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ABSTRACT

Hand object interaction in mixed reality (MR) relies on the accurate
tracking and estimation of human hands, which provide users with
a sense of immersion. However, raw captured hand motion data
always contains errors such as joints occlusion, dislocation, high-
frequency noise, and involuntary jitter. Denoising and obtaining
the hand motion data consistent with the user’s intention are of the
utmost importance to enhance the interactive experience in MR. To
this end, we propose an end-to-end method for hand motion denois-
ing using the spatial-temporal graph auto-encoder (STGAE). The
spatial and temporal patterns are recognized simultaneously by con-
structing the consecutive hand joint sequence as a spatial-temporal
graph. Considering the complexity of the articulated hand structure,
a simple yet effective partition strategy is proposed to model the
physic-connected and symmetry-connected relationships. Graph
convolution is applied to extract structural constraints of the hand,
and a self-attention mechanism is to adjust the graph topology dy-
namically. Combining graph convolution and temporal convolution,
a fundamental graph encoder or decoder block is proposed. We
finally establish the hourglass residual auto-encoder to learn a man-
ifold projection operation and a corresponding inverse projection
through stacking these blocks. In this work, the proposed frame-
work has been successfully used in hand motion data denoising with
preserving structural constraints between joints. Extensive quantita-
tive and qualitative experiments show that the proposed method has
achieved better performance than the state-of-the-art approaches.

Index Terms: Motion data cleanup—Hand motion denoising—
Graph convolutional network—Spatial-temporal graph auto-encoder

1 INTRODUCTION

With the rapid development of human-computer interaction tech-
niques in mixed reality (MR), more and more interactive methods
based on different algorithms are provided to enable users to obtain
feelings of immersion in 3D virtual scenes [33]. During the inter-
action, human hands play a key role to perform operations such as
grasp, move, and rotate. Accurate hand pose estimation and track-
ing [16] can effectively improve the user experience. However, the
complex articulations, self-occlusion, and self-similarity of hands
make this task challenging [35], and prolonged interactions may
cause fatigue and involuntary handshaking. Moreover, hand-object
interaction in MR is extremely unfriendly for patients with motion
disorders such as Parkinson’s disease. As a result, hand motion cap-
ture data with natural noise, dislocation, and jitters may not conform
to the intention of users. It is of the great interest to develop effective
hand motion denoising methods for addressing these problems.

Cleaning motion capture data is a key process. Existing methods
for motion data denoising mainly include prior knowledge based
methods and machine learning based methods. The former is done
by modelling human prior knowledge on the feature and the prob-
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lem by different algorithms such as skeleton hierarchy and filter
designs. The latter is done by machine learning frameworks, such as
deep learning, etc. Compared with the latter, the former is always
dependent on some priors and restricted by personal cognitive level.
Although some machine learning based methods have achieved con-
siderable results, the capability of these methods is limited due to the
inexplicit spatial relationships among joints. To extract knowledge
directly from the data, the proposed method allows us to introduce
some human prior knowledge (i.e. the design of the graph) into a
machine learning system, such that we get the advantages of both.

Constructing the hand as a graph is effective to learn the spatial
constraints between joints. Recently, a hand motion compensation
method [13] attempts to leverage the physic-connected connections
between joints using the graph convolutional neural network. This
method shows the encouraging performance, which indicates the
significance of spatial connections between joints. However, this
method has two separated stages for spatial domain and temporal
domain, making it ineffective to extract correlated spatial-temporal
patterns. In addition, roughly applying tremor to the hand as a whole
ignores the relative motion between joints.

To effectively model the spatial-temporal patterns for hand mo-
tion denoising, in this paper, we propose an end-to-end approach
using the spatial-temporal graph auto-encoder (STGAE). Following
the existing practice [8, 22], we generate noisy variants of motions
by adding noise to each joint independently. Considering the phys-
ical laws of hand motion, we optimize them to preserve structural
constraints such as bone length. Then, the hand motion data is con-
structed as a spatial-temporal graph, where a simple yet effective
partition strategy is proposed to model the structural constraints of
hand. The introduced self-attention mechanism enables the graph
topology to adjust dynamically. Combining graph convolution and
temporal convolution, a basic spatial-temporal encoder or decoder
block is designed. The proposed method adopts an hourglass archi-
tecture by stacking these basic blocks. The encoder is responsible
for learning a manifold projection and the decoder is for the corre-
sponding inverse projection. The whole network architecture adopts
a global residual structure, which can ensure the stabilization of
training. The proposed method can keep the structural constriants
between the joints well that the previous works [8, 13] suffer from.

The proposed method outperforms the state-of-the-art works in
several metrics, such as hand pose similarity error and bone length er-
ror. Ablation studies show the power of the introduced self-attention
mechanism the proposed novel partition strategy. Extensive quanti-
tative and qualitative results verify the strength of our approach.

The main contributions of this work are summarized as follows:

• A powerful framework for hand motion data denoising is pro-
posed using the spatial temporal graph auto-encoder, which
can effectively extract spatial-temporal patterns.

• During the data corruption, the structural constraints between
joints are considered to simulate natural abnormal hand motion
and preserve the bone length simultaneously.

• A novel hand skeleton partition strategy is presented and a
dynamic self-attention mechanism is introduced, ensuring that
the structural constraints of the hand can be well maintained.



2 RELATED WORKS

We first briefly review the previous works aiming at solving motion
data cleanup. It is followed by the previous works that use deep
learning methods to deal with noisy data and graph-structured data.

