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A B S T R A C T

Creating realistic characters that can react to the users’ or another character’s move-
ment can benefit computer graphics, games and virtual reality hugely. However, synthe-
sizing such reactive motions in human-human interactions is a challenging task due to
the many different ways two humans can interact. While there are a number of success-
ful researches in adapting the generative adversarial network (GAN) in synthesizing
single human actions, there are very few on modelling human-human interactions. In
this paper, we propose a semi-supervised GAN system that synthesizes the reactive mo-
tion of a character given the active motion from another character. Our key insights are
two-fold. First, to effectively encode the complicated spatial-temporal information of a
human motion, we empower the generator with a part-based long short-term memory
(LSTM) module, such that the temporal movement of different limbs can be effectively
modelled. We further include an attention module such that the temporal significance
of the interaction can be learned, which enhances the temporal alignment of the active-
reactive motion pair. Second, as the reactive motion of different types of interactions
can be significantly different, we introduce a discriminator that not only tells if the gen-
erated movement is realistic or not, but also tells the class label of the interaction. This
allows the use of such labels in supervising the training of the generator. We experiment
with the SBU and the HHOI datasets. The high quality of the synthetic motion demon-
strates the effective design of our generator, and the discriminability of the synthesis
also demonstrates the strength of our discriminator.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction1

Human motion synthesis and generation [1, 2] have benefited2

the computer animation field. The generation of human reactive3
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motions shows great potentials in controlling the movements of 4

virtual characters in immersive games and human-robot interac- 5

tion. Given the movement of one character with a 3D pose se- 6

quence, reactive motion synthesis aims at generating the move- 7

ment of the responding character, which responds to the input 8

action. 9

While realistic reactive motions can be generated by physical 10

simulation such as ragdoll physics, such an approach is more 11

suitable for creating reactive motions caused by body contact 12

or voluntary movement. On the other hand, human-human in- 13
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teractions cover a wider range of motions that may or may not1

