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Emulating human perception of
motion similarity

By Jeff K. T. Tang, Howard Leung*, Taku Komura and Hubert P. H. Shum
..........................................................................

Evaluating the similarity of motions is useful for motion retrieval, motion blending, and
performance analysis of dancers and athletes. Euclidean distance between corresponding
joints has been widely adopted in measuring similarity of postures and hence motions.
However, such a measure does not necessarily conform to the human perception of motion
similarity. In this paper, we propose a new similarity measure based on machine learning
techniques. We make use of the results of questionnaires from subjects answering whether
arbitrary pairs of motions appear similar or not. Using the relative distance between the
joints as the basic features, we train the system to compute the similarity of arbitrary pair
of motions. Experimental results show that our method outperforms methods based on
Euclidean distance between corresponding joints. Our method is applicable to
content-based motion retrieval of human motion for large-scale database systems. It is also
applicable to e-Learning systems which automatically evaluates the performance of dancers
and athletes by comparing the subjects’ motions with those by experts. Copyright © 2008
John Wiley & Sons, Ltd.
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Introduction

Evaluating the similarity of motions is useful for motion
retrieval, motion blending, and performance analysis
of dancers and athletes. The requirements to evaluate
the similarity of motions are application oriented. In
the performance training tool proposed by Chan et al.,1

the posture similarity between the trainee and the
teacher at every instance is evaluated by the cosine
similarity of joint angles. In the Tai-chi training system
proposed by Chua et al.,2 the error made by the student
were evaluated by measuring the distance between the
corresponding joints of the subject and the teacher.
In the motion graph,3–5 postures were compared by
calculating the difference of the 3D coordinates of the
joints or the generalized coordinates of the body. So
and Baciu6 retrieve motions and evaluate similarity
between key postures by the dot product of orientation
vectors between corresponding body parts. However,
these similarity measures do not necessarily conform
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with those of humans when they perceive movements
of humans.

Blake and Shiffrar7 explained that the human
perception of human motion depends on (1) visual
sensation, (2) how people imitate a motion that they
perceived, and (3) affective processes, which is related to
social interaction. Here, we focus on the factor of visual
sensation. Johansson8 discovered humans can perceive
the nature of the subject just from the movements
of dot lights attached to different parts of the body.
Kozlowski and Cutting9 found people can recognize the
sex of the subjects. Boyd and Little10 synthesized gait-
like optical flows based on point light data. Harada
et al.11 proposed a measure to emulate the similarity
of postures based on human perception by weighted
distance between the 3D coordinates of joints. They
extended their method to compute the similarity of
motions by applying dynamic time warping. On the
other hand, Miura et al.12 investigated some features that
affect the human judgment to motion similarity. They
have studied several measures based on (1) joint angles,
(2) joint angular velocity, (3) joint position, and (4) joint
velocity. They found that in general a measure based
on both joint angles and joint velocities best correlates
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with human perception. Müller et al.13 proposed boolean
features, such as whether one joint is in front/back of
a plane composed by a plane defined by multiple other
joints, to calculate the similarity of motions. It is useful for
searching motions logically similar to the query motion.
However, the boolean features are manually selected and
the combinations of features which are important can be
application oriented.

In this paper, we propose a new method to evaluate
the similarity of human postures based on human
perception. The approach is general enough to be applied
to all sorts of motions. We use the relative distance
between joints as the basic measure to evaluate the
similarity of postures. Based on the questionnaire results
of whether two motions are similar or not, we find
out which set of relative distances affects the motion
similarity in human perception the most. We compare
our method with other measures based on Euclidean
distances to show that our method outperforms
them.

Perception-Based Criterion
of Motion Similarity

Here, we propose to use the closeness of joints in each
posture as a criterion to calculate the similarity of two
postures. We use the distance between arbitrary joints in
each posture as the basic features to distinguish postures.
We then provide subjects with a number of motion pairs
and ask them to fill in questionnaires to answer whether
the two motions look similar or not. Using the results of
questionnaires as the ground truth, the features which are
most influential are found and are given larger weights
in the confidence measure which is used to evaluate
whether two postures are similar or not.

