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In this document, we first show extra experimental re-
sults for hard no-box attacks and the data fitting of time-
varying autoregressive models. Then, we give the details of
SMI-FGSM and the transfer-based black-box attack. Fur-
thermore, we describe the data augmentation approaches
used in contrastive learning. Finally, we show the attack
results of hard no-box attacks against a defense method.

1. Visual Comparisons

We demonstrate more static poses of adversarial samples
under different attack strategies in no-box attacks. These
samples are conducted on the NTU60 datasets and the per-
turbation budget ϵ is 0.006. The visual comparisons are
shown in Figure 1. It is obvious that SMI gradient-based at-
tack methods improve the imperceptibility compared with
their baselines. We provide more examples in the supple-
mentary video.

2. The Number of Cluster Centers for Negative
Samples

The selection of negative samples is crucial in our hard
no-box attacks. Hence, we utilize the K-means clustering
method to obtain proper negative samples. In this part, we
study how the no-box fooling rate varies with different num-
bers of cluster centers in the K-means. The number of clus-
ter centers in K-means is set as 120, 100, 80, and 60, re-
spectively. I-FGSM [2] is adopted to generate hard no-box
adversarial samples on the NTU60. The fooling rates under
different numbers of cluster centers are reported in Table
1. All samples in the test dataset are used for clustering.
The attack with 120 cluster centers achieves the best results
when attacking MS-G3D and AS-GCN. The fooling rate of
60 cluster centers is similar to 120 and even outperforms in
js-AGCN. We speculate this might be because the NTU60
dataset is divided into 60 classes.

† This work was conducted during the visit to the Durham University.
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Victims 120 100 80 60
js-AGCN 27.84% 27.62% 26.89% 28.02%
MS-G3D 11.13% 10.43% 10.70% 11.03%
AS-GCN 14.08% 13.65% 13.90% 14.02%

Table 1. The fooling rate of the different numbers of cluster centers
in no-box attacks with ϵ = 0.01.

3. Trading-Off Sample Size and Fooling Rate
in Cluster

We utilize all the samples in the test dataset for K-means
clustering in hard no-box attacks. However, it is possible to
trade-off between the number of samples used in clustering
and the fooling rate. To reduce the calculation burden, not
all the samples are necessary for clustering. We conduct the
no-box attack results on the NTU60 with different numbers
of cluster samples, i.e. 100%, 75%, 50%, and 25% of the
dataset. We employ I-FGSM to produce no-box adversarial
samples and show the fooling rates in Table 2. The number
of cluster centers is set as 120. Using fewer samples for
clustering slightly reduces the fooling rate but gives a better
trade-off.

Victims 100% 75% 50% 25%
js-AGCN 27.84% 27.22% 27.05% 26.51%
MS-G3D 11.13% 10.83% 10.85% 10.80%
AS-GCN 14.08% 13.45% 13.92% 13.43%

Table 2. The no-box fooling rate of different numbers of samples
used in clustering, ϵ = 0.01.

4. Other Comparisons

4.1. Selecting Negative Samples

Positive samples indicate boundary of same class while
negative ones indicate high-density areas of other classes.
As shown in Table 3, our ablation study shows selecting
negative ones avoids misleading perturbations.



Figure 1. Visual comparisons between attack strategies in no-box attacks (ϵ=0.006) with key visual differences highlighted.



Victims w/o w
js-AGCN 31.5% 36.6%
MS-G3D 11.1% 14.1%

Table 3. The fooling rate of S2MI-FGSM against js-AGCN and
MS-G3D without or with selection of nagative samples in no-box
attacks on NTU60 with ϵ = 0.01.

4.2. Adaptating Previous Methods to Motions

Our hard no-box setting is the strictest when compared
with no-box, black-box and white-box settings. Particu-
larly, previous no-box methods uses different, looser set-
tings where labels are usually required. On the contrary, our
hard no-box setting is stricter and does not require labels.
Moreover, our proposed method explicitly considers motion
dynamics while previous no-box methods are usually pro-
posed for images without any dynamics-related considera-
tion. Nonetheless, we still adapt a no-box method [3] to the
motion data to validate our dynamics consideration. Table
4 shows simple adaptation of previous methods to motion
data leads to worse fooling rates even if more knowledge
is used in their methods. [3] struggles to capture skeleton
dynamics but our method with SMI gradient is effective.