have any direct contacts. As a result, the kinematic-based ap-2

proaches [3, 4] as well as combined enforcing kinematic and3

physical constraints [5, 6] are used for preserving the context in4

editing close interaction in the literature. Existing work relevant5

to kinematics-based reactive motion synthesis mainly focus on6

generating interactions based on the interaction history [7, 8],7

as well as synthesizing the response with non-parametric algo-8

rithms such as Markov Decision Process (MDP) [9, 10, 11] and9

motion blending [12, 4]. However, it is a challenging task since10

the reactive motion is expected to respond properly and requires11

sufficient spatial and temporal synchronizations between the12

dynamics of the two characters, which can be potentially yet13

seldom explored by deep learning-based models.14

Deep learning-based models have made motion synthesis15

task much easier with diverse patterns and styles compounded16

from large amount of available motion data [13, 14, 15], among17

which generative adversarial network (GAN) [16] has become18

the most popular [17, 18, 19] since it is effective in creating19

vivid samples learned from real distributions. The emergence20

of conditional GAN [20] further facilitates the generated sam-21

ples to meet user’s requirements, e.g. generating a specific type22

of activities [21], by supervising the generator with the desired23

label of the generation. While many researches have been found24

in understanding single human dynamics, adversarial training is25

less explored in modeling human-human interaction.26

In this paper, we propose a semi-supervised GAN system for27

reactive motion synthesis. The major novelty of the system lies28

in the purposely designed generator module that model the spa-29

tial (i.e. joint movement) and temporal (i.e interaction synchro-30

nization) features of the reactive motion, as well as a discrim-31

inator that not only tells if a reactive motion is realistic, but32

also the class label of the interaction. This follows the idea of33

semi-supervised learning with GAN from [22, 23], where they34

generate semi-supervised generative framework with an unsu-35

pervised discriminator to tell the fidelity of the generation, and36

a supervised discriminator to tell the class label to enhance the37

generation with better qualities.38

For the motion generator, we propose an attentive part-39

based Long Short-Term Memory (LSTM) module, solving the40

problem to model complicated spatial-temporal correspondence41

during the interaction. We first propose the spatial structure of42

the input action by encoding the states of different body parts43

separately using a hierarchical LSTM layer. Furthermore, we44

observe that human interaction contains rich spatial and tempo-45

ral alignments between two characters. When synthesizing in-46

teractions, the temporal movements of two characters are prone47

to be misaligned [9, 10] due to the lack of interactive features48

modelling. We tackle this problem by constructing an attentive49

LSTM network in the generator to learn the temporal saliency50

from the input action, and deliver this time-aware contextual51

information together with the hierarchical states to help decod-52

ing the reaction. The designed temporal attention facilitates the53

generator to observe the global pattern of input dynamics and54

perform reactions at the same pace.55

We further propose to embed multi-class classification into56

the discriminator to endow the generated reactive motion with57

the property from its interaction type, as inspired by [22, 23]. 58

This is motivated by the observation that the reactive motion 59

of different class of interaction could be significantly differ- 60

ent. In practice, classifying the synthesized reactions increases 61

the capacity of the generator, through generating diverse types 62

of reactive movements. Comparing to conditional GAN that 63

observes the label information in the input stage, our genera- 64

tor can stand alone without prior knowledge of the interaction 65

type while predicting the type-specific reactive dynamics. By 66

sharing partial parameters with a binary classifier, our trained 67

discriminator is capable of improving the reliability of reactive 68

motion given a particular type of incoming motion. 69

We demonstrate the effectiveness of the proposed reactive 70

motion synthesis method on two popular human-human inter- 71

action datasets SBU [24] and HHOI [10] which contain many 72

common interaction types such as shaking hands and kicking. 73

The discriminator power is demonstrated by the classification 74

accuracy, and the generator power is demonstrated by the high- 75

quality synthetic motion. 76

The main contributions of this research are concluded as fol- 77

lows: 78

• We construct a reactive motion synthesis system based on 79

the semi-supervised generative adversarial network. 80

• We propose a reactive motion generator with the attentive 81

recurrent network from the part-based body structure to 82

create reactive motion without knowing its interaction cat- 83

egory, where the motions of the characters are well-aligned 84

thanks to the attentive module. 85

• We propose a dual discriminator with a binary and a multi- 86

class classifier that improves the authenticity and preserves 87

the characteristics of the synthesis from natural reactive 88

behaviors. 89

The rest of the paper is organized as follows: In Section 2, 90

we review the previous work related to motion representation 91

learning and generation. Section 3 and Section 4 demonstrate 92

the key prior knowledge used in our architecture, and our re- 93

active motion synthesis system, respectively. We further evalu- 94

ate our synthesized reactive motions and discuss the advantages 95

and limitations in Section 5. Finally, we make conclusions in 96

Section 7. 97

2. Related Work 98

2.1. Deep Generative Models in Motion Synthesis 99

Deep learning-based models are efficient and versatile to gen- 100

erate human movements from vast of motion data. Among deep 101

generative models, motion generation based on Recurrent Neu- 102

ral Network (RNN) becomes the mainstream with its effective- 103

ness in creating sequential movements. With RNN backbones, 104

[15] incorporated label information as guidance to synthesize 105

desired future motions based on the initial given poses, and 106

[14] retained spatial and temporal structural information in the 107

generated motion using graph convolutional layers. Some re- 108

searches [13, 25] also adopt variational auto-encoder to learn 109

a competitive motion manifold that can generate stylistic or 110
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long-term dynamics with stochastic patterns. Some cutting-1

edge researches associate deep learning with GAN to predict2

motion [26, 27] or generate realistic action patterns in videos3

[28]. However, they focus on single character synthesis and4

their generated poses or movements generally contain less vari-5

ations because of mode collapse.6

Some work [7, 8] adopt RNN to synthesize human-human7

interaction given the partially observed interaction. [7] synthe-8

sized long-term interaction by alternatively generating the pose9

sequences of the two characters based on the generation history.10

With such sampling-based manner [29], errors can be fast ac-11

cumulated which eventually drifts the generated interaction to12

a wrong moving direction [30, 31].13

2.2. Spatial Modeling14

Human action is accomplished by the movements of its artic-15

ulated joints, and one of the intuitive idea to model the spatial16

variations of the skeleton joints is to place them in a chain se-17

quence [32]. However, the joints are not physically connected18

at the margin of each body part, such as foot and head, therefore19

it may introduce meaningless connection when applying RNN-20

based sequence learning architecture. To avoid this problem, a21

graph-based tree structure is proposed [33] to traverse skeleton22

branches and learn the relationship among adjacent joints. An-23

other solution is to decompose the skeleton structure into valid24

segments [34, 35] to capture low-level limb shifting, and un-25

derstanding high-level spatial dependencies by concatenating26

different partitions together.27

2.3. Attention Perception28

Attention mechanism attends to allocate weights to the valu-29

able content from considerable information, and it shows great30

advantage especially in context-based sequence learning such31

as sequence-to-sequence (seq2seq) translation [36]. The trans-32

lated sample can be aligned as the focus of the decoder will be33

updated during the forward propagation. In image description34

tasks, visual attention is involved to highlight which regions of35

the image that the model should emphasize [37], and it is also36

applicable in video captioning which combines with neural net-37

works to identify salient frames that the network should pay38

attention to [38].39

Adding attentions in action streams can facilitate explor-40

ing motion saliency through stripping background information41

[39], exploiting pose attention from human actions [40], or as-42

signing more weights to engaged joints and active frames in 3D43

skeleton dynamics [41]. This comes from the fact that, for ex-44

ample, if one character is moving his or her arm towards another45

character, we need to lock the arm movement of the compelling46

character and react accordingly. However, if one character ap-47

proaches another character with a kick, then we may focus on48

the active leg and dodge at an appropriate timestamp. In syn-49

thesizing interactions, [8] attended to the informative joints to50

synthesize the reactive features which motivates our work to51

explore the synchronization of the two characters during the in-52

teraction.53

3. Preliminaries 54

3.1. Generative Adversarial Networks 55

Generative adversarial networks (GAN) [16] is introduced
from game theory that a generator and a discriminator contrast
with each other to achieve a Nash equilibrium [42]. The gener-
ative model G processes a random variable z to G(z) which will
be evaluated by the discriminative model D, and the function
of D is to differentiate the real sample x from the fake sample
G(z). The objective function of training GAN follows a mini-
max optimization procedure:

min
G

max
D

LGAN(G,D) =

Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

With GAN and its vast variations, one can generate vivid 56

samples such as images [43] or videos [21] following real- 57

world data distributions judged by the discriminator. In this 58

paper, we utilize the power of a binary and a multi-class dis- 59

criminator to enhance the quality of the synthesized reactive 60

motion with realistic and discriminative dynamics. 61

3.2. Seq2seq Attention Mechanism 62

The seq2seq attention [44] aims to establish a bridge between
encoder and decoder to emphasize the informative steps and
improve output quality in decoding. Specifically, with a RNN-
based backbone, seq2seq attention at each decoder step t learns
a context vector rt from the weighted summation of all the en-
coded states {hs}

