
Computers & Graphics 76 (2018) 60–72

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

High-quality compatible triangulations and their application in

interactive animation

✩

Zhiguang Liu

a , ∗, Liuyang Zhou

b , ∗, Howard Leung

c , Hubert P. H. Shum

d

a INRIA, MimeTIC Team, Campus Universitaire de Beaulieu, 35042, Rennes, France
b Zhiyan Technology (Shenzhen) Limited, Nanshan District High-tech Industrial Park, Shenzhen, China
c Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
d Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, UK

a r t i c l e i n f o

Article history:

Received 2 March 2018

Revised 6 July 2018

Accepted 7 July 2018

Available online 29 August 2018

Keywords:

Character animation

Shape morphing

Compatible triangulation

a b s t r a c t

We propose a new method to compute compatible triangulations of two polygons in order to create

smooth geometric transformations between them. Compared to existing methods, our approach creates

triangulations of better quality, that is, triangulations with fewer long thin triangles and Steiner points.

This results in visually appealing morphings when transforming the shape from one into another. Our

method consists of three stages. First, we use a common valid vertex pair to uniquely decompose the

source and target polygons into pairs of sub-polygons, in which each concave sub-polygon is triangulated.

Second, within each sub-polygon pair, we map the triangulation of a concave sub-polygon onto the corre-

sponding sub-polygon using a linear transformation, thereby generating compatible meshes between the

source and the target. Third, we refine the compatible meshes, which creates better quality planar shape

morphing with detailed textures. In order to evaluate the quality of the resulting mesh, we present a

new metric that assesses the deformation of each triangle during the shape morphing process. Finally,

we present an efficient scheme to handle compatible triangulations for a shape with self-occlusion, re-

sulting in an interactive shape morphing system. Experimental results show that our method can create

compatible meshes of higher quality as compared to existing methods with fewer long thin triangles and

smaller triangle deformation values during shape morphing. These advantages enable us to create more

consistent rotations for rigid shape interpolation algorithms and facilitate a smoother morphing process.

The proposed algorithm is both robust and computationally efficient. It can be applied to produce con-

vincing transformations such as interactive 2D animation and texture mapping. The proposed interactive

shape morphing system enables normal users to generate morphing video easily without any professional

knowledge.

© 2018 Elsevier Ltd. All rights reserved.

t

m

h

t

a

o

t

g
1. Introduction

Planar shape morphing, also known as metamorphosis or shape

blending, allows smoothly transforming a source shape into a tar-

get one [1–3] . Shape morphing techniques have been used widely

in animation and special effects packages, such as Adobe After Ef-

fects and HTML5, generating visual effects for both the film and

television. The key research focus here is to synthesize high-quality

character animations that can handle shapes with self-occlusion

and avoid collapsing of polygons during the morphing process.
✩ This article was recommended for publication by Hongchuan Yu, Taku Komura

and Jian Jun Zhang.
∗ Corresponding author.

E-mail address: leo@webot.ai (L. Zhou).

b

t

s

g

c

https://doi.org/10.1016/j.cag.2018.07.002

0097-8493/© 2018 Elsevier Ltd. All rights reserved.
2D image deformation algorithms such as rigid shape deforma-

ion in [4,5] have been extensively explored in the research com-

unity. With these algorithms, users can manipulate constrained

andlers to deform a given image. However, such image warping

echniques offer a limited range of transformations. Transforming

 shape into a significantly different one is difficult due to the lack

f feature correspondence.

Planar shape morphing methods offer solutions that determine

he trajectory along which the source vertex will travel to the tar-

et one. Previous attempts to tackle the shape morphing problem

y linearly interpolating the coordinates of each corresponding ver-

ex pair between the source and the target polygons. However,

imple linear interpolation sometimes creates intermediate poly-

ons that overlap with each other, resulting in geometrically in-

orrect transformations. While other image space techniques such

https://doi.org/10.1016/j.cag.2018.07.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2018.07.002&domain=pdf
mailto:leo@webot.ai
https://doi.org/10.1016/j.cag.2018.07.002

Z. Liu et al. / Computers & Graphics 76 (2018) 60–72 61

Fig. 1. The overview of the proposed framework to compatibly triangulate two simple polygons. (a) The target polygon Q . (b) The source polygon P . (c) We compute the valid

vertex pairs for both the source and target polygons. (d) We collect the common valid vertex pairs. (e) We use the common valid vertex pair for compatible decomposition

if the common vertex pair exists; otherwise, we calculate the link path, e.g., the 2-link path between vertex u 2 and u 5 with the blue color shown in (h). (f-h) We use the

polyline found in (e) that maximizes the minimum angle to decompose the source and target polygons. (i) We triangulate each sub-polygon p i of source polygon P using

Delaunay triangulation. (j) We may need to add some Steiner points on the edge of sub-polygon q i to keep equivalent topology. (k) We solve a linear system to map the

triangulation of sub-polygon p i onto the corresponding sub-polygon q i of target polygon Q . (l-m) We finally refine the compatible meshes by operations such as splitting

long edges and flipping interior edges to improve the interior angles of the mesh.

a

o

t

b

a

i

u

p

o

S

p

a

u

g

w

g

p

p

r

p

t

p

t

i

d

S

s

w

i

t

b

l

s

p

g

m

F

l

p

a

f

a

t

S

s

f

t

s

t

t

t

s

2

r

d

t

t

t

i

a

g

p

b

s [5,6] achieve pleasant blending results, they usually suffer from

verlapping problems due to the lack of topology information.

Previous work [7–10] has shown that computing compatible

riangulation can successfully create smooth transformations for

oth the boundary and the interior of a shape. Two triangulations

re compatible if they have the same combinatorial structure, i.e.,

f their face lattices are isomorphic [11] . However, in many sit-

ations, compatible meshes can be generated only if additional

oints, known as Steiner points, are added. Thus, one challenge

f building compatible triangulation is to use a small number of

teiner points such that we can reduce the shape morphing com-

lexity. Another challenging problem of computing compatible tri-

ngulation is to avoid the generation of some long thin triangles

sing a computationally efficient algorithm. The long thin trian-

les can cause inconsistent rotation problems and create artifacts

hen applied to shape interpolation algorithms [12] . Therefore, a

ood compatible triangulation contains a small number of Steiner

oints and keeps a small percentage of long thin triangles. In this

aper, we propose a heuristic polygon decomposition method that

educes the overall algorithm complexity.