Data Preparation

Twenty dance motion sequences performed by two
dancers are used as the training dataset. Each motion
sequence contains 2000 to 3000 frames. The data
contains four types of dances: waltz box steps, pop,
hip-hop, and house. The motions were captured
by the Eagle MotionAnalysis optical motion capture
system.

Firstly, numerically similar and dissimilar patterns are
extracted by the method proposed by Tang et al.14 Each
motion pair is labeled as either perceptually similar or

perceptually dissimilar by the subjects. A tool shown in
Figure 1 is built so that the subjects can view a pair of
motions from different viewpoints including the front,
back, left, and right views, simultaneously. Among all
the given pairs, 428 were annotated similar and 428
were annotated as dissimilar. Then, the corresponding
postures of the two motions were found by scaling their
durations to the same length, and resampling. Hence,
43 620 posture pairs were annotated as similar and 35 300
posture pairs as dissimilar.

Similarity Based on Joint Relative
Distance

In this subsection, we explain about the concept of joint
relative distance, and how it is used to judge whether
two given postures appear similar or not.

We use a hierarchical structure of the body as shown
in Figure 2. The body is composed of 20 segments. Let P1

and P2 be the two postures to be compared. The position
of the joints and end-sites in each posture are defined by
pi
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where n is 25 in this research. The joint relative distance
of a pair of joints (i, j) between posture p1 and p2 is
calculated by
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where D(x, y) represents the Euclidean distance of x and
y in the Cartesian space. We calculate the weighted sum
of the joint relative distance to compute a confidence
measure which evaluates whether two postures appear
similar or not. Since we want the weights of the
symmetric pair of joints to be equal, we use the average
of the symmetric pair of joints as the element of the
feature:

fp1, p2(i,j)

=
{1

2 (JRDp1 ,p2
(i, j) + JRDp1 ,p2

(i′, j′)), if (i, j) has a symmetric pair (i′, j′)

JRDp1 ,p2
(i, j), (otherwise) (2)

Finally, the confidence measure is calculated as the
weighted sum of the features:

yp1,p2 =
∑

(i,j)∈P

wi,jfp1,p2 (i, j) (3)

where P is the set of joint pairs used to evaluate the
similarity of two postures and wi,j is the weight for joint
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Figure 1. The interface for the users to tag similar/dissimilar motion pairs.

pair (i, j). We classify the pair as similar when yp1,p2 > 0
and dissimilar when yp1,p2 < 0. The weights are trained
using tagged samples. The details are explained in the
next section.

The joint relative distance can capture features to
which humans are sensitive, such as the contacts between
the end effectors and other parts of the body. For example,
when we see a person putting his/her hands together,
we will focus more on the fact the hands are attached to
each other rather than the joint angles of the elbows or
the shoulders. Therefore, in this research, we search for
the most influential combination of joints which humans
are more sensitive to, and adjust their weights according
to their importance.

Some pair of joints, such as (1) both belonging to the
same segment and (2) both are in the area of torso,
are excluded from the set to calculate the joint relative
distance. This is because the distance between such pair
of joints usually stay constant and do not give any cue of
the posture.

Training the Weights by Examples

We use the weighted sum of the joint relative distance
to emulate the human perception of motion similarity.
The weights of each combination of joints are computed
using the tagged set of postures.

Let us assume we have n pair of postures which
are tagged either “similar” or “dissimilar.” A vector
of labels based on manual tagging is formed as Y =
(y1, y2, . . . , yn), where yk = 1 if the posture-pair k are
similar and yk = −1 if dissimilar. Equation (3) for all yk

can be written in a matrix form as follows:

Y = WA (4)

where W is the vector of weights composed of wi,j , and A
is a feature matrix which is composed of the joint relative
distance features. An extra constant term of value 1 is in-
serted as the last element of A to bias the results such that
the dividing plan does not have to intersect with (0,0).
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Figure 2. The human body structure used in this study.

Here, our objective is to calculate the weight from the
training samples. As the number of samples (n = 7892)
is much larger than the size of the feature vector, we
compute the pseudo-inverse matrix of A to obtain the
weight with the least square error:

W = YA+ (5)

where A+ is the pseudo-inverse of feature matrix
A, which can be calculated by A+ = AT (AAT )−1.
The magnitudes of the feature weights sorted in
descending order are shown in Figure 3. The features
with larger weights have more influence to the
perceptual similarity of human motions. Table 1 shows
the top 30 features and Table 2 shows the last
10 features.