S
s=1 by:

rt =

S∑
s=1

α(s, t)hs. (2)

Here, the attention weight α(s, t) is a content-based addressing
function that evaluates the general score between encoder state
hs and the previous decoder state ĥt−1 given by:

α(s, t) = so f tmax(Vtanh(W[hs; ĥt−1])), (3)

where W is a fully connected matrix to keep the dimension con- 63

sistent. The seq2seq attention can be either global or local de- 64

pending on whether all or a part of the hidden states of the en- 65

coder are included [45]. 66

Since using global attention in a seq2seq architecture can 67

effectively model the dependencies between the input dynam- 68

ics and the previous decoder step, in this paper, we adapt it to 69

strengthen the stepwise correlations between two characters in 70

an interaction. 71

4. Reactive Motion Synthesis 72

In an interaction involving two characters denoted as A and 73

B, we consider character A to be the one performing the in- 74

tended action, and character B to be the one reacting. The aim 75

of our system is to synthesize the motion of B given that of A. 76

As data pre-processing, we normalize the interaction by rotat- 77

ing them according to the facing direction of A, and translating 78
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Fig. 1. An overview of the proposed reaction generation architecture.

the origin point of the new coordinate system to the pelvis joint1

of A. B’s joint locations are then represented under such a trans-2

formation.3

The framework of our reaction generation can be found in4

Fig. 1. The overall network is trained by integrating three5

auxiliary constraints: bone, continuity and contractive losses,6

that target at reinforcing the adversarial objective with physical7

properties, stability and continuity of the synthesized motion8

sequence, respectively. The architecture of our reactive motion9

synthesis system consists of two parts: a part-based attentive10

recurrent generator to synthesize reaction from the input action,11

and a dual discriminator to increase the generator capacity with12

type-specific realistic reactive features.13

4.1. The Part-based Attentive Recurrent Generator14

We propose a generator that synthesizes the reactive motion15

in an interaction. The generator does not require the class label16

of the interaction to be explicitly defined, which enhances the17

usability of the system as an animation system, since the na-18

ture of the interaction may be unclear to the animators in some19

scenarios. Instead, we only take in the action from the active20

character as the input.21

We construct a part-aware recurrent generator with seq2seq22

attention to learn the dynamic mapping between the input and23

its reactive motion. For encoding the observed motion, we24

break down the character and separately model the body part-25

level dynamics. The obtained hierarchical information helps the26

synthesized character to better observe local movements and re-27

act properly. For generating the reactive motion, we construct28

an attentive LSTM decoder to temporally align the decoded re-29

active motion with the input character by recognizing the in-30

formative encoder steps. The part-aware encoder and attentive31

decoder together form our reactive motion generator G.32

We first adopt hierarchical part-based LSTM blocks to shape
the temporal variations of each input body part. With the ar-
ticulated structure, human joints can be segmented into five
main parts (four limbs and the trunk) [34]. In particular, our
input and output actions are represented with 3D joint posi-
tions in Cartesian coordinate system, and we denote an interac-

tion after normalization with S frames of poses as: {XA,XB} =

{(xA
s , x

B
s )}Ss=1 = {(xAp

s , x
Bp
s )}S ,5s,p=1,1with the body part index p. In

the encoder, the LSTM neuron takes xAp
s of character A at frame

s as the input to generate the hidden state hp
s , and its previous

state of the decoder hp
s−1 is also participated in each LSTM cell

to update the input gate ip
t , the output gate op

t , the forget gate
f p
t , the interim gate up

t , and the cell gate cp
t for the p-th body

part respectively by the equations:
ip
s

f p
s

op
s

up
s

 =


σ
σ
σ

tanh

 Wp


xAp

s−1

hp
s−1

 , (4)

cp
s = f p

s � cp
s−1 + ip

s � up
s , (5)

hp
s = op

s � tanh(cp
s ), (6)

where Wp represents the shared LSTM weights for all the joints 33

in the p-th body part. Then, the five local hidden states go 34

through a concatenated layer to formulate the final integrated 35

spatial state hs = h1
s ⊕ . . . ⊕ h5

s of the whole body, which can be 36

regarded as a precise geometric refinement at the s frame step. 37

In our decoder phase, the attention mechanism introduced in
Sect. 3.2 is integrated with a LSTM layer to focus on the crucial
information among rich temporal data for each decoder state ĥt.
The context vector rt obtained from the probability combina-
tion of all the hidden states in the connected hierarchical-LSTM
layer is calculated by Equations (2) and (3), and then rt is used
to update all the potential gates of the LSTM decoder at step t
as well as the motion output x̂B

t with attention significance:
ît
f̂t
ôt

ût

x̂t

 =


σ
σ
σ

tanh
tanh

 Ŵ


x̂B

t−1

ĥt−1

rt

 . (7)

where ĉt and ĥt are updated using the same configuration as in 38

(5) and (6). Since the generated motion for character B should 39
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have the same number of frames as the input motion for charac-1