We observed that most existing compatible triangulation ap-

roaches either create a large number of skinny triangles or are

oo complicated for real-time shape morphing. In this paper, we

ropose an efficient framework to compute compatible triangula-

ion of two simple polygons defined as planar shapes with non-

ntersecting edges that form a closed path. Our method pro-

uces compatible meshes with fewer long thin triangles and fewer

teiner points, thereby enabling smooth transformations from one

hape into another. The proposed method applies to any 2D shape

ithout holes. Here, we use the human shape as an example to

llustrate our interactive animation system. We demonstrate an in-

eractive entertainment system that transforms a human into a

ird or other objects that people may never experience in real life.

The major contributions of this paper are summarized as fol-

ows:

• First, we propose a new algorithm to calculate the compatible

polygon decomposition based on the common valid vertex pairs

that results in a flexible decomposition of the source and target

polygons.

• Second, we present a new metric to measure the quality of the

resulting mesh during the shape morphing process.
• Finally, we propose an enhanced scheme that can compute a

compatible triangulation for a shape with self-occlusion by in-

troducing a calibration image. To demonstrate the effectiveness

of the proposed algorithm, we present an interactive morphing

system that uses human silhouette as the source input shape.

Our preliminary research documented in [12] proposed a ba-

ic system to construct the compatible triangulation for two sim-

le polygons. Compared with this work, our new compatible poly-

on decomposition algorithm is more flexible and leads to better

esh quality with fewer number of Steiner points, as illustrated in

ig. 8 and Table 2 . The method of [12] generates different triangu-

ation results depending on whether we start the convex decom-

osition from the source or target polygon. However, our method

lways produces the same triangulation results even when started

rom different directions. This is because we consider the source

nd target polygons at the same time using the common valid ver-

ex pairs. Generally, our algorithm is faster than [12] , as shown in

ection 5 . Compared to [13] , we proposed a new metric to mea-

ure the quality of the resulting meshes during the rigid shape de-

ormation process. We have also conducted extensive experiments

o analyze the influence of the mesh quality on shape morphing

uch as texture mapping. Finally, to produce sensible transforma-

ions, we proposed an improved scheme to deal with compatible

riangulations with self-occlusion, and we tested the proposed in-

eractive animation system using a human silhouette as our source

hape input.

. Related work

Planar shape morphing involves two sub-problems: vertex cor-

espondence and vertex path computation [14] . Vertex correspon-

ence determines how the vertex u of source polygon P matches

he vertex v of target polygon Q . The vertex path determines the

rajectory along which the vertex u will travel to the vertex v . In

his paper, we concentrate on the vertex correspondence problem,

.e., computing compatible meshes.

Previous methods for computing compatible triangulations usu-

lly fall into two categories: (1) Transforming the source and tar-

et polygons into another common space [7,11,15] . (2) Iteratively

artitioning the source and the target polygons until both inputs

ecome a set of triangles [9,10,16,17] .

62 Z. Liu et al. / Computers & Graphics 76 (2018) 60–72

Table 1

The computational complexity: the main computational cost of our method is computing the link paths, where N is the total number of boundary

vertices of source polygon P , C
P

is the number of concave vertices of P , L and H are the number of sub-polygon pairs created by Liu et al. and our

method, N i and S i are the number of boundary vertices and the number of Steiner points of the i −th sub-polygon respectively.

Surazhsky-Gotsman, 04 O (N 3 logN)

Baxter et al., 09 O (2 N 3)

Liu et al., 15 O (L · max (N 3
i
, S 3

i
)) , S i , N i � N

⌈
1
2

C Q
⌉

+ 1 ≤ L ≤ C Q + 1

Proposed method Convex decomposition Common valid vertex pairs computation O (N 2)

Link paths generation O (HN 3
i
) , N i � N

Linear system computation O (HS 3
i
) , S i � N, H ≤ L

Table 2

Quantitative comparisons between triangulation quality.

Shape Method #Steiner Point Minimum angle Angles ≤ 10 ° (%) Angles ≤ 15 ° (%) Angles ≤ 20 ° (%) Computation time (s)

Surazhsky–Gotsman, 04 0 1.6730 ° 11.57 16.12 31.27 21

Baxter et al.,09 0 3.3052 ° 10.61 14.39 30.30 12

Liu et al., 15 3 3.7557 ° 5.35 11.90 22.02 7

Ours 0 6.4161 ◦ 8.75 12.87 26.93 3

Surazhsky-Gotsman, 04 2 0.0441 ° 27.43 36.81 42.36 24

Baxter et al., 09 5 0.9779 ° 21.91 29.32 37.96 14

Liu et al., 15 2 0.9913 ° 15.27 22.91 32.29 6

Ours 1 1.3653 ◦ 12.49 21.08 26.37 5

Surazhsky-Gotsman, 04 6 0.4837 ° 8.60 13.03 20.59 27

Baxter et al.,09 4 0.5849 ° 6.49 12.42 18.64 15

Liu et al., 15 3 0.6120 ° 5.29 11.64 17.46 8

Ours 1 1.6855 ◦ 5.18 9.11 15.72 7

Surazhsky-Gotsman, 04 0 0.0347 ° 28.96 35.47 44.88 35

Baxter et al.,09 0 0.0229 ° 21.45 29.21 35.48 18

Liu et al., 15 0 0.3294 ° 16.01 23.77 29.54 6

Ours 0 5.6835 ◦ 3.99 7.63 12.11 4

Surazhsky-Gotsman, 04 0 0.8893 ° 12.43 19.16 24.13 29

Baxter et al.,09 0 2.1933 ° 10.95 14.68 21.89 16

Liu et al., 15 0 2.6746 ° 9.95 14.18 20.15 9

Ours 0 2.9338 ◦ 6.21 10.94 15.92 5

s

s

g

c

o

p

h

t

p

P

m

m

t

a

f

t

e

i

p

s

a

[

b

w

c

p
Aronov et al. [11] constructed the compatible triangulations by

overlaying the triangulations of the source and target polygons in a

convex polygon. The intersections of the two triangulations built a

piecewise-linear homeomorphism, which introduced a large num-

ber of Steiner points. To solve this problem, [7] employed Delau-

nay triangulation to reduce the number of Steiner points. Kranakis

and Urrutia [15] proposed another method by which the number of

Steiner points can be determined by the number of inflection ver-

tices. While their method can reduce the number of Steiner points,

it sometimes results in Steiner points on the edge of a polygon.

Gupta and Wenger [17] used the divide-and-conquer method to

partition the source and target polygons iteratively. Their algorithm

introduced a small number of Steiner points by using the link

paths. However, it is not suitable for polygons with a small number

of vertices. Surazhsky and Gotsman [9] simplified the algorithm

of [17] and proposed a new remeshing method that greatly im-

proves the mesh quality by adding a few number of Steiner points.