Victims [3] Method Our Method
js-AGCN 11.64% 26.05%
MS-G3D 4.92% 9.55%

Table 4. The fooling rate of adapting [3] to motions and our
method against js-AGCN and MS-G3D on NTU60 with ϵ = 0.01.

4.3. Training with Training Samples Other Than
Testing Ones

Our proposed method does not necessarily require test-
ing samples that are used for attacking, and allows to be
trained on other samples. Table 5 shows the fooling rates
when our method is trained on test or other samples (sam-
ples in the training set).

Victims Testing Samples Other Samples
js-AGCN 30.87% 35.30%
MS-G3D 11.69% 12.98%

Table 5. The fooling rate of S2MI-FGSM being trained on test-
ing samples or other samples against js-AGCN and MS-G3D on
NTU60 with ϵ = 0.01.

4.4. Training with Half Dataset

Our method does not rely on full dataset for both training
and attacking. We report results in Table 6. The distribution
shift in non-overlap samples for training and attacking may
lead to this slight difference.

Victims Full Set Half Set
js-AGCN 9.96% 8.78%
MS-G3D 11.69% 9.30%

Table 6. The fooling rate of S2MI-FGSM being trained on full or
half training dataset against js-AGCN and MS-G3D on NTU60
with ϵ = 0.01.

5. Data Fitting Performance of Time-varying
Autoregressive

In order to estimate SMI gradient, we employ time-
varying autoregressive (TV-AR) to model the dynamic re-
lationship in skeletal sequences. This section demonstrates
the skeletal data fitting results of TV-AR(1) and TV-AR(2)
models. Our TV-AR models constrain the mapping of the
dynamics to a specific situation, i.e. they assume that each
degree of freedom (DOF) of skeletal data is independent of
the others. The fitting curves are shown in Figure 2. Both
the TV-AR(1) and TV-AR(2) successfully model the skele-
tal sequences, and TV-AR(1) gets better fitting results.

6. The Detailed Algorithm of SMI-FGSM

In this section, we provide the algorithm of SMI-FGSM.
It is obtained by integrating the momentum term of gradi-
ents into each iteration of SI-FGSM. The whole process is
shown in the Algorithm 1.

Algorithm 1 S1MI-FGSM and S2MI-FGSM
Input: An encoder k with loss function J ; a skeletal sequence samples

S; the size of attack step α; the number of iterations I; the budget of
perturbation ϵ; the weight decay factor µ.

Output: An adversarial example Ŝ with ∥Ŝ − S∥p < ϵ.
1: Initialization: Ŝ0 = S, (g0)d1 = 0, (g0)d2 = 0;
2: Fitting S with TV-AR model to obtain the time-varying parameters

βt;
3: for i = 0 to I − 1 do
4: Inputting Ŝi to k;
5: Using loss function J to obtain the raw gradient ∇J(Ŝi);
6: Calculating the SMI gradient (∇J(Ŝi))d1 with Eq.9, or

(∇J(Ŝi))d2 with Eq.10 using βt and ∇J(Ŝi);
7: Updating (gi+1)d1 or (gi+1)d2 by accumulating the velocity

vector in the gradient direction as

(gi+1)d1 = µ · (gi)d1 +
(∇J(Ŝi))d1∥∥∥(∇J(Ŝi))d1

∥∥∥
1

, or

(gi+1)d2 = µ · (gi)d2 +
(∇J(Ŝi))d2∥∥∥(∇J(Ŝi))d2

∥∥∥
1

;

(1)

8: Updating Ŝi+1 by applying the sign gradient as

Ŝi+1 = Ŝi + α · sign
(
(gi+1)d1

)
, or

Ŝi+1 = Ŝi + α · sign
(
(gi+1)d2

)
;

(2)

9: end for
10: return Ŝ = ŜI



Figure 2. Skeletal data fitting of TV-AR model. Upper is TV-AR(2) model, and lower is TV-AR(1) model.