ter A to complete an effective interaction, S and T are set to be2

equal in our encoder-decoder model. Besides, we constructed a3

linear layer after the attentive LSTM layer to restore the reactive4

pose at each timestep t.5

We attach the attentive layer to help strengthen the correla-6

tions between the encoder and decoder by informing the impor-7

tance of all the encoder steps to the current decoder step. With8

an effective context vector linking the encoder and decoder per9

frame, the attentive mechanism brings an actual effect that tem-10

porally aligns the synthesized reactive B with the observed A.11

The detailed attention-based generator is illustrated in Fig. 2.12

4.2. The Class-aware Discriminator13

We propose a two-way discriminator that not only identifies14

natural reactions xB from the synthesis x̂B, but also classifies15

which interaction type it belongs to. This is driven by the obser-16

vation that the reactive motion of different types of interactions17

can be significantly different. Being able to tell the class of the18

interaction helps increase the capacity of the generator by syn-19

thesizing high-quality reactions with diverse reactive patterns.20

We present a dual discriminator structure, in which we con-21

struct a standard binary classifier Db to maintain the authentic-22

ity, and a multi-class classifier Dm to promote the discriminabil-23

ity of the synthesis. With the assistance of Dm, we can prevent24

G from creating monotonous reactions for all kinds of input25

actions, while preserving the natures learned from the class-26

specific information to build a desired yet precise representa-27

tion to react. As shown in the right part of Fig. 1, since most of28

the structures are shared between Db and Dm, the dual discrim-29

inator is efficient without introducing massive extra parameters30

to learn.31

To avoid abuse of the input motion, we only feed in the syn-32

thesized reactive motion to the dual discriminator. This is be-33

cause if both the real A and synthesized B are visible, the dis-34

criminator will mainly rely on extracting features from the in-35

put A for classification. As a result, less effective features are36

learned to justify the reactive motion that will ultimately down-37

grade the ability of the discriminator. On the contrary, only38

observing the movement of character B will enforce the dis-39

criminator focusing on the reactive pattern to increase its dis-40

criminability.41

Specifically, we consider bidirectional LSTM layers shared42

between the two classifiers in the dual discriminator to globally43

execute the reactive dynamics, each of which will further go44

through a fully connected layer to achieve the two classification45

tasks, respectively. Since for the discriminator architecture, em-46

pirically under a bidirectional procedure, exploiting contextual47

information from both the forward and backward movements48

can summarize high-level features that significantly boosts the49

classification performance compared with its undirected coun-50

terpart [46].51

4.3. The Loss Functions52

The adversarial system of our reactive motion generator53

and the class-aware discriminator is trained based on a semi-54

supervised loss inspired by [42]. Traditionally, the aim of semi-55

supervised GAN [42, 22, 23] is to learn a capable classifier that56

can recognize real samples. In contrast, we utilize the classi- 57

fication ability of the multi-class classifier to generate samples 58

of different classes, such that the generator can learn from the 59

class-specific information to synthesize a better reaction. 60

Our multi-class classifier Dm is supervised for discriminating
whether a reactive motion belongs to any of the real N classes
or the fake class N + 1, and our binary classifier Db is unsuper-
vised that tells the real reaction from fake. The overall semi-
supervised adversarial loss can thus be expressed by the super-
vised Lsup and unsupervised Lunsup components as:

Lsup = −Ex,y∼G log
pDm (y|x, y < N + 1)
pDm (y|x, y = N + 1)

+ Ex,y∼pB log pDm (y|x, y < N + 1), (8)

Lunsup = Ex∼pB log[1 − pDb (ysyn|x)] + Ex∼G log pDb (ysyn|x)
= Ex∼pB log Db(x) + Ex∼pA log[1 − Db(G(x))].

(9)

where pA and pB stand for the real data distributions of the mo- 61

tions from character A and B, respectively, y is the class label 62

for the input action x and p(ysyn|x) represents the probability of 63

x being classified as the synthesized class. In Lunsup, we denote 64

Db(x) = 1 − pDb (ysyn|x) so that it can be rewritten into the form 65

of standard objective function of GAN. 66

Different from the normal semi-supervised GAN, our multi- 67

class classifier Dm also classifies the synthesized reaction. This 68

is done by employing a new term Ex,y∼G log pDm (y|x,y<N+1)
pDm (y|x,y=N+1) to the 69

supervised Dm. Compared to conditional GAN [20], we do not 70

adopt label information into the generator but only for the dis- 71

criminator, since our generator will create plausible responses 72

that can be recognized as the underlying interaction type with- 73

out early annotation. 74

We further design three loss functions for synthesizing high- 75

quality movement as follows: 76

Bone loss: To synthesize a valid motion, it is essential to
preserve bone lengths among all the generated frames, and we
use an additional loss function Lskl to restrict this physical con-
straint:

Lskl =
∑

t

∑
j

∣∣∣skl(x̂B
t , j) − sklre f ( j)

∣∣∣, (10)

where skl(x̂B
t , j) is the predicted skeleton length at time t and 77

sklre f ( j) is the reference skeleton length with j denoting the 78

bone index. The ground truth skeleton length skl(xB
t , j) is char- 79

acter specific so a uniform constant sklre f ( j) is used instead, as 80

the intention of our network is not to shape the physiological 81

properties (e.g. bone length, height) of the people in front, but 82

to predict the tendency of motion kinetics. 83

Continuity loss: Similar to [28] that designs a triple loss to
maintain video appearance consistency based on pixel differ-
ence, we demonstrate the continuity loss based on joint loca-
tions, which is beneficial to synthesize smooth and stable mo-
tion. The modified continuity loss for skeleton-based motion
sequence is defined as:

Lcon =
∑

t

max(|‖x̂B
t+∆t − x̂B

t ‖
2 − ‖x̂B

t+k∆t − x̂B
t ‖

2 + λ|, 0), (11)

where ∆t is temporal gradient and λ measures the sensitiveness 84

of the constructed activity. A small λ demands to narrow the 85
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... ...