Their algorithm requires the implementation of many data struc-

tures and algorithms in [16] , and therefore is algorithmically com-

plex. Baxter et al. [10] proposed a new way to find compatible link

paths. Based on this new link path generation algorithm, they used

a similar scheme as in [9] to compatibly partition the two poly-

gons. Although their algorithm for computing link paths is faster

than [9] , the proportion of regular-shaped triangles (as opposed to

long thin triangles) still needs to be improved.

A lot of work has been proposed for interpolating two shapes.

Alexa et al. [7] proposed a method that attempted to pre-
erve rigidity. They separately interpolated the rotation and the

cale/shear components of an affine transformation matrix, which

enerated pleasing results with small rotations for most of the

ases. Inspired by [7,18] presented a 3D morphing method based

n the Poisson’s equation that generated visually pleasing mor-

hing sequences. However, their method suffered from the in-

erited problem of rigid interpolation methods that the rota-

ions may be incorrectly interpolated. As a solution, [19] pro-

osed a method to consistently assign rotations. Sumner and

opovic [20] proposed a method that transferred the 3D defor-

ation of a source triangle mesh onto a different target triangle

esh. However, their algorithm is designed for the case where

here is a clear semantic correspondence between the source

nd target. Li et al. [21] introduced a new type of coordinates

or Hermite interpolation that can be applied to shape deforma-

ion. Other methods such as [22] try to preserve certain prop-

rties such as the smoothness and the distortion for 2D shape

nterpolation.

In this paper, we propose a new method to construct the com-

atible meshes of two simple polygons. Our approach draws in-

piration from [23] , which uses barycentric coordinates to map

 spatial surface triangulation to a planar triangulation. However,

23] requires that every Steiner point of the target polygon Q must

e a strict convex combination of its neighbors, which cannot al-

ays be satisfied in practice. As a solution, we propose an efficient

ompatible polygon decomposition algorithm that simultaneously

artitions the source and target polygons into a set of sub-polygon

Z. Liu et al. / Computers & Graphics 76 (2018) 60–72 63

p

l

r

t

f

3

t

i

s

w

s

e

d

a

i

t

c

a

a

p

s

v

l

t

r

s

i

t

m

3

t

p

e

c

t

f

p

p

r

t

l

a

i

c

t

i

a

Fig. 2. A valid vertex pair (1, 4) used to partition the source polygon, which yields

four interior angles between vertex u 1 and u 4 .

j

n

d

b

m

a

c

o

m

t

s

a

t

o

c

o

g

r

t

w

p

t

V

a

c

i

w

s

n

�

p

t

t

g

m

[

t

g

w

a

i
airs such that we can solve the compatible mapping with a sparse

inear system for each sub-polygon pair. On the other hand, the

esulted initial triangulation may still contain long thin triangles

hat need to be improved. We propose some efficient schemes to

urther improve the mesh quality.

. Compatible triangulations

As illustrated in Fig. 1 (a,b), the input data of our system are

wo simple polygons P and Q with corresponding vertices ordered

n counter-clockwise. We denote P = { U, E P } and Q = { V, E Q } as the

ource and target polygons with point set u ∈ U and v ∈ V, together

ith the edge set E P , E Q , respectively. P and Q are assumed to be

imple polygons without holes, in which the edges do not cross

ach other and form a closed contour enclosing each polygon. We

efine T P and T Q as the triangulation of the polygon P and Q . T P
nd T Q are compatible if they have an equivalent topology, which

s defined as:

1. There is a one-to-one correspondence between the vertices of

T P and that of T Q .
2. There is a one-to-one correspondence between the edges of T P

and T Q , meaning that if there is an edge connecting two ver-

tices of T P , then there is an edge connecting the corresponding

vertices of T Q and vice versa.

3. The boundary vertices of both T P and T Q are traversed in the

same clockwise or counter-clockwise order.

The core of our framework is a new algorithm for partitioning

he source and target polygon pairs, which is more flexible to in-

rease the mesh quality. Given two simple polygons P and Q with

 boundary vertex correspondence as illustrated in Fig. 1 (a,b), our

lgorithm works in three stages. First, we decompose the source

olygon P and the target polygon Q into compatible sub-polygons

(p, q) =

⋃

(p i , q i) as shown in Fig. 1 (c,g), where either the target

ub-polygon q i or the corresponding source sub-polygon p i is con-

ex. Considering a sub-polygon, p i of P , we triangulate p i using De-

aunay triangulation as illustrated in Fig. 1 (h,i). Second, we map

he triangulation T p i of the source sub-polygon p i onto the cor-

esponding target sub-polygon q i using a sparse linear system as

hown in Fig. 1 (j,k). Third, we refine the compatible meshes to

mprove the mesh quality shown in Fig. 1 (l,m), which is impor-

ant for high-quality morphing in 2D animation, special effects for

ovies and texture mapping.

.1. Compatible decomposition of the target and source polygons

In the first phase, we compatibly decompose the source and

arget polygons, P and Q , into pairs of sub-polygons. In a simple

olygon, a vertex u ∈ U is convex if the angle α formed by the two

dges at u is less than π radians. Otherwise u is considered to be

oncave . Our goal is to turn some concave vertices into convex ones

hrough the decomposition and to construct pairs of sub-polygons

rom the source and target polygons such that each of the sub-

olygon pair contains at least one convex sub-polygon.

Without loss of generality, we assume the source and target

olygons P and Q each to be a simple polygon with N vertices ar-

anged in counter-clockwise order. Here, we label the concave ver-

ices of Q as v 1 , . . . , v C and the convex vertices v
C+1

, . . . , v
N

. Simi-

arly, we label u 1 , . . . , u C ′ as the concave vertices and u
C ′ +1

, . . . , u
N

s the convex vertices of P . We call a vertex pair (i , j) of P valid

f u i is visible from u j , and at least one of the two vertices is a

oncave vertex, e.g., (1, 4) is valid as shown in Fig. 2 . If two ver-

ices are visible to each other while not being a valid pair, then

t implies that both vertices are convex such as vertex pair (2, 4)

s illustrated in Fig. 2 . A diagonal u a u of P is a line segment that
b
oins vertex u a and u b of P and remains strictly inside P . A diago-

al such as u 2 u 4 in Fig. 2 that connects two convex vertices is re-

undant in our compatible decomposition algorithm because it can

e removed and the two convex sub-polygons on its sides can be

erged into a convex polygon. Therefore, for the construction of

 compatible decomposition, we consider only the diagonals that

onnect two vertices that belong to valid vertex pairs.

