the problem is to design a hierarchical state space

for complex problems. The lower level state space can provide detail information,

but we only consider the subset of the space that is frequently visited to limit the

complexity during training. Whenever the character comes toa state that is not

considered in the lower state space, we can refer to the higher level state space,

which is simpler and acts as an abstraction of the lower one. One example is

to represent the higher state space as a general locomotion controller, while the

lower state space as a specific interaction controller. For locomotion, only a few

information need to be considered, and hence the state spaceis very simple. On

the other hand, interactions require detailed descriptionon the environment and

nearby opponents, which leads to a huge state space. Fortunately, a lot of states in

such a space are not useful, such as those in which there are nonearby opponents.

By combining the two spaces we can create a simpler controllerfor faster training

and lower memory requirement. Although the hierarchy is manually designed in

the previous example, it is worth to research on automatic methods to evaluate the

optimal hierarchy.
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7.2.4 Run-time Learning

The advantage of machine learning algorithms such as reinforcement learning is

that we do not need to explicitly design an algorithm to control a character. In-

stead, we only need to setup an environment and let the character to experience

the consequence of conducting different actions. During such training phase, the

characters can learn from experiences to perform actions that benefit them the

most in the future. However, the training phase takes too long to be an on-line

process especially for complex problems. The behaviors of characters have to be

precomputed and applied during run-time. As a result, the behavior of the trained

character will not be updated during run-time. This is especially important in ap-

plications like games, in which there may be unexpected userbehavior, and the

trained character will continuously perform sub-optimal actions.

In theory, it is possible to run the training process during run-time. However,

in practice, we can only get a few numbers of training samplesduring run-time

for a reasonable duration. It is important to research on howto generalize the

training process such that it can be performed in run-time. One possible solution

is to parameterize the reward function. Instead of updatinga subset of state, a

training sample will update the parameter of the reward function that affects the

whole space. By this way, the character can learn from real experience based on

run-time information and behave intelligently.

7.2.5 Interaction Adjustment

Our research focuses on synthesizing realistic interactions rather than adjusting

existing interactions. The Interaction Patches in Chapter6 represent realistic seg-

ments of interactions, but how much we can adjust the patcheswhile maintaining

the context of the interactions requires further researches.

In general, there could be two levels of adjustments. For thebasic level of ad-

justments, we target for adjusting the position and the orientation of the characters

while maintaining the features of the interaction. Recent researches suggest that

interpolation of motions in the latent space can create realistic motions that sat-

isfy low dimensional task constraints [Bitzer et al.(2008)]. It would be interesting

to investigate the possibility to apply similar methods forthe interactions of two

characters. On the other hand, the advance level of adjustments requires switching

the actions during the interaction in order to keep the context of the interaction.
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For example, suppose there is an Interaction Patch in which the attacker punches

the opponent. When the patch is edited and the attacker can no longer reach the

opponent, the attacker may need to switch the punch with a kick in order to attack

its opponent. While it is still unclear how to represent the logical similarity be-

tween discrete actions during interactions, further research is required to create a

general algorithm that can switch actions to maintain the context of interactions.

7.3 Publications

The concepts related to temporal tree expansion in Chapter4 are included in:

• Hubert P. H. Shum, Komura Taku & Shuntaro Yamazaki (2007), ‘Simulat-

ing competitive interactions using singly captured motions’, in ‘VRST ’07:

Proceedings of the 2007 ACM symposium on Virtual reality software and

technology’, ACM, New York, NY, USA, pp. 65-72

The concepts related to Interaction Graph in Chapter5 are included in:

• Hubert P. H. Shum, Komura Taku & Shuntaro Yamazaki (2008), ‘Simu-

lating interactions of avatars in high dimensional state space’, in ‘I3D ’08:

Proceedings of the 2008 symposium on Interactive 3D graphics and games’,

ACM, New York, NY, USA, pp. 131-138

The concepts related to Interaction Patches in Chapter6 are included in:

• Hubert P. H. Shum, Komura Taku, Masashi Shiraishi & ShuntaroYamazaki

(2008), ‘Interaction patches for multi-character animation’, in ACM Trans.

Graph. 27(5), pp. 1–8

7.4 Commercialization

As our research is closely related to the gaming and movie industries, it is impor-

tant to demonstrate the possibility in applying the works inpractical applications.