2.1 Motion Data Cleanup
To tackle the motion data cleaning problem, one key idea is to
introduce prior belief about the behavior of skeletal joints [8]. In
the process of motion, the joints should follow the law of physics in
the time domain and the physiological structure constraints in the
spatial domain. Therefore, two significant kinds of priors can be
used, i.e., temporal priors [1, 6, 18] and spatial priors [15].

These prior knowledge based methods [1, 15, 20] mainly include
skeleton-based methods, Kalman filter based methods and dimension
reduction methods. Burke et al. [1] have proposed a marker position
estimation algorithm combining temporal smoothing with a Kalman
filter and low rank matrix completion. This method is effective for
gap filling, while the universal noise scenario is not considered. Lou
et al. [20] construct a series of filter bases from the clean motion data
and determine the filter weights through a non-linear optimization
method. Different types of motion require learning separate bases,
which is computationally expensive. Therefore, it is not suitable
for a large variety of input motions. Li et al. [15] have utilized a
prior belief about the distances between markers and the joint length
constraint to present a principled technique called BoLeRO. Though
it is capable of filling gaps when motion capture is occluded, the
spatial noise such as marker swaps scenario is ignored.

Since the motion data usually contains spatial noise and temporal
noise, only considering any one has limitations. This motivates us to
exploit the spatial-temporal patterns for hand motion data cleanup.

2.2 Denoising Neural Network
The deep learning method is highly favored because it overcomes
several drawbacks such as manually setting parameters [28]. De-
noising auto-encoder is a universally used architecture, which has
evolved in many versions [7, 21]. The classical auto-encoder com-
prises encoder and decoder. The encoder attempts to obtain the
robust latent representations by corrupting the clean data, and the
decoder reconstructs the original data. Another popular denoising
framework is the generative adversarial network [3, 34], generat-
ing the denoised output and then inputting it into the discriminator
to train the denoiser. These architectures are not robust to the hu-
man motion data since they do not consider the temporal relations
between adjacent frames and spatial relationships among joints.

Many deep learning methods [11, 32, 36] also focus on human
motion data denoising and have achieved state-of-the-art results.
In particular, Holden et al. [9] try to learn motion manifolds with
the convolutional auto-encoder. The corrupted motion data can be
reconstructed to clean output by defining a manifold projection and
the corresponding inverse one. Wang et al. [30] have proposed a
spatial-temporal manifold that is capable of denoising motion data
with corrupted stepping patterns. Although these two methods can
deal with the noise in the spatial-temporal domain, they ignore the
structural constraints between the skeletal joints. To consider more
denoising scenarios, Holden [8] has trained a deep denoising feed-
forward neural network with a residual structure, learning transform
mapping from clean data to corrupted data. However, both the
temporal constraint of consecutive frames and the spatial constraint
of different skeletal joints are not considered.

Kim et al. [11] have proposed a novel method of denoising hu-
man motion, using a bidirectional recurrent neural network with
an attention mechanism. The attention mechanism ensures that a
higher weight value is selectively given to the more important input
at a specific frame, thus achieving better optimization results than
others. Though using a recurrent neural network or long short-term
memory architecture can effectively mine the temporal patterns, it is

really hard to capture the structural constraints between joints due
to the limitations of the general convolution operation. To this end,
a WaveNet followed by a graph neural network [13] is proposed to
stably estimate the hand pose under tremor. This two-stage neural
network is only tackling the hand tremor and ignores the relative
motion among joints. Further, the two separated operations are not
conductive to extract spatial-temporal patterns.

Considering the structural constraints between skeletal joints,
we aim to develop an end-to-end neural network to dig out spatial-
temporal patterns rather than restricting it to any abnormal motion.

2.3 Graph Convolutional Neural Network
Different from the conventional convolution neural networks on
non-structured data, graph convolutional neural network (GCN) [12]
aims at generalizing the convolution operation to the versatile graph-
structured data [31]. There are two technique routes to implement
GCN, i.e., spectral-based approaches [5, 14, 25] and spatial-based
approaches [4, 19, 27]. The former defines graph convolution by
introducing filters according to graph spectral analysis, while the
latter is based the on information propagation among graph nodes.

GCN has been developed into many variants in the past few
years, including graph auto-encoders [10, 24] and spatial-temporal
GCNs [2,17,32]. They have been widely extended to skeleton-based
classification, time-series forecasting, and so on. In particular, Yan et
al. [32] have designed a spatial-temporal convolution neural network
for skeleton-based action recognition, which can automatically learn
both the spatial and temporal patterns simultaneously. To improve
its recognition accuracy, Shi et al. [26] have introduced an adaptive
graph convolution block to learn the graph topology. This work
combines the essence of the above two GCN variants to construct a
novel network architecture for human skeletal motion data cleaning,
aiming at learning both spatial and temporal patterns simultaneously.

Comparing with existing works, we aim at devising an end-to-end
method to fix the corrupted data using STGAE, without restricting it
to the particular noise distribution or skeleton model. The proposed
method can exploit the temporal-spatial patterns, ensuring maximum
consideration of structural constraints for the faithful performance.

3 METHODOLOGY

In this section, we first briefly introduce the overview of the frame-
work of the proposed method. Then, the detailed data corruption
algorithm is presented. Finally, the proposed method is elaborated.