In some cases, the compatible triangulation can be constructed

nly if Steiner points are added. In order to introduce the mini-

um number of Steiner points, we need to search for all the po-

ential decomposition combinations in the solution space. As a re-

ult, there can be an exponential number of ways to decompose

 simple polygon into convex sub-polygons using the valid ver-

ex pair, which forbids the practical use of the algorithm. Previ-

us work converted the compatible triangulation problem into a

ommon base domain [7,11] or used a divide-and-conquer meth-

ds [10,12,24] to iteratively partition the source and target poly-

ons. However, these methods may either be too complex for a

eal-time application or produce a mesh of poor quality. This mo-

ivates us to design an efficient compatible triangulation algorithm

ith improved mesh quality.

We start from the source polygon P and find all the valid vertex

airs VP P for P . Similarly, we find the valid vertex pairs VP Q for

he target polygon Q . Among all the valid vertex pairs in VP P and

P Q , we collect the common valid vertex pairs V P = V P P ∩ V P Q that

ppear in both V P
P

and V P
Q

. The best partition for P and Q is the

ommon valid vertex pair that generates the maximum minimum

nterior angle IntAng by:

(a, b) = arg max
v a , v b ∈ V
u a , u b ∈ U

a 	 = b

min { I ntAn g P (a, b) , I ntAn g Q (a, b) } (1)

here the IntAng P (a , b) contains four angles formed by the inter-

ection of the source polygon P and the diagonal u a u b that con-

ects a valid vertex pair (a , b). For example, IntAng P (1, 4) contains

 α, � β , � γ and � δ in Fig. 2 .

Decomposing polygons with Eq. (1) generates a balanced angle

artition for both the source and target polygons, which maximizes

he interior angle of both the source and target sub-polygons in

he current iteration. Liu et al. [12] only considered a balanced an-

le partition for the target polygon; however, the source polygon

ay still generate small interior angles. Previous methods such as

9,10] only considered balanced index partition of the source and

arget polygons, which is likely to decrease the mesh quality re-

arding the proportion of small angles in the compatible meshes,

hich will be discussed in Section 6.2 .

In practice, the common valid vertex pair may not always be

vailable in some cases. For example, as shown in Fig. 1 (c,d), the

ntersection of two valid vertex pair sets {(2, 4), (2, 5)} ∩ {(3, 1), (3,

64 Z. Liu et al. / Computers & Graphics 76 (2018) 60–72

Fig. 3. Mapping the Steiner points within the source sub-polygon onto the target

sub-polygon. (a) The source sub-polygon with the Steiner points u 1 and u 2 . (b) The

corresponding target sub-polygon with the unknown Steiner points v 1 and v 2 .

t

s

3

P

t

v

p

s

t

v

w

l

t

v

3

i

t

m

p

u

v

s

w

p

o

v

T

o

d

u

a

a

u

w

v

N

5)} is empty. Here, we apply a link path to determine the partition

line between two vertices instead of using the common valid ver-

tex pair. A link path between vertex u a and u b is a polyline within

the polygon that joins the vertex pair (a , b) such as vertex pairs

(2,6) and (6, 5) in Fig. 1 (h), which defines a 2-link path between

vertex u 2 and u 5 . A minimum link distance for vertex pair (a , b),

linkDist (u a , u b), is the minimum number of line segments in a poly-

line, for example, the minimum link distance for vertex pair (2, 5)

in Fig. 1 (h) is 2. We follow [10] to compute the link path with the

minimum link distance for all vertex pairs in O (H · N

3
i
) , where H is

the number of sub-polygon pairs and N i is the number of vertices

for the i −th sub-polygon. Algorithm 1 summarizes our recursive

Algorithm 1: Compatible decomposition of the source and the

target polygons.

1 Input : The source and target polygons, P and Q

2 Output : A decomposition of P , p =

⋃

p i , and Q , q =

⋃

q i ,

where either p i or q i is a convex sub-polygon

3 convexDecomposition (P , Q)

4 if P or Q is convex then

5 exit

6 end

7 Compute valid vertex pairs V P P and V P Q
8 Find common valid vertex pairs

9 V P = V P P ∩ V P Q
10 if V P is not empty then

11 Calculate the best partition by:

12 (a, b) =

arg max
v a , v b ∈ V
u a , u b ∈ U

a 	 = b

min { I ntAn g P (a, b) , I ntAn g Q (a, b) }

13 Decompose P and Q using (a, b) that creates two

sets of sub-polygons:

14 { p i , p i +1 } , { q i , q i +1 }
15 else

16 Decompose P or Q using link path that creates two

sets of sub-polygons:

17 { p i , p i +1 } , { q i , q i +1 }
18 end

19 convexDecomposition(p i , q i)

20 convexDecomposition(p i +1 , q i +1)

polygon decomposition algorithm.

By this stage, we have compatibly decomposed the source poly-

gon P and the target polygon Q into sub-polygons { p i = (U

p i , E p i) }
and { q i = (V q i , E q i) } , where (p i , q i) is a pair of sub-polygons and

either p i or q i is convex. We apply Delaunay triangulation as the

initial triangulation of a sub-polygon, which can maximize the

minimum interior angle with no extra Steiner points in O (N i logN i)

[25] . Here, we denote T p i as the triangulation of the sub-polygon p i
and aim to construct the compatible triangulation T q i of q i based

on T p i .

3.2. Compatible triangulations mapping

The compatible decomposition process may introduce Steiner

points on the link path of either the source polygon P or the tar-

get polygon Q . Moreover, to improve the mesh quality, the mesh

refinement process detailed in Section 3.3 creates Steiner points

within each sub-polygon. Therefore, we have two types of Steiner

points: (1) Steiner points that lie on the link path of source sub-

polygon p i , and (2) Steiner points that lie within p i . For (1), we

map the Steiner points onto the corresponding edges of the target

sub-polygon q based on the simple line-segment-length propor-
i
ion principle. For (2), we solve the mapping with a sparse linear

ystem.

.2.1. Mapping the Steiner Points onto the Link Path of the Source

olygon

We denote u s as a Steiner point that lies on the link path be-

ween vertex u a and u b in the source sub-polygon p i such as the

ertex u 6 for vertex pair (u 2 , u 5) in Fig. 1 (h). We add a Steiner

oint v s for the target sub-polygon q i on the corresponding line

egment v a v b based on the linear ratio with the following equa-

ion:

 s =

pol yl ineLength (u b , u s)

pol yl ineLength (u a , u b)
v a +

pol yl ineLength (u s , u a)

pol yl ineLength (u a , u b)
v b (2)

here polylineLength (u a , u b) is the summation of the length of all

ine segments on the link path between u a and u b .