... ... ... ...

... ...

Fig. 2. The reactive motion generator pipeline. The characters in red show example frames of real-world shaking hand and the blue characters are example
frames of the synthesized reaction.

gap between close frames (differ by ∆t) and remote ones (dif-1

fer by k∆t) to obtain a smooth motion. By tuning the intrinsic2

parameters λ, ∆t and k, we can control the quantity of random3

movements emerged in X̂B.4

Contractive loss: We also adopt the L1 norm for training
the generator to make sure it follows the real reactive patterns,
which will also strongly guide the reactive movements and re-
duce ambiguous predictions. Therefore, a contractive loss un-
der L1 norm is formulated to approximate the ground truth re-
action:

L1 =
∑

t

|x̂B
t − xB

t |. (12)

This loss aims to mimic specific motion style to avoid neutrality5

and monotonous generation.6

The overall min-max objective function of the reaction gen-
eration architecture is the combination of all the network losses:

min
G

max
D
Lsup +Lunsup + αLskl + βLcon + γL1, (13)

where α, β and γ control the weights of the respective losses.7

5. Experimental Results8

Dataset settings: To demonstrate the effectiveness of our9

approach on 3D joint space, we evaluate on both Kinect-10

based datasets, i.e. SBU Kinect Interaction dataset (SBU) [24]11

and Human-Human-Object Interaction dataset (HHOI) [10],12

and high-quality Motion Capture-based Character-Character13

dataset (2C) [47]. The SBU dataset includes 8 interaction cat-14

egories (i.e., approach, depart, kick, push, punch, hug, shake15

hands and exchange objects) performed by 7 participants. It16

also provides the annotations of “active” agent (character A)17

and “inactive” agent (character B). We exclude approach and18

depart since in these interactions the indicated character stands19

still and no movement is presented for forecasting. For HHOI20

dataset, we experiment on 2 types of human-human interac-21

tions: shake hands and high-five. Compared with SBU dataset,22

HHOI contains fewer instances in each category but a longer23

duration with more frames in each captured sequence. To bet-24

ter fit the network, we expand the dataset by clipping a sliding25

window with the size of 40 frames and shifting every 5 frames26

along the sequence. On both datasets, we conduct leave-one- 27

subject-out cross-validation. The 2C dataset contains kicking 28

and punching interactions with about 50 clips in total. In this 29

high-quality dataset, each character contains 20 joints and we 30

convert the 3D joint angle representations into joint positions 31

using forward kinematics. 32

Implementation details: Our reaction generator is built 33

upon the Keras platform with the TensorFlow backend. RM- 34

Sprop is adapted as the optimizer with the learning rate of 0.01. 35

There are 40 and 60 LSTM neurons for each spatial slice, and 36

200 and 300 for the temporal attentive layer for SBU and HHOI, 37

respectively. For 2C, the LSTM neurons are set to 200 and 1000 38

for the body slice and the attentive layer, respectively. The pa- 39

rameters k, ∆t, and λ are set to 1, 5, and 0.1, respectively. The 40

training time is about 9.3s for each epoch and our model nor- 41

mally converges around 1000 epochs. The inference time for 42

each interaction is around 5.2ms. For the weights of network 43

losses, we set α = β = 0.01, and γ = 1 in Equation (13). Since 44

the function of Lskl and Lcon is to prevent the abuse of physical 45

properties, i.e., skeleton length and action smoothness, lower 46

weights are assigned to these losses. Otherwise, the model will 47

vacillate among various body shapes and not converge. For the 48

adversarial loss, we also adopt one-side label smoothing [42] to 49

help train the discriminator. 50

5.1. Qualitative Evaluations 51

We demonstrate that our system can generate realistic reac- 52

tive motion. Given the observation of an intentional action, the 53

proposed mechanism can forecast the natural response which is 54

successive in both space and time. Some example comparisons 55

between ground truth and synthesis are visualized in Fig. 3. The 56

synthesized character will learn from the skeletal positions and 57

temporal synchronization for a reaction, which imitates how a 58

human perceives an action and behaves accordingly. For exam- 59

ple, the synthesized characters can move backward to dodge in 60

punching, pushing and kicking. Our model can also recognize 61

the attack from different directions performed by different body 62

parts. As in punching and pushing, the synthesized character 63

leans back its upper body to avoid the arm from the observed 64

actor. In kicking, the synthesized character escapes the offen- 65

sive leg by pulling back his lower body. In the neutral inter- 66

actions (i.e., hugging, shaking hands, and exchanging objects), 67
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Fig. 3. The ground truth and the synthesis for SBU dataset for different classes of interactions. The red character is the observation. The green and blue
characters are the ground truth and the synthesis, respectively.
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Fig. 4. The ground truth and the synthesis for the high-quality 2C dataset for kicking and punching. The red character is the observation. The green and
blue characters are the ground truth and the synthesis, respectively.

the relative distance between two characters is first shortened1

then enlarged compared with the other three aggressive interac-2

tions showing a consistent increasing distance. This is because3

the Dm classifier promotes the quality of the synthesized reac-4

tive motion by adding more discriminative details in each of the5

ground truth classes.6

We also observe that in some unusual situations, the ground7

truth reactive motion is noisy with flickering joints due to oc-8

clusion. Our system synthesized a more natural reactive motion9

than the ground truth but with similar key features. This indi-10

cates that the generator we developed generalize well to model11

human movement.12

Since the ground truth movements in the Kinect-based13

dataset (SBU) are very likely to present noisy joints and unnat-14

ural configurations, we also test the feasibility of our method on15

high-quality precise interactions (i.e. 2C) to remove the inher-16

ited noise from the low-quality motion data. We give example17

interactions with key frames showing the real and the generated18

reactive motions in Fig. 4. We first observe that the synthesized19

reaction is highly consistent with the ground truth with natural20

Table 1. The effectiveness of Dm evaluated with AFD on each interaction
category of SBU.