3.1 Framework Overview
As shown in Fig. 1, a pipeline for hand motion data denoising is
presented using STGAE. This section briefly describes the proposed
processing framework. Given a time-series dataset of hand poses
D = {Xi : Xi ∈ RN×3, i = 1, 2, · · · , T} where T is the number
of frames and N is the number of hand joints, let X ∈ RT×N×3 be
the hand pose matrix and suppose that it is clean.

In Fig. 1, we first corrupt the clean hand motion data X to obtain
the training pairs (the corrupted data X̃ ∈ RT×N×3 as input and
the clean data X as output) using a novel corruption algorithm.
Then, construct the hand motion data as the spatial-temporal graph
G. Input the corrupted data X̃ into the proposed network and output
the reconstructed motion data Y. In the end, the denoising results
are evaluated through three different metrics. The trained model can
accurately estimate the user’s intention in MR. In practice, we only
need to feed the data into the network to get the faithful motion.

3.2 Corrupted Motion Data Synthesis
In this section, we simulate the abnormal hand motion by corrupting
the hand joints independently to produce the corrupted data X̃.

Inspired by Holden et al. [8], we use algorithm 1 to corrupt the
clean hand joint data X. Before training, we first scale all the hand
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Figure 1: The pipeline of the proposed method for hand motion denoising using STGAE: (a) the data-preprocessing phase introducing data
corruption where the clean hand motion data X ∈ RT×N×3 is broken into the corrupted data X̃ ∈ RT×N×3; (b) the graph construction by
modeling the spatial dependencies between joints and the temporal continuity between consecutive frames as well as the proposed STGAE
architecture consisting of a projection operator Φ and a corresponding inverse one Φ−1; (c) the evaluation phase where the reconstructed data
Y ∈ RT×N×3 is evaluated by different metrics; (d) the introduced graph convolution module with the self-attention mechanism in Sect. 3.3.3. (e)
the network architecture in Sect. 3.3.4. Note that only inputting the real motion data into our network is required in the inference phase.

joints data so that the hand has a uniform length. This form of nor-
malization Normalize(·) ensures that we do not have to explicitly
deal with hands of different sizes in the proposed framework but
only hands of different proportions. We then corrupt the motion data
in three steps, considering the involuntary tremor caused by a long
period of hand-object interaction and the presence of rhythmic hand
tremor in patients with Parkinson’s disease.

Due to the error caused by hand pose estimation techniques, the
coordinates of some joints deviate. To simulate this position shifts,
the shifting noise S ∈ RT×N×3 is added to the coordinates of some
joints. It is satisfying a certain distribution Shift(·) controlled by
the hyper-parameter β. In this work, we use different levels of
corruptions and that includes zero corruptions, which ensures that
our method can learn both the damage function and the non-damage
function. Similarly, the shifting mask Ms ∈ RT×N is generated by
the hyper-parameter σs controlling which coordinates are offset.

Due to the complex structure and self-occlusion of the hand,
it is unavoidable that there are missing joints through hand pose
estimation methods. In this phase, we can sample a norm distribution
N (0, σ2

o), and then generate the occlusion mask Mo ∈ RT×N by
sampling a Bernoulli distribution. Mo controls which hand joints
coordinates are set to zero to simulate joints missing.

To confirm the laws of motion, all the corrupted operation should
be subject to the structural constraint. In the implementation, we
optimize Xc ∈ RT×N×3 to preserve structural constraints such as
bone length and joint angle. Note that a reasonable assumption can
be made that the trajectory of the root joint is clean.

Finally, the corrupted data X̃ ∈ RT×N×3 with respect to its
ground truth X is obtained for the next training phase.

3.3 Spatial-Temporal Graph Auto-Encoder
The general idea of STGAE is to learn a manifold projection operator
Φ and a corresponding inverse one Φ−1. We implement the STGAE
by the spatial graph convolution and the temporal convolution.

3.3.1 Spatial-Temporal Graph Construction
We construct the hand topology with spatial and temporal connec-
tions as an undirected spatial-temporal graph G = {V, E}. In this
work, a novel hand skeleton partition strategy is proposed.

Algorithm 1: Hand joint corruption algorithm

Input: Hand joint data X ∈ RT×N×3, hyper-parameters
σo ∈ R, σs ∈ R and β ∈ R.

Output: Corrupted hand joint data X̃ ∈ RT×N×3.
1 XT×N×3

n ← Normalize(X̃) ; // Data normalization

2 αT
s ← N (0, σ2

s ) ; // Sample shifting probability

3 MT×N
s ← Bernoulli(min (|αs|, 2σs)) ; // Mask

4 ST×N×3 ← Shift(−β, β) ; // Shifting distribution

5 XT×N×3
s ← Xn + S�Ms ; // Data shifting

6 αT
o ← N (0, σ2

o) ; // Sample occlusion probability

7 MT×N
o ← Bernoulli(min (|αo|, 2σo)) ; // Mask

8 XT×N×3
c ← Xs � (1−Mo) ; // Data occlusion

9 X̃T×N×3 ← Optimize(Xc) ; // Structural constraint

As depicted in Fig. 2, the spatial-temporal graph consists of two
basic parts: the spatial graph in Fig. 2(a) and the temporal graph in
Fig. 2(b). The spatial graph shows the direct connected dependen-
cies between neighbor joints and the indirectly linked relationships
between symmetric neighbor joints. The temporal graph represents
the continuity between consecutive frames of hand motion.