As shown in Fig. 1 (h), the length of the polyline for ver-

ex pair (u 2 , u 5) is pol yl ineLength (u 2 , u 5) = pol yl ineLength (u 2 , u 6) +
pol yl ineLength (u 6 , u 5) . We place the vertex v 6 on the line segment

 2 v 5 using Eq. (2) .

.2.2. Mapping the Steiner points within the source polygon

In this section, we will explain how to map the Steiner points

nside the source polygon onto the corresponding locations inside

he target polygon. As shown in Fig. 3 , we have to decide how to

ap the Steiner point u 1 and u 2 onto v 1 and v 2 inside the target

olygon. Here, we calculate the barycentric coordinates of u 1 and

 2 . We then compute the proper locations for Steiner point v 1 and

 2 using the barycentric coordinates found in the source polygon.

Denoting u j , j ∈ { 1 , . . . , S i } as a Steiner point that lies within the

ource sub-polygon p i , where S i is the number of the Steiner points

ithin p i . We use the barycentric coordinates λ to map the Steiner

oint u j of the source sub-polygon p i onto the Steiner point v j
f the target sub-polygon q i . Here, we employ the Floater’s mean

alue coordinates [26] to calculate the barycentric coordinates λ.

he barycentric coordinates λ of vertex u j can be seen as a weight

f its neighboring vertices, which allow us to generate continuous

ata from these adjacent vertices. We represent the Steiner point

 j , including the Steiner points on the link path of source polygon

nd Steiner points inside the source polygon, as a weighted aver-

ge of its neighboring vertices:

 j =

M ∑

k =1

λ j,k u k ,

M ∑

k =1

λ j,k = 1 (3)

here M is the total number of points including the boundary

ertices and the Steiner points for source sub-polygon p i , i.e. M =
 + S .
i i

Z. Liu et al. / Computers & Graphics 76 (2018) 60–72 65

{

S

n

s

v

w

λ

λ

t

s

w

p

p

l

A

w

i

a

a

e

s

w

q

c

i

b

p

i

s

Q

a

s

o

d

3

d

l

t

p

f

p

r

s

m

Fig. 4. An example of shape morphing with self-occlusion. The transformation does

not make sense as the limbs of the user are not transformed into the corresponding

wings of a butterfly due to self-occlusion.

a

l

m

r

fi

e

a

4

4

o

a

t

i

a

s

w

t

s

h

t

4

c

o

o

m

t

s

a

w

t

t

(

u

t

d

o

s

t

i
We now explain how to map the Steiner point u j ∈ U

p i , j ∈
 1 , . . . , S i } of the source sub-polygon p i onto the corresponding

teiner point v j ∈ V q i of the target sub-polygon q i , where S i is the

umber of Steiner points within p i . We define v 1 , ..., v S i to be the

olutions of linear equations with S i variables.

 j =

M ∑

k =1

λ j,k v k ,
M ∑

k =1

λ j,k = 1 (4)

here

j,k = 0 , (j, k) / ∈ E q i

j,k > 0 , (j, k) ∈ E q i

Note that the barycentric coordinates λj , k can be uniquely de-

ermined by Eq. (3) .

We rewrite Eq. (4) by breaking the summation term into two

ub-terms:

v j =

S i ∑

k =1

λ j,k v k +

S i + N i ∑

k = S i +1

λ j,k v k , j ∈ { 1 , . . . , S i }

v j −
S i ∑

k =1

λ j,k v k =

S i + N i ∑

k = S i +1

λ j,k v k (5)

here S i is the number of Steiner points within the target sub-

olygon q i and N i is the number of boundary vertices of q i .

Denoting v j = (x j , y j) to be a Steiner point within target sub-

olygon q i that we want to solve, Eq. (5) is equivalent to the fol-

owing form:

x = b 1 , Ay = b 2 (6)

here x = (x 1 , . . . , x S i)
T , y = (y 1 , . . . , y S i)

T , and the matrix A S i ×S i
is

n the form

 j, j = 1 , j ∈ { 1 , . . . , S i }
 j 1 , j 2 = −λ j 1 , j 2 (j 1 , j 2 ∈ { 1 , . . . , S i } , j 1 	 = j 2) .

This linear system in Eq. (6) has S i unknown variables and S i
quations. The solution to Eq. (6) is unique as the matrix A is non-

ingular. We apply LU decomposition to solve Eq. (6) in O (S 3
i
) [27] ,

here S i is the number of Steiner points within target sub-polygon

 i .

In practice, the source sub-polygon p i maybe concave and we

annot guarantee that any point inside p i can be mapped onto

ts corresponding point inside the target sub-polygon q i using the

arycentric coordinates. Our decomposition algorithm generates a

air of sub-polygons in which at least one of the sub-polygons

s convex. As shown in Fig. 1 (g) and (h), although the source

ub-polygon P 2345 is concave, its corresponding target sub-polygon

 2345 is convex. We can triangulate the target sub-polygon Q 2345

nd map it onto the source sub-polygon P 2345 . Because the target

ub-polygon Q 2345 is convex, we can map the points inside Q 2345

nto the countering-points inside P 2345 using the barycentric coor-

inates.

.3. Compatible mesh refining

While the compatible meshes generated by our method intro-

uce a small number of Steiner points, there may still be some

ong thin triangles such as the second column in Fig. 7 (a). In prac-

ice, we found that these long thin triangles can cause numerical

roblems such as inconsistent rotations for shape morphing. There-

ore, we have to refine the compatible meshes to avoid numerical

roblems.

To refine the compatible meshes, we apply a variation of the

emeshing method in [9] . We only smooth those triangles with

mall interior angles and long edges. Specifically, we smooth the

esh using area and angle based remeshing, splitting long edges,
nd flipping interior edges to improve the interior angles. We fol-

ow [28] to employ the minimum interior angle as a criterion to

easure the mesh quality. We want to increase the minimum inte-

ior angle for both the source and target meshes. We apply the re-

nement operations to improve a pair of meshes only if these op-

rations can further improve the mesh quality for both the source

nd target meshes. The smoothed results can be found in Fig. 7 (b).