AFD (↓) w/o Dm w/ Dm (Ours)
Kick 0.58 0.53
Push 0.52 0.52
Punch 0.44 0.45
Hug 0.81 0.72
Shake hands 0.50 0.44
Exchange object 0.49 0.45

arm and leg movements. The motion details are also sufficiently 21

preserved in the synthesized reaction. For example, we can sim- 22

ulate the state from squat to stand at beginning of the reaction as 23

shown in Fig. 4(b). Furthermore, in the punching of Fig. 4(c), 24

the necessary body contact is preserved with the punching hand 25

of A hitting the upper body before the step back of B in the ini- 26

tial poses. The readers are referred to the supplementary video 27

for more results. 28
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Enoder LSTM layer Decoder LSTM layer Cascading Element-wise product

(a) (b) (c)

Fig. 5. Qualitative results and architectures of three generator modalities for the alignment test. The skeletons refer to the synthesized frames of a pushing
reaction sequence in the SBU dataset. The top to the third rows are generated by methods (a) Seq2seq Generator, (b) Seq2seq Part-based Generator, and
(c) Seq2seq Part-based Attentive Generator (our G). The green box highlights the biased frames, and the orange box highlights the aligned frames. We
observe that when modeling the body part, the reactive motion shows less spatial artifacts, and further including the attentive mechanism can better align
the two characters.

Table 2. The effectiveness of the proposed reactive synthesis method over
existing models evaluated with AFD on each interaction category of SBU.

AFD (↓) NN HMM DMDP KRL ME-IOC Ours
Kick 0.81 0.92 0.65 0.92 0.67 0.53
Push 0.51 0.60 0.45 0.61 0.48 0.52
Punch 0.56 0.66 0.48 0.66 0.52 0.45
Hug 0.61 0.67 0.48 0.81 0.47 0.72
Shake hands 0.48 1.41 0.42 0.54 0.42 0.44
Exchange object 0.63 3.84 0.53 0.74 0.54 0.45

5.2. Quantitative Evaluations1

We also conduct quantitative analysis to test the effectiveness
of the multi-class discriminator. The deterministic metric Aver-
age Frame Distance (AFD) is adopted to measure the geometric
similarity between the learned skeleton x̂B and the ground truth
xB, which is defined by:

AFD B
1
T

∑
t

‖x̂B
t − xB

t ‖
2. (14)

The AFD comparison towards Dm under different interaction2

class is shown in Table 1. We can see that the synthesized reac-3

tive motion shows a much lower positional error in most classes4

by including the multi-class classifier Dm, which verifies that5

discriminating different interactions helps improve the synthe-6

sized reactions with better quality.7

To evaluate our model, We also compare the proposed reac-8

tive synthesis method with prior work [9, 48] that are closely9

Fig. 6. Interaction alignment demonstration of three phases from one high-
five sequence in HHOI. The blue bar implies the individual time period
and the orange bar is the overlap period which shows the keyframes of this
interaction. For different time periods, the synthesized character aligns the
input character with coincident arm movements.

related to ours, and some classic machine learning-based meth- 10

ods. Following [48], the first baseline we adopted is the Nearest 11

Neighbour [49] (denoted as NN) based on the framewise co- 12

occurrence without considering temporal correlations. The sec- 13

ond baseline is hidden Markov model [50] (denoted as HMM), 14

which restores the reactive poses with sequential state transition 15

based on the given movement. The third baseline is discrete 16

Markov decision process [51] (denoted as DMDP) by discretiz- 17

ing the time steps with unsupervised clustering. In addition, we 18
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Table 3. Recognition performance (SBU) on the prototype and synthesized interactions on ablation study of losses .
Accuracy prototype Adv. Adv. +Lskl Adv. +Lskl +Lcon Adv. +Lskl +Lcon +L1

Aggresive
Kick 0.9698 0.8413

0.6413
0.8841

0.7273
0.9016

0.7196
0.9365

0.7921Push 0.8806 0.5755 0.6478 0.7135 0.7573
Punch 0.8583 0.5071 0.65 0.5437 0.6825

Neutral
Hug 0.8857 0.2381

0.4379
0.0778

0.3848
0.1683

0.4352
0.2087

0.3997Shake hands 0.7092 0.6495 0.6546 0.7138 0.4735
Exchange object 0.81 0.4261 0.4219 0.4236 0.5168

Table 4. Recognition performance (HHOI) on the prototype and synthesized interactions on ablation study of losses.
Accuracy prototype Adv. Adv. +Lskl Adv. +Lskl +Lcon Adv. +Lskl +Lcon +L1

High-five 0.9785 0.5171 0.9901 0.9067 0.9473
Shake hands 0.9778 0.9533 0.7132 0.8966 0.9673
Average 0.9782 0.7352 0.8517 0.9017 0.9573

Fig. 7. Example skeleton errors in the SBU dataset. The grey area displays
the inaccurate joint positions.