Figure 3. Magnitude of weights of different relative distance
in the descending order.
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Rank Absolute weight Joints considered in the measure

Joint pair 1 Joint pair 2 (symmetric pair)

1 40.006395 Right-knee Head Head Left-knee
2 37.954929 Right-knee Neck Neck Left-knee
3 26.680455 Right-foot Left-collar Right-collar Left-foot
4 24.165646 Right-ankle Spine Spine Left-ankle
5 22.823449 Right-foot Head-top Head-top Left-foot
6 20.229034 Right-ankle Neck Neck Left-ankle
7 20.210250 Neck Left-elbow Neck Right-elbow
8 20.059475 Root Right-ankle Root Left-ankle
9 19.725673 Right-foot Neck Neck Left-foot

10 18.535401 Right-foot Head Head Left-foot
11 14.617462 Right-knee Head-top Head-top Left-knee
12 14.162427 Right-knee Spine Spine Left-knee
13 13.616902 Right-ankle Left-collar Right-collar Left-ankle
14 12.864232 Right-foot Left-wrist Right-wrist Left-foot
15 12.019233 Right-ankle Left-wrist Right-wrist Left-ankle
16 11.589273 Right-toe Head-top Head-top Left-toe
17 10.903691 Right-toe Spine Spine Left-toe
18 10.392072 Right-foot Left-elbow Right-elbow Left-foot
19 10.265179 Root Right-knee Root Left-knee
20 10.146129 Left-collar Right-elbow Left-elbow Right-collar
21 9.838014 Left-collar Left-elbow Right-collar Right-elbow
22 9.368392 Right-ankle Left-shoulder Right-shoulder Left-ankle
23 9.311758 Root Head-top Root Head-top
24 8.980815 Right-knee Left-foot Right-foot Left-knee
25 8.620271 Right-foot Right-collar Left-collar Left-foot
26 8.520379 Right-toe Right-elbow Left-elbow Left-toe
27 8.332012 Right-knee Left-ankle Right-ankle Left-knee
28 8.327948 Right-toe Right-wrist Left-wrist Left-toe
29 7.899120 Head-top Left-collar Head-top Right-collar
30 7.867494 Right-toe Right-shoulder Left-shoulder Left-toe

Table 1. The features of top 30 weights

Calculating the Similarity
of Motions

The similarity of motions is calculated by counting
the number of corresponding postures which are
perceptually similar. The corresponding postures are
found by normalizing the duration of the two motions
and resampling. We adopt this method because it is
reported that scaling is more efficient and accurate
than dynamic time warping in many cases.15 If the
ratio of similar postures in the motions is above a cut-
off threshold, the motion is evaluated as perceptually
similar.

The value of the cut-off threshold is calculated using
the training data. When the threshold is high, the
false positive rate (dissimilar pairs wrongly classified as
similar) drops but the false negative rate (similar pairs
wrongly classified as dissimilar) increases. When the
threshold is set low, the opposite will happen. Therefore,
we set the threshold to the equal error rate (EER), where
the false positive rate and false negative rate become
equal. An example of plotting the false positive rate and
false negative rate when changing the threshold is shown
in Figure 6. This example is based on the joint relative dis-
tance measure, and the threshold is set to 73.40%, where
the false positive and false negative rates are the same.
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Rank Absolute weight Joints considered in the measure

Joint pair 1 Joint pair 2 (symmetric pair)

116 0.235311 Right-foot Left-toe Right-toe Left-foot
117 0.197283 Left-shoulder Left-wrist Right-shoulder Right-wrist
118 0.177502 Right-knee Right-shoulder Left-shoulder Left-knee
119 0.165024 Right-ankle Left-ankle Right-ankle Left-ankle
120 0.115780 Right-ankle Right-toe Left-ankle Left-toe
121 0.087828 Right-toe Left-hand Right-hand Left-toe
122 0.085672 Left-collar Right-hand Left-hand Right-collar
123 0.085563 Right-foot Left-hand Right-hand Left-foot
124 0.068980 Left-elbow Left-hand Right-elbow Right-hand
125 0.029300 Right-knee Left-shoulder Right-shoulder Left-knee