. Computing Compatible triangulation with self-occlusion

.1. The problem of shape morphing with self-occlusion

As shown in Fig. 4 (t = 0), the user adopts a pose with self-

cclusions, e.g., with the right hand placed in front of the torso

nd the left hand behind it. We apply the compatible triangula-

ion method discussed in Section 3 , which generates the compat-

ble meshes. However, these meshes cannot distinguish the hands

nd the other body parts due to self-occlusion. We apply the rigid

hape interpolation method introduced in [7] to blend the mesh,

hich results in the transformations shown in Fig. 4 . We can see

he transformations of the in-between images such as the time

lice t = 0.2, which dose not make sense because we want the

ands of the user to be gradually transformed into the wings of

he butterfly.

.2. Enhancing shape morphing with self-occlusion

To generate sensible transformation, we need to enable our

ompatible triangulation method to deal with the shape with self-

cclusion. However, the shape extracted from an image with self-

cclusion does not contain any overlapping information, which

akes it hard to compute the compatible triangulation between

wo shapes with self-occlusion. Thus, we propose an improved

cheme to tackle triangulation with self-occlusion by introducing

 calibration image.

Our inputs are the RGB image of the source object, together

ith its deformation control points, and the target shape with tex-

ure. Here are the steps to build the compatible triangulation be-

ween the source shape with self-occlusion and the target shape:

1) We capture a calibration shape of the source object that gives

s the full body texture of the source object. Here, the calibra-

ion shape is used to extract the topology information, e.g., the

eformation control points, and it requires the shape to have no

verlapping parts. Additionally, the calibration shape enables us to

ynthesize texture for transformation with overlapping as it con-

ains the full texture of the source shape. In particular, the cal-

bration shape for human in this case is the full body image as

66 Z. Liu et al. / Computers & Graphics 76 (2018) 60–72

Fig. 5. The overview of compatible triangulation for shapes with self-occlusion us-

ing a human posture as an example. Our inputs are the source shape with self-

occlusion (a) and the target shape (c). (b) We introduce a calibration shape without

self-occlusion. (d–e) We build the compatible triangulation between the calibration

shape (b) and target shape (c). We deform the calibration mesh (e) into the source

shape with occlusion (a) using the four color-coded control points.

Fig. 6. Collision detection and depth adjustment. Without appropriate depth as-

signment, one can see interpenetration (b). We detect overlapping regions and ad-

just depth on the fly (c).

Fig. 7. Compatible triangulation results. (a) The initial tessellations of two polygons.

(b) Mesh refinement and morphing. Note that our compatible meshes can be used

to blend shapes with large rotations, e.g., shapes in the third row.

p

b

w

m

t

n

5

o

a

g

F

t

i

O

p

t

b

o

p

S

m

a

e

p

a

G

m

g

i

a

t

s

f

C

t

s

o
shown in Fig. 5 (b). (2) We build the compatible triangulation be-

tween the calibration and target shapes, which bridges the shape

with self-occlusion and the target shape. (3) We use the control

points to deform the mesh of the calibration shape into the source

shape with occlusion, which implicitly builds the compatible trian-

gulation between the source shape with occlusion and the target

shape. As illustrated in Fig. 5 , we take the human posture as an

example to explain the process of computing compatible triangu-

lation with self-occlusion.

Using as-rigid-as-possible shape morphing, the points on the

medial axis of a shape experience only rotations [7,29] . Therefore,

it is reasonable to use a sparse set of points on the media axis

as the deformation control points. Methods such as [30,31] have

been proposed to extract the skeleton of a shape. Since we are

using the human as an example, we follow the Kinect’s posture

estimation method [32] to identify the skeleton of human and use

these skeleton joints as our deformation control points. In addition,

Kinect also simplifies the work of capturing the silhouette and tex-

ture of the source object.

4.3. Collision detection and depth adjustment

As the searching sequence of our polygon decomposition al-

gorithm is similar to the breadth-first search method, the trian-

gles are not stored in sequence. We must be careful when differ-

ent parts of the shape overlap. If we assign depths inappropriately,

the overlapping parts may interpenetrate as shown in Fig. 6 (b). We

continuously monitor the mesh for self-intersection and assign ap-

propriate depth values to the overlapping parts. The depth value

we assigned to each triangle is estimated from the posture recon-

struction algorithm studied in [33] . As we have recovered the joint
ositions for each joint, we know if the hands are in front of or

ehind the spine as shown in Fig. 6 (c).

As shown in the second row of Fig. 12 , we blend the human

ith self-occlusion and the butterfly. Compared with the transfor-

ations that do not consider body parts overlap as shown in Fig. 4 ,

he results in the second row of Fig. 12 make more sense as we

ow transform the human’s limbs into the butterfly’s wings.

. Method complexity

In this section, we will analyze the computational complexity of

ur method. It takes O (N) time to determine the concave vertices

nd O (N) time to find a valid vertex pair using the visibility poly-

on algorithm [34] , where N is the number of vertices of a polygon.

inding the common valid vertex pairs using methods like hash

able usually requires O (1) time. Thus, the time cost of decompos-

ng the source and target polygons into pairs of sub-polygons is

 (N

2). Finding a corresponding link path for a sub-polygon, e.g.,

 i in source polygon P , is O (N

3
i
) , where N i is the number of ver-

ices of a source sub-polygon p i . The Delaunay triangulation can

e finished in O (N i logN i). The compatible mapping between a pair

f sub-polygons requires solving a linear equation using LU decom-

osition that leads to O (S 3
i
) operations, where S i is the number of

teiner points in the sub-polygon p i .

Table 1 compares the computational complexity between our

ethod and alternative approaches. The main computation of our

lgorithm is dominated by computing link paths and solving a lin-

ar system, i.e., O (H · max (N

3
i
, S 3

i
)) , where H is the number of sub-

olygon pairs. In practice, the most time-consuming part of our

lgorithm is building the link path as S i is often smaller than N i .

enerally, our algorithm is faster than [12] . This is because our

ethod simultaneously decomposes the source and target poly-

ons, and we will stop partitioning a polygon pair if one of them

s convex. However, [12] keeps partitioning the target polygon until

ll the target sub-polygons are convex. Our method is much faster

han [9,10] as we solve a small linear sparse system within each

ub-polygon pair.

The matrix A in Eq. (6) is sparse and non-symmetric. There-

ore, we further speed it up by using iterative methods such as Bi-

GSTAB [35] . Here, we apply an open library Eigen [36] to solve

he sparse linear system. The compatible mapping process of a

ub-polygon pair can be even faster before the mesh refinement

perations, and it can be completed in O (S). This is because the
i

Z. Liu et al. / Computers & Graphics 76 (2018) 60–72 67

Fig. 8. Compatible triangulations comparisons. We compare our results with [9,10,12] . While we generally use fewer number of Steiner points than the others, our algorithm

creates high-quality compatible meshes concerning the proportion of long thin triangles.