Each joint vt,i has three kinds of neighbors: physic-connected
neighbors vt,j with direct intra-hand edges vt,i ↔ vt,j , symmetry-
connected neighbors vt,k with indirect intra-hand edges vt,i ↔ vt,k,
as well as temporal neighbors vt−1,i and vt+1,i with indirect inter-
frame edges vt−1,i ↔ vt,i and vt,i ↔ vt+1,i. This effective
hand skeleton partition strategy is helpful for noisy joints to obtain
compensation from their trustworthy spatial-temporal neighbors.

Generally, the node feature vt,i of the t-th frame and the i-th
joint consists of the coordinates in the 2D or 3D space. The node set
V = {vt,i|t = 1, 2, . . . , T, i = 1, 2, · · · , N} includes all the joints
of the whole hand motion sequences with T frames and N joints.
The edge set E = {vt,i ↔ vt,j ,vt−1,i ↔ vt|i = 1, 2, · · · , N, t =
2, 3, · · · , T} comprises both the direct and indirect intra-hand edges
as well as inter-frame edges.



(a) (b)

Figure 2: The illustration of the spatial-temporal graph: (a) is a spatial
graph where the red circle denotes the center joint, blue circles repre-
sent its physic-connected neighbors (solid line) and cyan circles are
the symmetry-connected ones (dashed line); (b) is a temporal graph
where the red circle indicates the center joint and blue circles show
its temporal neighbors of the before and after frame.

3.3.2 Graph Convolution
In a general way, the graph convolution operation can be imple-
mented based on Kipf and Welling [12]. In this section, we introduce
how to do convolution operation on the spatial-temporal graph.

Considering the hand joint data of the i-th frame X̃i of sizeN×3,
Zi ∈ RN×F is the result of the graph convolution operation.

Zi = D̃−
1
2 ÃD̃−

1
2 X̃iW, (1)

where Ã = A+I is the normalized adjacency matrix of sizeN×N
with self-connections. D̃ is the normalized degree matrix with the
diagonal element Dii =

∑
j Ãij and W ∈ RN×F is the filter

parameter. Since this uniform operator of Equation 1 is appropriate
to the dense graph but not to the sparse such as hand skeleton data,
we adopt a nonuniform treatment of neighbor joints similar to [2].

Fig. 2(a) shows that each joint has two spatial relationships: direct
(physic-connected) neighbors and indirect (symmetry-connected)
neighbors. Therefore, the joint i as well as both its direct and
indirect neighbors can be divided into a subset Si. If j ∈ Si, then
set Aij = 1; if the joint j is the direct/indirect neighbor of i, then
set Aij

direct/A
ij
indirect = 1. According to different relationships,

the normalized adjacency matrix Ã can be dismantled into several
matrices Ak ∈ RN×N where

∑
k Ak = Ã. In this work, we

set A1 = I, A2 = Adirect and A3 = Aindirect. At this point,
Equation 1 can be transformed into the following form.

Zi =

K∑
k=1

Λ̃
− 1

2
k AkΛ̃

− 1
2

k X̃iWk, (2)

where K = 3 and Λ̃ii
k =

∑
j A

ij
k + ε. To avoid the empty row of

Ak, ε can be set to a little positive number, e.g., ε = 0.001.

3.3.3 Attention mechanisms
If a joint has noisy neighbors, then it is less trustworthy to obtain the
denoising compensation. To this end, we introduce a self-attention
mechanism to dynamically learn which neighbors are reliable.

Multiplying Importance Mask To learn the importance of
neighbor joints, one possible solution is to implement an attention
mechanism by multiplying the mask Mk ∈ RN×N , which indicates
the connection strength. Equation 2 is thus represented as:

Zi =

K∑
k=1

(
Ãk �Mk

)
X̃iWk, (3)
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Figure 3: The visualization of the basic spatial-temporal encoder
block including two parts: graph convolution sub-block and temporal
convolution sub-block. ‘conv’, ‘BN’, ‘pool’ and ‘Dropout’ denote the
convolution layer, the batch normalization layer, the pooling layer
and the dropout layer respectively. ‘+’ indicates the residual block.
In the graph convolution sub-block, a self-attention mechanism is
adopted followed by the graph convolution to learn which neighbors
are trustworthy. For the temporal convolution sub-block, a pooling
layer is mainly for the top-down process to capture the global features.

where Ãk = Λ̃
− 1

2
k (Ak)Λ̃

− 1
2

k and � denotes the element-wise op-
erator. Similarly, Equation 1 can also adopt an attention mechanism.
In this work, we initialize Mk with the all-one strategy.

However, this attention mechanism is so dependent on the prior
neighbor connections Ãk and the neighbor importance Mk that it
ignores structural constraints between two non-neighbor joints.

Adding Learnable Terms To determine the contribution of
non-neighbor joints, adding learnable terms is a good choice.

Zi =

K∑
k=1

(
Ãk + Bk

)
X̃iWk, (4)

where Bk ∈ RN×N is a learnable matrix, ensuring that noisy joints
obtain the compensation from their non-neighbor joints. In this
work, we initialize Bk with all-zero strategy.

Bk learns a static weight for every hand pose, which ignores the
difference of hand noise. In this work, a self-attention mechanism is
used to learn dynamic weights for every pose.

Zi =

K∑
k=1

(
Ãk + Bk + Ck

)
X̃iWk, (5)

where Ck ∈ RN×N can be obtained by the scaled dot-product
attention [29] without degrading the performance of Equation 4.