This research is funded by the Initiating Knowledge Transfer Fund from the Uni-

versity of Edinburgh to commercialize the concepts relatedto Interaction Patches.

A patent has been applied and is now pending. We started a commercialization

project in 2009 to create a user interface in Maya, one of the most popular 3D
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computer graphics software, for generating crowd with dense interactions. The

project is on-going and a demonstration program is expectedto be available in

early 2010.



Appendix A

Runtime Synthesis

Although we use motions captured by real human to generate the animation, when

applying them for interaction simulation, the quality the resultant animation is

usually below standard. There are artifacts due to the transition periods of the

motion graph, unexpected collisions of body parts, and the change of foot contact

states. Furthermore, instead of simply displaying the captured motions, we wish

to make adjustments to create more realistic interactions.For example, when a

character is being hit, we push the colliding parts backwards to emphasize the

impact.

We create a particle system based on the Open Dynamic Engine (ODE) [Smith

(2008)] framework to synthesize the body postures during runtime, with reference

to the captured motion and the adjustment required to simulate the poses. The

ODE framework provides physical simulation, while we indicate the appropriate

forces and torques to be applied for each joint of the body. Our system can simu-

late smooth, realistic motions capable of minor adjustments to the body posture.

A.1 Character and World Modeling

In our system, the body segments of a character are modeled bysimple rectangular

polygons for faster collision detection. The body segmentsare connected with

ball joints, indicating that each body segment has 3 degreesof freedom in rotation.

Each character is represented by 25 joints and 19 segments. In our particle system,

each joint acts as a particle and each body segment act as an elastic spring. Since

the sizes of the body segments are constant, the elasticity of all the springs is zero.

We create an infinity large plane in the ODE world as the floor plane, which

117
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provide supporting force to the characters. Gravity is implemented such that when

no control force is applied, the character falls onto the ground as a rag doll. This

feature is used to model characters dying when being hit or pushed.

A.2 Soft Posture Constraints

In this section, we explain the process to define the requiredposture by soft posture

constraints. These soft constraints are presented as the target positions of all parti-

cles, which represent the joints of the character body. Notice that we only consider

the positions of the particles and do not enforce segment lengths between them.

Hence, the positions may refer to a physically invalid posture and require the pos-

ture solve explained in SectionA.4 to produce a valid posture. Furthermore, the

soft posture constraints only define the desired posture. Itis not guaranteed that

such constraints will be met in the final result.

The target position of each joint is initialized with the posture of the next frame

in the captured motion data. Since the motions are stored as joint angles, forward

kinematics is use to calculate the joint positions. The results are used as the initial

target positions of the particles. The advantage of using joint positions rather

than joint angles to describe the soft posture constraints is that positions are more

trivial to human understanding, and hence ease the process to adjust the required

postures.

Then, we adjust the target positions based on the simulationrequirements, such

as changing the hitting position of a punch. We only need to adjust the subset of

joints that are explicitly related. For example, when adjusting a punch, we only

need to adjust the target position of the hand, although the upper arm and lower

arm should be adjusted accordingly as well. Such implicit related joints will be

handled by the posture solver in SectionA.4. We apply adjustments of target

particle positions in four ways:

• During boxing, when one character hit its opponent, the attacking joint may

not be accurately landed to the opponent. In such situations, we update tar-

get positions of the attacking joints, mostly hands and feet, to the opponent

for the frames before the hit. Our posture solver will then produce an ease-

in and ease-out effect such that the attacking joints gradually move towards

the opponent before the hit and move away after the hit.
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• In the chasing and catching simulations, to simulate a character catching

another, we set the target positions of the hands to the body of the opponent

when the character is close to its opponent. When we solve for the posture,

the whole arms will be pulled towards the opponent.

• We apply joint adjustment to simulate parry motion in boxing. Whenever

a character is being attacked, the character should try to protect itself if

possible. We simulate parry motions for the arms when any of them free,

that is, when the character is not using the arms to attack nordefence. When

the attacking joint of the opponent becomes close to the character, we set the

positions of the forearms to the position of that attacking joint. The forearms

will then move towards the attacking joint as if blocking theattack, and

restore to the original positions after the attack.

• In the American football simulations, we control the left arm of the offensive

player such that it holds the ball. In such situation, the particle based on a

fixed location referencing to the local coordinate of the character. More

specifically, we define the joint positions for the whole leftarm relative to

the pelvis position and orientation of the character duringthe simulating,

such that the left arm is bent towards the body as if holding a ball.