D

S

o

6

p

i

q

e

w

6

m

d

r

e

M

l

c

i

c

t

t

u

t

e

t

i

t

o

s

o

t

t

e

h

s

t

i

f

6

t

l

t

(
elaunay triangulation can triangulate the sub-polygon p i with no

teiner points such that we only need to map the Steiner points

n the link path as discussed in Section 3.2.1 .

. Experimental results

In this section, we will show the experimental results and

resent the comparisons with the alternative approaches includ-

ng [9,10,12] . Qualitative analysis is conducted to evaluate the mesh

uality between the proposed method and other alternatives. The

xperiments are conducted on an Intel Core i3-2350M 2.3 GHz PC

ith 4 GB RAM.

.1. Compatible triangulations

To demonstrate the effectiveness of our method, we imple-

ented the as-rigid-as-possible shape interpolation method intro-

uced in [7] . Figs. 7 and 8 show some compatible triangulation

esults and some challenging polygon pairs that are quite differ-

nt such as the shark and the seahorse in the third row of Fig. 7 .

ore examples of comparing morphing against previous triangu-

ation strategies can be found in Fig. 13 . In practice, in order to

reate good correspondences between two polygons, shape match-

ng algorithms such as [37] and [38] can be employed to automati-

ally construct a few key correspondences between the source and

arget polygons, e.g., the vertices around the head, the hands and

he feet of the human. Then, the remaining vertices between the
ser selected key points can be aligned based on linear interpola-

ion. The user can specify a small number of matching points to

nsure that the matching points are selected with similarity con-

ext. The mismatched correspondences can be detected by observ-

ng the generated transformations.

Fig. 7 (a) shows that our initial compatible triangulation con-

ains few long thin triangles and we only need to flip some edges

f such triangles to enlarge the minimum interior angles. Fig. 7 (b)

hows that our compatible meshes can be further refined by meth-

ds such as splitting long edges and averaging the area of adjacent

riangles. However, it should also be noted that not every long thin

riangle can be further enhanced with our refinement method. For

xample, in the third row of Fig. 7 , some thin triangles around the

ead of the seahorse cannot be improved.

Given the compatible triangulations of two input polygons,

hape interpolation can be applied to create animations showing

he transitions from one shape to another. Fig. 7 (b) shows some

nterpolation results using our compatible meshes. For more trans-

ormations, please see our supplemental demo video.

.2. Mesh quality evaluation

The quality of the compatible meshes greatly influences the in-

ermediate shapes generated by morphing techniques. In particu-

ar, meshes with those long and skinny triangles would suffer from

he inconsistent rotation problem [7,19] .

We employ the following criteria to measure the mesh quality:

1) the minimum interior angle of a given mesh; and (2) the pro-

68 Z. Liu et al. / Computers & Graphics 76 (2018) 60–72

Fig. 9. Mesh deformation evaluation. (top) Dog and cat. (bottom) Alligator.

Fig. 11. The interactive shape morphing system. (a) The system setup. The system

interface for capturing the source object image (b) and generating transformations

(c).

p

S

i

s

[

g

t

m

a

d

i

i

6

f

e

a

t

t

E

w

u

E
portion of angles that are smaller than a certain constant value,

which is known to be a reasonable mesh quality criteria [28] . We

want to increase the minimum interior angle of a mesh and de-

crease the percentage of small angles.

Table 2 shows a quantitative comparison between our algo-

rithm and three alternative methods. [9] tends to create more long

thin triangles than the others. Compared with the results of [9] ,

[10] improves the minimum interior angle. [12] enhances the pro-
Fig. 10. Texture mapping comparisons. (a) The source shape with texture. Adding textu

Surazhsky–Gotsman, 04. (c) Baxter et al., 09. (d) Liu et al., 15. (e) Ours.
ortion of regular triangles but sometimes introduces a few more

teiner points than [9] . While our results are similar to [9] regard-

ng the number of Steiner points, our algorithm creates a much

maller percentage of small angles than [9,10] . Compared with

9,10,12] , the minimum angle of our method has been improved

reatly while we generally add a fewer number of Steiner points

han the alternative methods. Regarding our computational time,

ost of the examples in this paper take less than 5 s. Additionally,

s the compatible decomposition and mapping are highly indepen-

ent, our method can potentially benefit from the parallel comput-

ng of GPU, and hence the entire computing process may be done

n real-time.

.3. Triangle deformation evaluation

We apply the rigid shape interpolation algorithm [7] to trans-

orm a source mesh T P into the target one T Q . Here, we define an

dge deformation function to measure the deformation of each tri-

ngle face during the transformation. Given the vertices of a source

riangle T P 1 = { u 1 , u 2 , u 3 } and the target triangle T Q
1

= { v 1 , v 2 , v 3 } ,
he edge deformation function is defined as

 u a u b =

| ‖

u a u b ‖

− ‖

v a v b ‖ |
‖

u a u b ‖

, a, b ∈ { 1 , 2 , 3 } , a 	 = b (7)

here ‖ u a u b ‖ is the length of the edge that connects vertex u a and

 b .

The deformation of the triangle T P f is defined as

 f =

1

3

∑

u a , u b ∈ T P f

E u a u b (8)
re to the target shape using the compatible meshes generated by methods of (b)

Z. Liu et al. / Computers & Graphics 76 (2018) 60–72 69

Fig. 12. Producing interactive animation using our interactive animation system: transforming a man into one wolf beast (first row), butterfly (middle row), and bat monster

(bottom row).

w

o

d

p

t

l

e

T

u

i

t

t

d

d

a

0

m

d

t

[

p

[

t

t

p

t

t

o

A

s

l

l

t

m

t

t

t

p

c

o

C

t

a

m

d

6

a

i

t

a

t

F

t

t

t

m

u

l

s

i

c

n

o

t
here u a and u b are vertices of the f −th source triangle in T P .
The deformation function E f measures the deformation degree

f each triangle. A source triangle T P f will experience very small

eformation to transform into the target triangle T Q f as E f ap-

roaches 0; Otherwise, a source triangle will experience a big dis-

ortion as E f becomes larger. For a good compatible triangulation, a

arger percentage of small deformation E is preferred, which ben-

fits applications such as shape morphing and texture mapping.

he horizontal axis of Fig. 9 (bottom) shows the deformation val-

es that range from the smallest to the largest deformation values

n a mesh. For some specific deformation amount of the horizon-

al axis, the value of vertical axis demonstrates the percentage of

riangles that need a deformation smaller than such a particular

eformation value. For example, one triangle in the mesh needs a

eformation value of 0.5, and more than 90% of triangles gener-

ted by our method experience the deformation values less than

.5. Fig. 9 shows that our method generally creates the compatible

eshes with a higher percentage of triangles that experience small

eformation E . On the other hand, our method generates fewer

riangles that need large deformation during the shape morphing

37,38] .