Table 2. The features of least 10 weights

Experiments

In this section, we explain the experiments conducted
to analyze and evaluate our methodology to compute
the similarity of motions. We used the training data
composed of similar and dissimilar pairs to compute
the weights of joint relative distance. Firstly, we have
computed the weights of the features and examined
which ones are more influential to the perceptual
similarity of the motions. Secondly, we computed the cut-
off threshold using the EER of the training data. Finally,
using the weight and threshold calculated with the
testing data, we examined how well the proposed joint
relative distance scheme emulates the human perception
regarding the similarity of motions.

Relative Distance Feature Analysis

Here, we explain which pairs and joints are more
influential to the confidence measure that evaluates the
similarity of two postures based on the joint relative
distance. First, we divide the joints and end-sites into
the following four groups based on their region in the
body:

� Leg: knee, ankle, foot, toes.
� Body: hip, collar, neck, spine, root.
� Arm: hand, wrist, elbow, shoulder.
� Head: head, head-top.

In Figure 4, the group of joint pairs which are
influential to the perceptual similarity of human motions
are shown in descending order. The absolute weights of
each group are summed and plotted. It can be observed
that those pairs that include the joints/end-sites of the

Figure 4. The group of joint pairs which are influential to the
perceptual similarity of human motions shown in descending
order. The absolute weights of pairs belonging to different
groups are summed. The pairs in which the leg joints take

part are more influential.

legs are most influential to the perception. The weights
for pairs of limbs, such as Leg–Leg or Arm–Arm, are
small. This can be due to the dataset; we had little motions
in which the subjects stick their hands together.

The importance of each individual joint/end-site to
the perceptual similarity of human motion is shown in
Figure 5. The absolute weights of joint pairs in which
the corresponding joints/end-sites take part are summed
and plotted. Here, we can see those most influential are
the legs, second the body, third the arms, and finally the
head. Joints such as ankle, foot, and toes, which are closer
to the end effector of the leg, have large influence on the
results. The fact that movements of the end effectors are
more influential on the perceptual similarity of human
motions matches our empirical knowledge. For example,
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Figure 5. The importance of each individual joint/end-site
to the perceptual similarity of human motion. The absolute

weights of each group are summed and plotted.

in computer animation, we are very sensitive to artifacts
such as foot sliding.

Evaluation of the Performance

In this subsection, we evaluate the performance of
the joint relative distance by examining how much it
emulates the human perception of motion similarity. We
compare its performance with another scheme based on

Euclidean distance of the same joints in the two postures,
which is often used for comparing the similarity of
postures such as in Motion Graph.4 In the Euclidean
distance scheme, the confidence measure of the similarity
of two postures p1 and p2 is computed by the following
equation instead of Equation (3):

ep1,p2 =
Nj∑
i

we
i D(pi

1, p
i
2) (6)

where Nj is the total number of joints and end-sites
which is 25, and we

i are the weights which are calculated
using the pseudo-inverse of the feature matrix based on
Euclidean distance.

We first computed the threshold based on the EER
using the training data and then used the computed
threshold to examine how the joint relative distance
scheme emulates the human perception of motion
similarity with the test data. The same experiment
was conducted with the Euclidean distance scheme for
comparison of the performance. In our experiment, 75%
of the data is used for the training and the remaining
25% is used for testing. Different sets of training data are
rotated with a fourfold cross-validation.

The results are shown in Tables 3 and 4. The
performance of joint relative distance scheme (average

Euclidean distance Joint relative distance

Trials EER (%) Threshold (%) EER (%) Threshold (%)

1 12.15 83.00 7.17 73.60
2 13.08 82.80 7.63 73.40
3 16.82 83.40 8.72 74.00
4 17.13 84.00 9.66 72.20
Average 14.80 83.30 8.30 73.30

Table 3. Training result

Euclidean distance Joint relative distance

Trials False negative (%) False positive (%) False negative (%) False positive (%)

1 21.50 23.36 12.15 11.21
2 16.82 20.56 11.21 11.21
3 9.35 8.41 7.48 4.67
4 10.28 7.48 1.87 8.41
Average 14.50 15.00 8.18 8.88

Table 4. Testing result
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Figure 6. The curve showing how the false negative and false
positive rates change when the cut-off threshold is shifted.

false positive rate of 8.88% and average false negative
rate of 8.18%) is much better than joint Euclidean
distance feature (average false positive rate of 15.0% and
average false negative rate of 14.5%). This is because
the absolute positions of the corresponding joints are
not necessarily similar for perceptually similar motions.
Hence, the results show that Euclidean distance measure
is not effective for modeling the human perception of
motion similarity.