Ck = Softmax

(
QK>√

d

)
, (6)

where Q ∈ RC×d and K ∈ RC×d denote the query and the key
respectively. The scale factor 1/

√
d is to counteract the dot products

growing large in magnitude. Both the query Q = X̃iWquery and
the key K = X̃iWkey are the embedding of the input data X̃i,
where Wquery ∈ RC×d and Wkey ∈ RC×d are the corresponding
embedding weight. Ck learns a unique connected topology for each
hand pose X̃i and measures the relationship between any two joints.

3.3.4 Auto-Encoder Architecture

Due to the success of the stacked hourglass network [23], the local-
to-global scheme can effectively extract global features from the
graph-based data. Follow this idea, we propose a novel spatial-
temporal block with an hourglass structure.



Basic Spatial-Temporal Encoder Block Fig. 3 illustrates the
architecture of a basic spatial-temporal encoder block, where both
the graph convolution layer and temporal convolution layer are
followed by a batch normalization layer, a ReLU layer, and a dropout
layer. To determine reliable neighbors, a self-attention mechanism is
applied in the graph convolution sub-block. Using 2D convolution
operation with 1× Γ kernel and multiplying the attention term, the
first hidden feature map H

(l)
1 of l-th block can be obtained.

H
(l)
1 = ReLU(Convgraph(Z(l), Ã + B + C)), (7)

where Z
(l)
i is the input of the l-th block. Different from the graph

convolution sub-block, we introduce a top-down process in temporal
domain. Specifically, an average pooling layer is added between the
ReLU layer and the dropout layer. Similarly, the temporal convolu-
tion can be implemented as the 2D convolution with Ω× 1 kernel.

H
(l)
2 = AveragePool(ReLU(Convtime(X̃

(l))) (8)
To ensure the same dimension, an additional temporal pooling layer
is added to the whole residual block.

Z(l+1) = AveragePool(Z(l)) + H
(l)
2 , (9)

where Z(l+1) is the output of the l-th block, as well as the input of
the (l+1)-th block. It is noted that all the 2D convolution is equal to
1D convolution with the corresponding kernel size. For other blocks
that do not require the top-down process in the temporal dimension,
the average pooling layer in Fig. 3 can be omitted.

Hourglass Network Structure The encoder stacks 5 basic
blocks. The numbers of output channels for each block are 3, 32,
32, 32, and 64. A data batch normalization layer is added at the
beginning. For the second and fourth blocks, the average pooling
layer is preserved but not for the others. The encoder learns a
manifold projection mapping the input data into a hidden space.

H = Φ(X̃,A1,A2,A3), (10)

where H is the manifold feature map. The decoder is also the stack
of 5 basic blocks. The numbers of output channels for each block
are 64, 32, 32, 32, and 3. In the second and forth blocks, the average
pooling layer is replaced by the up-sampling layer. For the others,
the average pooling layer is removed. The overall architecture is
stabilized by a global residual structure as shown in Fig. 1. The
decoder learns a corresponding inverse projection operator.

Y = X̃− Φ−1(H,A1,A2,A3), (11)

where Y is the denoised output of the same size as X̃.

3.4 Loss Functions
During the training phase, the network reproduces the original input
X from the input X̃ following both the forward and backward oper-
ations. It is seen as the optimization problem by minimizing the loss
function. In this work, the joint losses are applied in training.

Hand Pose Similarity Loss The pose similarity loss measures
the mean squared error (MSE) of hand joints position between the
ground truth X and the reproduction Y.

Lpose = E
(
‖Y −X‖22

)
, (12)

where E(·) denotes the mathematical expectation.
Hand Bone Length Loss The bone length loss weighs the

MSE of bones length between two corresponding bones, which
represents the physiological structural constraints of the hand joint.

Lbone = E
(
‖ψ(Y)− ψ(X)‖22|A1

)
, (13)

where ψ(·) represents the Euclidean distance function between two
physic-connected joints.

Symmetric Neighbor Loss The symmetric neighbor loss eval-
uate the MSE of the Euclidean distance to indirect neighbors.

Lsym = E
(
‖ψ(Y)− ψ(X)‖22|A2

)
, (14)

Training Strategy Finally, we train the entire network in an
end-to-end manner with the combined loss:

L = λ1Lpose + λ2Lbone + λ3Lsym, (15)

where λ1 = 1, λ2 = 1 and λ2 = 0.1. To accelerate training, we
only use the latter two losses during the fine-tuning phase.

4 EXPERIMENTS

Based on a benchmark dataset, the synthetic dataset is first generated.
The proposed model is compared with state-of-the-art approaches.
Ablation studies examine the contribution of model components.
Other quantitative and qualitative results are presented.

4.1 Dataset
In this work, we use NYU hand joint data 1 as ground truth. Both
the training set and the test set are corrupted by algorithm 1.

The synthesized dataset contains 8252 consecutive test frames
and 72757 consecutive training frames. Each frame consists of a
frontal view and two side views. The training set contains samples
from a single user while the test set is from two ones.

4.2 Evaluation Metrics
In this work, we evaluate models with three different metrics: hand
pose similarity error, hand bone length error and hand symmetric
neighbor error. The first one shows the similarity of two hand poses
while the others indicate structural constraints of the hand.

Hand Pose Similarity Metric To evaluate the quality of de-
noising output Y compared with ground truth X, the most intuitive
method is to measure the MSE value between their corresponding
hand joint positions. In such a way, the smaller the MSE of two
corresponding hand poses, the better the denoising performance.