also compare with [9] and [48] that adopting kernel-based re-1

inforcement learning (denoted as KRL) and maximum-entropy2

inverse optimal control (denoted as ME-IOC), respectively, for3

reaction synthesis.4

The comparison results on different action classes are given5

in Table 2. We observe that our method achieves comparable6

performance with the lowest prediction errors in half of the cat-7

egories. For the interactions of pushing and shaking hands, the8

AFD differences between our method and the corresponding9

best models (i.e. DMDP and ME-IOC, respectively) are less10

than 0.1. Different from other actions, hugging shows a rela-11

tively higher AFD with our model. This is because the large di-12

versity caused by frequent self-occlusions makes it hard to learn13

the feature co-occurrence in this class, thus reducing the syn-14

thesis performance. Although the quantitative results are com-15

patible with the statistical models [9] and [48], their methods16

mainly sample or assemble source movements from the train-17

ing data. This makes them less likely to be generalized to large-18

scale motions when more variations are needed in the synthesis19

to meet diverse user requirements.20

Furthermore, we quantify the recognition accuracy of the re-21

action generated by different combinations of losses. We first22

construct a two-layer LSTM with 512 units each layer and a23

linear layer connected to its end as the baseline classification24

network, and train it with the 3D joints of real interactions with25

the same cross-subject strategy as we train the reactive motion26

generator. The test interactions consist of real actions for char-27

acter A and their corresponding real or synthesized reactions for 28

character B. For this baseline evaluation, we denote it as proto- 29

type. We also evaluate the model under different loss combina- 30

tions: Adversarial loss only (denoted as Adv.), adversary with 31

bone losses (denoted as Adv. + Lskl), adversary with bone and 32

continuity losses (denoted as Adv.+Lskl +Lcon), and adversary 33

with all 3 losses (denoted as Adv. +Lskl +Lcon +L1). 34

The recognition performance on each interaction category of 35

the two datasets is given by Table 3 and 4. In general, the 36

discriminability will increase when we include more restric- 37

tions on the synthesized actor, and our model with all three 38

constraints outperforms others, which shows the effectiveness 39

and indispensability of each proposed loss function. For SBU 40

dataset (Table 3), it is challenging to differentiate pushing and 41

punching as the two reactions behave visually similar in skele- 42

tal representation, and it will mainly rely on the contractive L1 43

loss to examine the slight distinction in spatial patterns existed 44

in two kinds of reactions. Another observation is that our ar- 45

chitecture does not perform well in neutral types of interaction 46

especially hug since large biases of the bone lengths and frame 47

jumping problems occurred because of abundant occlusions and 48

intersects between two characters during hugging frames in the 49

training set. This distortion makes the generator hard to learn 50

its intrinsic spatial regularities and temporal dependencies. We 51

also observed that the Shake hands and Exchange object inter- 52

actions are highly similar and result in relatively low classifi- 53

cation accuracy in those classes. Nevertheless, such ambiguity 54

does not have a significant impact on the visual quality of the 55

synthesized interactions as those two interactions are very sim- 56

ilar in terms of body movements. In Table 4, the recognition 57

results on HHOI with all types of losses are also the closest to 58

the compared prototype baseline. 59

5.3. Interaction Alignment Evaluations 60

To clarify how each component of the generator structure 61

contributes to the final output, we compare three ablation strate- 62

gies on the network construction to train the generator G. The 63

baseline structure (denoted as “Seq2seq Generator”) is formed 64

by a two-layer LSTM with basic sequential encoder-decoder 65

architecture. The second structure is trained with five LSTM 66

layers separately, each of which encodes the action of an articu- 67

lated branch in a skeleton, and their final states are cascaded to 68
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(a) Shake hands (#1) (b) Shake hands (#2) (c) Exchange objects

Fig. 8. The example attention maps between the input character A and synthesized character B at every frame. (a) and (b) are attention maps of two
shake hands interactions, and (c) is exchange objects, respectively. Note that the size of attention map may be varied based on the length of the interaction
sequence.
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Fig. 9. Example frames of the synthesized actions (blue character) by feeding in the reaction (red character).