Applying the Scheme to the
Example Motions

From the results above, it is clear that there exist pairs
of motions which are perceptually similar, although the
Euclidean distance between them is large. Also, there
are pairs of motions which are perceptually dissimilar
although their Euclidean distance is small. Here, we
show such examples.

Figure 7 shows two cases that a pair of motions
which are perceptually similar although their Euclidean
distance is large. In Figure 7(a), the arms in the two
motions are bent to different extents but the perceptual
difference is limited. In Figure 7(b), the posture of the
arms and legs are different in the two motions, but the
perceptual difference is again limited.

Figure 8 shows two cases that the joint Euclidean dis-
tances are small although the motions are perceptually
dissimilar. In Figure 8(a), the trajectories of the right
arms appear quite different. In the upper sequence, the
right arm is driven by the shoulder and is translating
horizontally to the right; while in the lower sequence,
it is driven by the elbow. In Figure 8(b), the arms are
bent in different ways. In the upper sequence, the right
arm is bent outwards, while it is kept straight in the
lower sequence. The trajectories of the legs are perceived
different as well; the right leg is stretched in the upper
sequence although it is bent in the lower sequence.
However, they are recognized as similar in the Euclidean

Figure 7. Motions which are perceptually similar but are dissimilar under the Euclidean distance scheme. (a) The arms are
bending in different extent but show a small perceived difference. (b) The lower sequence shows a slight delay with variations in

limb positions.
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Figure 8. Motions which are similar under the Euclidean distance scheme but are perceptually dissimilar. (a) The trajectories of
right arm are different. (b) Legs and arms are bending differently in two sequences, but the joints are at similar positions.

distance scheme because the joint positions are very
similar in both sequences.

Figure 9 shows two cases that our method fails. In
Figure 9(a), the postures of the body are similar but
the orientation of the torso is different. Therefore, the

joint relative distance between the joints of the legs and
arms become large. As a result, the joint relative distance
scheme cannot recognize the two motions as similar,
although the motions are perceived as similar. Figure 9(b)
shows another case. The left shoulder is used to rotate the

Figure 9. Cases our method fails: (a) upper part is very similar but in different orientation. (b) The rotation of left shoulder of
upper movement has not been recognized as a difference.
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arm in the upper sequence while it is simply translated
horizontally in the lower sequence. This example shows
that the joint relative distance scheme is not sensitive to
joint rotation which is a weakness that has to be overcome
by introducing some concepts of rotation.

Conclusion and Future
Work

In this paper, a scheme to emulate the perceptual
similarity of 3D human motions has been studied.
To overcome the limitations of existing measures
such as those based on Euclidean distance between
corresponding joints, a novel approach called joint
relative distance is introduced. We have shown that
the joint relative distance scheme can emulate the
perceptual similarity of human motions much better
than the Euclidean distance scheme. We also calculated
the weights of the features based on the questionnaire
answered by subjects. We have found the pairs composed
of the spine joints and limb joints are more influential
to the human judgment. Moreover, relative distance
measures are independent of body translation and
rotation, and hence no normalization of posture is
needed. Despite the advantages, some weak points of
the method were found: first of all, the experiment
results show our proposed measure fails to identify the
perceived difference made by joint rotation. Secondly, as
we do not take into account the velocity information,
the proposed scheme can acknowledge movements in
different speed and direction as similar as far as their
joint relative distance feature have similar profiles.

As future work, we are interested in taking into
account features such as the angular velocity or angular
momentum to overcome the weakness of our scheme. We
are also interested in exploring the stationary patterns in
a motion that usually occur in human motion such as
walking or climbing. Understanding factors such as the
difficulty of motions and effort required to perform the
motion are also interesting topics to explore.
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