MSEi
pose =

1

N

N∑
j=1

3∑
k=1

(
Xi

jk − Y i
jk

)2
(16)

Hand Bone Length Metric Hand bone length error is a metric
that represents a kind of structural constraint of the hand skeleton.
The smaller the MSE of bone length between the two corresponding
bones, the better the denoising performance.

MSEi
bone =

1

|Edirect|

N∑
j=1

∑
k∈Nj

(ψjk(Xi)− ψjk(Yi))
2 , (17)

where |Edirect| is the size of the direct edges set, Nj denotes the
direct neighbors set of the joint j and ψjk measures the Euclidean
distance between the joint j and the joint k.

Symmetric Neighbor Metric Similar to Equation 17, symmet-
ric neighbor error measures the structural constraint between two
symmetry-connected joints. The smaller the MSE of symmetric
neighbor error between the two corresponding distances of symmet-
ric neighbors, the better the denoising performance.

MSEi
sys =

1

|Eindirect|

N∑
j=1

∑
k∈N?

j

(ψjk(Xi)− ψjk(Yi))
2 , (18)

where |Eindirect| is the size of the indirect edges set,N ?
j denotes the

indirect neighbors set of the joint j and ψjk measures the Euclidean
distance between the joint j and the joint k.

1NYU hand motion dataset: https://jonathantompson.github.
io/NYU_Hand_Pose_Dataset.htm

https://jonathantompson.github.io/NYU_Hand_Pose_Dataset.htm
https://jonathantompson.github.io/NYU_Hand_Pose_Dataset.htm


Table 1: The comparison result of different methods on the test data set. We measure the mean squared pose error, mean squared bone
length error and mean squared symmetric neighbor error for all joints across all frames in the test set, along with the inference time, the training
time, and the size of model weights. The methods from top to bottom are joint-space encoder-bidirectional-filter network [22] (EBF), joint-space
convolution neural network [9] (CNN), optical motion residual neural network [8] (ResNet), hand tremor compensation module based on graph
neural network [13] (CAM-GNN) and ours, respectively.

# Method MSEpose (mm2) MSEbone (mm2) MSEsym (mm2) Inference (fps) Model size (MB) Training (h)

1 EBF 70.7740 13.5822 69.2183 143 4.3 8
2 CNN 170.3657 23.5246 390.9772 680 30.4 10
3 ResNet 59.8223 6.5408 89.1416 686 15.8 7
4 CAM-GNN 17.6803 3.5570 32.7914 152 10.6 9
5 Ours 2.1741 0.5640 3.8091 2146 2.1 6

x

−250
−200

−150
−100

−50
y

−100
−50

0

50

z

700

725

750

775

800

Input (MSEpose = 223.5456)

(a) Input

x

−250
−200

−150
−100

−50
y

−100
−50

0

50

z

700

725

750

775

800

Output (MSEpose = 223.4042)

(b) EBF

x

−250
−200

−150
−100

−50
y

−100
−50

0

50

z

700

725

750

775

800

Output (MSEpose = 118.9971)

(c) CNN

x

−200
−150

−100
−50y

−100
−50

0

50

z

700

725

750

775

800

Output (MSEpose = 40.9462)

(d) ResNet

x

−200
−150

−100
−50

y

−100
−50

0

50

z

700

725

750

775

800

Output (MSEpose = 30.2261)

(e) CAM-GNN

x

−200
−150

−100

−50
y

−100
−50

0

50

z

700

725

750

775

800

Output (MSEpose = 1.4690)

(f) Ours

Figure 4: The comparison of denoising results for the state-of-the-art works. Though these methods work well in many cases, they are often
unable to reconstruct the original motion when the input joints contain too many bad errors. From left to right: (a) raw uncleaned data, (b) EBF [22]
, (c) CNN [9], (d) ResNet [8], (e) CAM-GNN [13] and (f) ours. Note that the shaded part in each sub-figure is the corresponding ground truth.

4.3 Implementation Details

Based on Tensorflow 2 framework, all experiments are implemented
and conducted on one GeForce RTX 2080 Ti GPU with CUDA 10.1.

In the pre-processing phase, the corruption operation is elaborated
in algorithm 1. The parameters σo, σs and β control the joints
occlusions, joints swaps and joints noise respectively. We set σo =
0.1, σs = 0.1 and β = 50mm. For the dataset split, the training
set is first divided into batches of 36 frames and then 15% of them
are randomly sampled as the validation set. In the training phase,
we adopt an early stopping mechanism to avoid overfitting with a
mini-batch size of 32 using the Adam optimizer. The learning rate
is reduced by 80% from 0.01 while the validation loss is increasing.
The maximum patience of the early stopping mechanism and the
minimum learning rate are set to 10 and 10−7 respectively.

4.4 Results and Analysis

This section shows the comparison between our method and the state-
of-the-art methods. We also present ablation studies and denoising
results. Through a series of experiments, we verify the effectiveness
of our proposed method. The results are analyzed in detail.

4.4.1 Comparisons with the State-of-the-art

We compare our method on the test set with the state-of-the-art
motion capture data denoising methods [8,9,13,22] and measure the
above three metrics for joints across all frames on the test set. Ta-
ble 1 reports the detailed comparison results along with the inference
time, training time, and size of model weights. Note that for simply
evaluate the memory usage of models, we only statistic the space
taken up by the number of saved model parameters. Fig. 4 displays
the denoising results of these state-of-the-art works.