A.3 Hard Posture Constraints

Hard posture constraints are also defined by the target positions of particles. Un-

like the soft posture constraints, the hard constraints areonly defined for a subset

of particles, and are guaranteed to be met in the final postures produced by the

posture solver in SectionA.4.

The hard posture constraints are used to constraint the position of particles. To

define a new hard constraint, we create a virtual ball joint between the specified

particle and the space, indicating that the particle cannotbe translated. Alterna-

tively, we can create a virtual ball joint between two particles, indicating that they

are connected. The hard constraints are applied in two ways:

• The supporting feet pattern of all actions are precomputed as explained in

Section3.2. During run-time, if a foot is supported, we add a hard constraint

to fix the foot on the floor. When it becomes unsupported, the constraint is

removed to resume the movement of the foot.
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• When we simulate a character holding luggage, we fix the hands to the sur-

face of the luggage with hard constraints such that they maintain contact

with the luggage. Using the same carrying motion with different hard con-

straint definition, we can simulate a character carrying objects of different

sizes. However, when there is a dramatic change in the size ofthe objects,

we have to capture new motions since the whole body movement should be

different.

Notice that if multiple hard constraints are created, theremay be incompatibil-

ity among them, such as fixing the feet while requiring the hands to unreachable

positions. In such situation, the posture solver will fail and the resultant posture

will appear broken as the segment lengths can no longer be maintained. Therefore,

we try to apply as few hard constraints as possible, and make sure the required po-

sitions are valid.

A.4 Posture Solver

In this section, we explain the process to solve for a valid posture with the given

soft and hard posture constraints.

Our posture solver is a particle system based on the ODE framework. We

define the control forces for each individual particle basedon the soft posture con-

straints. On the other hand, the ODE maintains the segment length and segment

connectivity defined by joints while applying the control forces. Virtual joints de-

fined by hard posture constraints are also maintained. Sincethe segment length is

fixed, when a force is applied to a particle, the rest of the particles will be dragged

to such direction. For each time step, the control force for each particle is calcu-

lated by PD control:

F = Ke(Ptarget −Pcurrent)+Kd(P
′
target −P′

current) (A.1)

wherePtarget is the target position of the particle as defined in the soft posture

constraints,Pcurrent is the current position,P′
target andP′

current are the respective

derivative,Ke is the elasticity gain andKd is the damping gain. A highKe can

improve the responsiveness of the character, while a highKd produce more stable

movements. We manually tune the smallest possibleKe andKd as a particle system

with high control forces is not stable. Furthermore, the magnitude of the resultant



A.5. Summary 121

forceF is bounded by a predefined value to avoid unexpected high control force

while the target values are very different from the current ones. In case a character

is being pushed or hit, extra control force is applied to simulate the impact. The

force is added to the particles being disturbed by referencing the velocity of the

disturbing particles.

One problem for our particle system is that because the particles are gener-

ated directly using joint positions, we cannot represent the rotational movements

along the body segments. One solution is to sample multiple particles based on

fixed offsets from each joint. However, this increases the complexity of the system

unnecessarily. Instead, we construct a hybrid system taking into account both con-

trolling forces and rotational torques, with the latter being a supporting element.

The controlling torque of a particle is calculated as:

T = Kε(θmotion −θcurrent)+Kδ(θ′motion −θ′current) (A.2)

whereθmotion is the orientation of the joint defined in the source motion data,

θcurrent is the current orientation of the corresponding particle,θ′motion andθ′current

are the respective derivative,Kε and Kδ are the hand tuned elasticity gain and

damping gain. Similar to the force calculation, the torqueT is bounded by a

predefined value.

Finally, a resultant posture is generated by the physical simulation engine of

the ODE. Collision detection is carried out between body segments such that they

do not overlap when the control signals are applied. The resultant posture is the

equilibrium state of the particles when all control forces are applied. Thus, it rep-

resents the posture that can satisfy most of the soft constraints while maintaining

the hard ones.

A.5 Summary

We designed a particle system based on the ODE framework. By defining the

constraints of the required posture based on the motion dataand simulation re-

quirements, we can calculate the control force required foreach particle. The

control forces are applied to the physical simulation engine of the ODE to solve

for the resultant posture. Our system can synthesize smoothand realistic move-

ments during run-time. We can also adjust the movement of a specific joint, and

constraint joints such as the supporting feet.
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