be interpreted by the decoder (denoted as “Seq2seq Part-based1

Generator”). The third one is our method with the attention2

mechanism equipped with the encoder-decoder structure based3

on the second model (denoted as “Seq2seq Part-based Attentive4

Generator”).5

The corresponding architecture and their visualized effects6

are compared in Fig. 5. We observe that when adding spatial7

hierarchy (the 1st and 2nd row), the encoder can better recognize8

the input action and react with less floating and artifacts. How-9

ever, in the 2nd row which temporal attention is not considered,10

we observe that the right character (synthesized) dodges be-11

fore the left character (input) pushes. For the essential pushing12

frames, the right agent stops moving back and recovers grad-13

ually, which shows the misalignment in the whole interaction14

performance. As highlighted in the orange box of the 3rd row,15

we can see that the temporal attention better aligns the move-16

ments of the two characters by dodging at a proper time, since17

the decoder can learn which interaction stage should the system18

pay more attention to for a punctual reaction.19

We further test on three time phases of a high-five sequence20

as shown in Fig. 6 (i.e. raise arm, high-five, put down arm). The21

synthesized reaction shows coincident arm raising and putting22

down with the input character in each time scope, which also23

demonstrates that our system can build the reaction based on 24

the observed spatial pattern, but not answer back with a uniform 25

temporal pattern. It indicates that the proposed network can not 26

only identify and encode the detected context, but also provide 27

real-time and refined feedback. 28

To clarify the attention module, we also show the learned at- 29

tention weights of three interaction samples from shake hands 30

and exchange objects. As given in Fig. 8, each element α(i, j) 31

from Eq. 3 in an attention map represents the attention value 32

between character A in the ith frame (i.e. Ai) and character B 33

in the jth frame (i.e. B j). Since the attention is attached to 34

the reaction, the active frames of A will contribute to the en- 35

tire action of B. From Fig. 8(a) and Fig. 8(b), the wide range of 36

non-zero weights indicates that the shaking interaction remains 37

active for a long time, and it shows the alignment (higher val- 38

ues in diagonals) till the end of shaking. By comparing the two 39

attention maps, we also observe that the attention pattern of dif- 40

ferent instances varies that is not determined by the interaction 41

type. Compared to shaking hands, most of the large weights of 42

exchanging objects are centered at a short period (i.e. A7∼A10 43

in Fig. 8(c)), which makes sense as the activity of exchanging 44

is relatively fast. 45

Note that simply depending on the action type will generate 46
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some ambiguous reactive patterns (e.g. the 2nd row in Fig. 5),1

while adding attention module helps to generate sample-wise2

reactive motion according to its received interaction pace. Thus,3

the advantage will also be kept even though the interaction4

shows less synchronization, such as waving back.5

5.4. More Generalization Tests6

We also conduct a generalization test by feeding in reactive7

motions in training and testing on unseen reactions. Some ex-8

ample generations are given in Fig. 9. By feeding in two dodg-9

ing reactions (the red character), the model generates some at-10

tacking actions (the blue character), such as kicking and punch-11

ing. When feeding in a high-five reaction, the model can recog-12

nize it and generate the high-five as well. We also observe that13

the system will not create some averaged action (e.g. kicking14

while punching) as the discriminator help to identify generation15

to a single type of response.16

6. Limitations17

For the limitations, the proposed model may fail to synthe-18

size the microscopic movements when the interactions contain19

local actions. For example, during shaking hand interaction, it20

is difficult to perform shaking for B’s arm with the simple am-21

plitude as A, which will result in a resemble acting as exchange22

object. To reduce this ambiguity, the system is required to learn23

the geometric relationship between two actors to further reflect24

the reciprocal interaction in detail.25

Another limitation of the method is that as a data-driven ap-26

proach, the result of the synthesized motion will largely de-27

pend on the observed interaction in the dataset. For exam-28

ple, feet floating may sometimes take the place of the walking29

steps in the generated kicking and dodging interactions. This30

is because, like many other deep learning-based action synthe-31

sis work [15, 26], the walking pattern is hardly learned when32

most of the interactions observed are non-walking related. We33

improve the rendering using 3D stickman figures representing34

each bone with volumetric cylinders in the video, where the root35

positions are also included with less feet sliding. However, as36

an extension, it would be possible to fix this problem by con-37

straining the velocity of the toe or heel when considering foot38

contact parameters in locomotion [52]. Due to the limitation of39

depth sensors, it is inevitable to draw in some occlusions and40

artifacts (e.g. Fig. 7), especially for the interactions with close41

contact such as hugging which results in inaccuracies in the42

captured data. This will make it hard for the generated reaction43

to perform in the way of a true human motion. Furthermore, the44

model proposed in this work uses 3D joint positions for motion45

synthesis. Because of the nature of the data, it is hard to fully46

synthesize a skinned character pose due to the impossibility to47

determine the orientation of the body joints.48

7. Conclusion49

In this paper, we proposed an innovative human reaction50

generation system based on seq2seq generative adversarial net-51

work. The generator is self-adaptive which can autonomously52

recognize the observed action from spatial and temporal per- 53

spectives without the label information, and further shape a 54

precise reaction. The dual discriminator with the binary and 55

multi-class classifiers are designed to promote the authenticity 56

and the discrimination of the reaction. The movements of body 57

parts are analyzed hierarchically to discover the part-based fea- 58

tures, and they are integrated to be interpreted by the decoder. 59

An attention mechanism is also attached to the decoder to align 60

the synthesized interaction. To synthesize a more realistic re- 61

action, we add a skeleton loss to keep the basics of the physi- 62

cal body structure, a continuity loss to smooth the appearance 63

among motion frames and a contractive loss to reduce the arti- 64

facts of the generated movements. 65

We have both qualitatively and quantitatively evaluated our 66

reaction synthesis approach with respect to the discriminability, 67

the synchronism between characters, and the similarity to the 68

actual reaction. Experimental results show that the proposed 69

generative model can produce logically and numerically anal- 70

ogous generations of human reaction when the input action is 71

provided. 72

In this work, we synthesize the natural reactive patterns by 73

assuming the action and reaction appear in pairs. Since hu- 74

man responses in social interaction should not be limited to one 75

single reaction pattern, as future work, we aim to increase the 76

diversity of the generated reactive motion. Possible solutions 77

include disentangling the basic reactive patterns and different 78

reactive styles, or accommodating random noise z to our gen- 79

erative model to increase the variations of the synthesized re- 80

action. In addition, creating an online human reactive motion 81

with local temporal attention is another interesting direction to 82

explore. 83

As another potential future direction, our work can be fur- 84

ther improved by collecting a larger interaction dataset where 85

the distribution-based metrics such as FID (Fréchet Inception 86

Distance) [53] can be applied to evaluate the generation space. 87
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