For a fair comparison, we use the same number of layers in all
baselines and adjust the number of hidden units such that they have
roughly the same memory allowance. Our comparison finds that
although all the state-of-the-art methods achieve a good level of
performance, the proposed method achieves the best results on the
test data in terms of all the metrics used in this work.

Robust Denoising Performance Although all the methods
perform well in most cases, Fig. 4 shows that our method achieves
the most robust performance when dealing with extremely abnormal
motion poses. As shown in Table 1, our model performs best under
all three metrics: mean squared pose error, mean squared bone length
error, and mean squared symmetric neighbor error. Compared with
these methods, our method can capture spatial-temporal patterns at
the same time, so it performs the best in dealing with motion data.
In addition, due to the consideration of more structural constraints,
our proposed method achieves significantly better performance in
terms of bone length and symmetric neighborhood errors.

Dynamic Inference As elaborated in Table 1, our method has a
high frame rate and can process up to 2146 frames per second in the
inference stage. Compared with the EBF method, our method adopts
a dynamic inference decoder without waiting for 15 frames after the
current frame to start generating outputs. Compared with the others,
although they have the same number of layers, they take significantly
more time for inference due to the large number of parameters of
their networks. It is worth mentioning that all the methods can meet
the real-time processing requirements in the inference phase.

Low Memory Usage and Short Training Time Among these
methods in Table 1, the space occupied by model parameters of
our method is the smallest and the training time is the shortest.
Through the effective parameter sharing mechanism, our model is
much lightweight for practice. Compared with CAM-GNN, ours
fuses spatial and temporal features with less trainable parameters,
accelerating model convergence and achieving better performance.

4.4.2 Ablation Studies
We perform ablation studies to investigate the contribution of differ-
ent components of our proposed method on the synthesized dataset.
All the ablation studies are evaluated on the above three metrics.

Attention Mechanisms We compare the performance of dif-
ferent attention mechanisms and no attention module scenario, i.e.,
only using Ã like Equation 2. In this work, we study two differ-
ent kinds of attention mechanisms. One is similar to Equation 3,
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Figure 5: The visualization of hand motion denoising using STGAE: (a) to (d) are the results of four different frames. In each sub-figure, from left
to right are the input pose, the denoising output and the ground truth. To distinguish the difference between the input/output and the ground truth,
the shaded part represents the ground truth on the corresponding figures. Note that the top 30 joints are displayed for the best view.

multiplying a mask to learn edge importance weights. The other is
adding learnable parts to Ã analogous to Equation 5. Furthermore,
we delete learnable components one by one for the latter to verify
the effectiveness of the proposed dynamic attention module.

Table 2: The ablation study on attention mechanisms (mm2)

# Methods MSEpose MSEbone MSEsym

1 Ã 15.8325 4.6069 26.2338
2 Ã�M 13.7035 4.0235 22.7004
3 B + C 13.6936 4.7644 23.8084
4 Ã + C 13.1479 4.3135 20.6892
5 Ã + B 14.4268 3.4743 30.0313
6 Ã + B + C 2.3879 0.6945 4.3162

Table 2 reports the results of ablation studies on attention mecha-
nisms. From top to bottom, Table 2 lists non-attention mechanism
Ã, masked attention mechanism Ã�M, as well as four additive
types of attention mechanism (B + C), (Ã + C), (Ã + B) and
(Ã + B + C). Without any attention mechanism, the MSE of
the hand pose is up to 15.8325. Both the two kinds of attention
mechanisms outperform it, indicating the effectiveness of attention
mechanisms. The attention mechanism makes the GCN get rid of the
dependence of graph structure, leading to stronger generalization per-
formance. Overall, the second kind of attention mechanism works
better than the first. The reason is that learning neighbor importance
by multiplying masks doesn’t change graph topology while adding
some learnable components ensure that the graph structure can be
completely adjusted. For the second kind of attention mechanism,
(Ã + B + C) performs the best, indicating the effectiveness of all
the learnable components. Deleting Ã causes the graph losing the
topological prior and makes the network hard to converge compared
with (Ã + B + C). Both deleting B and C are not conducive to
dynamically learn which neighbors are trustworthy.

Partition Strategies In this work, we propose a simple yet
effective partition strategy where the indirect symmetric connections
are also served as the edges of the spatial-temporal graph. To explore
the influence of different types of connections on the performance
of the proposed model, we conduct ablation studies by removing

Table 3: The ablation study on partition strategies (mm2)

# A1 A2 A3 MSEpose MSEbone MSEsym

1 3 3 7 9.1182 2.3199 16.9761
2 3 7 3 11.1967 2.5976 21.0983
3 7 3 3 14.0478 6.4166 26.0971

one type of connection each time, i.e., self-connections A1, physic-
connections A2, and symmetry-connections A3.

Table 3 elaborates the detail results of ablation study on parti-
tion strategies. Form top to bottom, Table 3 shows the results of
deleting A3, A2 and A1 scenarios, respectively. Compared with
the performance of adaptive attention mechanism (Ã + B + C) in
Table 2, it is obvious that removing any of these connections greatly
affects the error of the proposed model. Among them, deleting the
self-connection item A1 has the greatest impact, indicating that the
self-connection in the graph is the most important. To some extent,
self-connection represents that the motion of each joint is continuous
in the temporal domain. Second, the influence of immediate neigh-
bors A1 is also very large. It is clear that there are strong structural
constraints between physic-connected joints. The effect on indirect
connections A2 is minimal, indicating that symmetrical neighbors
are the least important compared with self-connections and direct
connections. Nevertheless, the removal of symmetry-connected
relationships still results in significant performance degradation,
illustrating the effectiveness of the proposed partition strategies.