7. The Details of Transfer-Based Black-Box At-
tacks

We employ SMART [6] as the baseline for the transfer-
based black-box attack. SMART is a white-box attacker
which utilizes classification loss and perceptual loss to gen-
erate adversarial samples. In our experimental settings, the
attack step size α of SMART is set as 0.005, and the max-
imum iteration number is 400. In the transfer-based black-
box attack, due to SMART having the full knowledge of the
surrogate models, we adopt an early stop strategy following
its original settings. This means SMART ends the iterative
attack when it succeeds in the white-box attack to ensure
the best imperceptibility. Therefore, not all the samples are
iterated for the 400 epochs. This is a crucial distinction be-
tween the no-box attack and the transfer-based black-box
attack.

8. Skeleton Augmentations for Contrastive
Learning

In this section, we detail the skeleton augmentation
methods used in training the latent manifold for the hard
no-box attack through contrastive learning (CL). These aug-
mentations can be divided into temporal augmentations and
spatial augmentations. We combine these two methods to
create positive samples for CL. The spatial augmentations
contain pose transformation and joint jittering. The tempo-
ral augmentations are temporal crop and resize. We assume
that S is the input skeletal sequence consisting of body
joints L in T frames.

Pose Transformation We utilize pose transformation to
obtain the augmented samples that retain the same pose as
the input but vary in viewpoint and distance to the camera.
The 3D shearing is adopted to the skeletal sequence S at
each frame for pose transformation:

Dpose(S) = S ·

 1 r01 r02
r10 1 r12
r20 r21 1

 , (3)

where r is randomly selected from a uniform distribution
[−1, 1]. We show some samples of pose transformation in
Figure 3.

Figure 3. Pose transformation augmented samples.

Joint Jittering To enhance the performance of the no-box
attack, we aim to train a data manifold that is robust to the



noise and random changes. Hence, we employ joint jittering
where the selected joints are randomly moved into irregular
positions. The augmentations can be defined as:

Djoint(S) = S[:, l] ·

 r00 r01 r02
r10 r11 r12
r20 r21 r22

 , (4)

where r is randomly selected from a uniform distribution
[−1, 1] and l is a subset of joints randomly chosen for each
motion. The same transformation matrix is applied to each
frame in one motion. Examples are shown in Figure 4.

Figure 4. Joint jittering augmented samples.

Temporal crop and resize Temporal relationship is crit-
ical to skeletal-related downstream tasks. Therefore, we
change the speed, and starting and ending points in the orig-
inal samples to create positive pairs. The temporal crop and
resize can be expressed as:

DTemporal (S) = Interpolate (S [Rstart : Rend]) , (5)

where Rstart and Rend are the randomly selected starting
and ending points. We first create a new sub-sequence
(S [Rstart : Rend]), and then re-sample it to a fixed length.
The interpolation helps to get the samples varying in speeds.
Figure 5 shows the examples of temporal crop and resize,

We combine the above spatial and temporal augmenta-
tions to obtain positive samples for CL. We first apply the
temporal crop and resize to the inputs S. Then we randomly
choose the spatial augmentation from the pose transforma-
tion and the joint jittering and adopt it to the temporal aug-
mented samples.

9. Attack Results Against Defense Method
We employ randomized smoothing [1] for defense to

test our post-defense performance. The robustness of ran-
domized smoothing largely depends on a defense budget σ,
which is the magnitude of the noise added during robust

Figure 5. Temporal crop and resize.

Figure 6. Fooling rates of attack methods under different noise
intensities.

training. We test different σ values to improve its robust-
ness. Here, we choose MS-G3D [4] as the victim model as
it is one of the latest classifiers and HDM05 as the dataset
[5]. After training, we launch our hard no-box attacks us-
ing different attack strategies. Fooling rates of these strate-
gies under different noise magnitudes are shown in Figure
6. With the improvement of the robustness of the victim
model, naturally the fooling rate of all the attack methods
has decreased, but we notice that SMI gradient still boosts
the performance compared with the raw gradient. Admit-



tedly, hard-no box attacks are not as effective as other at-
tack methods, especially post-defense, but it is only because
our method has extremely limited knowledge about the data
and the victim model, compared with the settings of exist-
ing methods. We argue that the hard no-box attack is the
least restrictive attack setting so far, which itself is a contri-
bution.
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