4.4.3 Denoising Performance
To better display the experimental results, we select four frames
from a piece of motion data containing 36 frames, as shown in Fig. 5.
For the entire continuous animation, see the supplementary video.
Fig. 6 shows the motion trajectory of the hand joint at the end of the
index finger in this continuous motion data and the error result curve.
Fig. 7 is an example of the original and learned adjacent matrix.

Qualitative Results In each of the selected frames in Fig. 5, the
input, output, and ground truth are shown from left to right where
the shaded part denotes the corresponding ground truth. Note that
our method can not only learn the non-corrupted function but also
the corrupted function, Fig. 5 only shows the corrupted results for
visualization. It can be seen that all the left inputs are distorted,
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Figure 6: Motion trajectory and pose error curve plots. (a), (b) and (c)
are the motion trajectory of the index finger tip on x-axis, y-axis and
z-axis, respectively. The trajectory of the input, output and ground
truth are colored in green, blue and red respectively. (d) is the corre-
sponding MSE of the pose similarity curve where the red line and the
blue are the pose error changes of noisy input and denoised output.

occluded, or warped. Obviously, the middle denoising results are
almost exactly the same as the ground truth. From a qualitative point
of view, the proposed model achieves amazing denoising perfor-
mance. In Fig. 6(a), Fig. 6(b) and Fig. 6(c), the red line, green line
and blue line show the index finger-tip trajectory of x-axis, y-axis
and z-axis respectively. It can be seen that the vibration of the input
data after the corruption is very obvious. At the same time, the
output trajectory after denoising by our model is very close to the
ground truth indicating that the proposed method is powerful.

Quantitative Results Further, the quantitative measurement
between the input/output and its corresponding ground truth is indi-
cated at the top of each sub-figures in Fig. 5. The quantitative results
are so encouraging that the proposed method can reduce the error
from very high values down to about 1, e.g., the input hand pose sim-
ilarity error in Fig. 5(a) is reduced from 233.7456 to 2.4325. Note
that the above measurements are in millimeters. Fig. 6(d) depicts
the pose error change curve of these consecutive frames, where the
red line and blue line are the MSE curves of the input and the output
respectively. Compared with the input, the MSE curve of the output
is almost flat and close to zero, indicating the huge power of ours.

The Visualization of the Learned Adjacent Matrix In Fig. 7,
a learned adjacent matrix heatmap and its original normalized adja-
cent matrix are shown where the colorful scale of each element in
the matrix represents the strength of the connection. Fig. 7(a) is the
original normalized adjacent matrix heatmap where self-connections,
physic-connected connections and symmetry-connected connections
are considered. Fig. 7(b) is an example of its corresponding learned
adjacency matrix by the proposed model. Note that both the original
normalized adjacent matrix and the learned have 3 channels, Fig. 7
shows that the effect of all channels is overlaid. It is clear that the
learned structure of the graph is more adaptive and not constrained
to the physical and physiological constraints, which can give full
play to the advantages of graph neural network.
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Figure 7: The visualization of the original and learned adjacent ma-
trix: (a) is the original one for the synthetic dataset including self-
connections, physic-connections and symmetry-connections; (b) is
an example of the corresponding learned matrix. Note that we only
illustrate the first 30 joints of the NYU hand model for the best display.
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Figure 8: A demo of the handwriting application in AR scene: (a)
the control panel; (b) the pose of beginning to write; (c) the pose
of ending to write; (d) the handwriting of characters ‘ISMAR’ under
tremor (bottom) and the corresponding denoised output (top).

4.4.4 AR Application
The proposed method is integrated into the Universal Windows
Platform of Microsoft HoloLens 2. We can achieve realistic effects
with loyal user intent, which is illustrated in Fig. 8. Please refer to
the supplementary materials of the complete demo video.

As shown in Fig. 8(d), the bottom row is the handwriting of
characters ‘ISMAR’ under hand tremor after fatigue manipulation.
The output shown in the top row is more fluent than the input. In the
AR application, we take the intermediate frame in a window of size
T as the final output for the best denoising effect. Thus, the output is
always delayed by T/2 frames. Furthermore, the data transmission
between the server and the client is also a reason for the time delay.

5 CONCLUSION

Raw hand motion data with errors does not meet the intention of
users and brings a serious challenge to immersive interaction in
MR. In this work, we have proposed an end-to-end method for hand
motion denoising called STGAE. We first develop a joint corruption
algorithm to ensure that the bone length constraint is preserved. The
time-continuous articulated structure of the hand forms a natural
spatial-temporal graph topology, bringing inherent advantages to dig
out the spatial-temporal patterns using spatial-temporal graph neural
network. By introducing a self-attention mechanism, the graph
topology can be dynamically adjusted along with the propagation.
Experiments show that STGAE outperforms state-of-the-art works.

Although the results are encouraging, there are also some tricky
problems, such as dramatic changes of motion. In the future, the
muscle-skeletal model will be introduced to synthesize more realistic
abnormal motion and the kinematic features will be considered to
achieve a more faithful motion intention estimation.
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