As illustrated in Fig. 10 , we demonstrate the texture map-

ing using compatible triangulations generated by methods of

9,10,12] and ours. The system inputs are a source polygon with

exture and a target polygon without texture. We first build

he compatible triangulations of two shapes with alternative ap-

roaches, as shown in the third and fourth rows in Fig. 8 . Based on

he compatible meshes, we map the texture of a source shape onto

he target one. In general, mapping the texture of a shape onto an-

ther very different one always suffers from the texture stretching.

s shown in the dog-cat example in Fig. 10 (b–e), nearly all the

quares experience some distortion due to the creation of some

ong thin triangles as shown in the third example in Fig. 8 . These

ong thin triangles need large distortion to be transformed into

he target triangles. We can still observe that both [12] and our

ethod preserved some regular squares around the upper body of
 g
he cat while our method only generates 1 Steiner point. We then

ry to map the texture of an alligator between two postures. For

he method of [9] in Fig. 8 (b), we can see some distortions ap-

ear around the abdomen of the alligator. The stretched pattern

an also be observed at the back of the alligator for both methods

f [10] and [12] as shown in Fig. 8 (c) and Fig. 8 (d) respectively.

ompared with the other methods, ours generates a smoother pat-

ern around the back of the alligator, and the deformation of the

bdomen makes more sense. This is because our method generates

uch more regular triangles that only involve small deformation

uring the shape morphing process, as shown in Fig. 9 (b).

.4. Interactive shape morphing system

To test the effectiveness of our approach, we have implemented

 prototype of the proposed interactive shape morphing system us-

ng a human posture as the input of source shape. Fig. 11 (a) shows

he setup of our interactive shape morphing system. We use Kinect

s the input device of the source shape. The user stands in front of

he Kinect, and the system can be controlled by gesture command.

or example, the system starts to capture and extract the shape of

he user when the user in the scene raises his/her left hand over

he head. More commands such as raising two hands to go back to

he default capture view have been implemented.

Fig. 11 (b) and (c) show the interface of the interactive shape

orphing system. As shown in the bottom left of Fig. 11 (b), the

ser adopts a pose as the source input shape. The user can se-

ect the target shape in the shape database with a certain gesture

uch as waving the hand, and then the target shape is rendered

n the right of Edit window in Fig. 11 (b). We then compute the

ompatible triangulation between the source and target shapes. Fi-

ally, we transform the source shape into the target shape based

n the compatible meshes. The intermediate results are shown in

he Transformation window as shown in Fig. 11 (c). More animations

enerated by our system can be found in Fig. 12 .

70 Z. Liu et al. / Computers & Graphics 76 (2018) 60–72

Fig. 13. Shape morphing comparisons by using different triangulation algorithms.

7

g

m
On the other hand, our interactive shape morphing system

can be applied to create animation, movie and even special ef-

fects. The typical users may not have the professional resources

to create some interesting morphing video, our method and sys-

tem can simplify the work to produce the interactive morphing
video. t
. Conclusions

We propose a new method to compute the compatible trian-

ulations of two simple polygons and apply them to 2D shape

orphing. Our method compatibly decomposes the source and

arget polygons into sub-polygon pairs and maps the triangula-

Z. Liu et al. / Computers & Graphics 76 (2018) 60–72 71

t

t

s

a

o

s

p

i

c

t

a

b

t

g

d

o

g

c

t

s

p

m

t

g

t

o

o

u

o

s

i

l

b

p

b

h

s

o

b

t

t

c

c

i

i

t

m

b

t

s

t

d

m

A

s

f

R

e

S

f

R

[

[

[

[

[

[

[

[

[

[

[

[
ion between a pair of sub-polygons using a sparse linear sys-

em. We present a new metric to measure the quality of the re-

ulting mesh during the transformation. In addition, we propose

n enhanced scheme to fix compatible triangulations with self-

cclusion that benefits sensible transformations. Finally, to demon-

trate the proposed algorithm, we build an interactive shape mor-

hing system using the human silhouette as the source shape

nput.

Comparing with previous methods, our compatible polygon de-

omposition algorithm offers a more flexible way to decompose

he source and target polygons such that the minimum interior

ngle can be maximized at each iteration. This leads to compati-

le triangulations with more regular-shaped triangles as opposed

o long thin triangles. This is supported by the analysis that we

enerate fewer triangles whose minimum angles are small un-

er our approach when compared to methods in [9,10,12] . Sec-

nd, compared to our preliminary work [12] , the proposed method

enerates the same compatible meshes whether we start the de-

omposition from the source or target polygon. Another advan-

age is the simplicity of our system that involves only three

tages. All we need is to decompose a polygon, to calculate link

aths, and to solve a sparse linear system, enabling real-time

orphing.

While our method handles well the mapping between shapes,

he morphing results need to be further improved. As we focus on

enerating the compatible meshes, we simply crossfade between

extures in the image space. More sophisticated texture blending

r image warping algorithms such as [5] can be incorporated into

ur technique. Currently, the intermediate images interpolated are

niquely determined by a rigid interpolation method [7] , which

ffers no means of control. It would thus be desirable to modify

ome parts of the intermediate shapes if the users were not sat-

sfied with them. We can explore possible solutions such as the

inear constraints proposed in [19] to increase the user controlla-

ility.

Another drawback of our method is that we cannot deal with

olygons with holes. One possible solution would be adding a

ridge between the outer polygon and the inner polygons (i.e., the

oles). We may connect the outer polygon to all the holes to treat

uch a polygon with holes as a single polygon. We can then apply

ur method to decompose the source and target polygons compati-

ly. While we have shown many examples of compatible triangula-

ions both in the paper and the supplemental video, we also want

o test our algorithm on shapes with a more complex structure or

ompletely different topologies in the future.

Finally, we want to make better use of the features afforded by

ommodity depth cameras. It is possible to detect self-occlusions

n a video sequence using the depth image captured by commod-

ty depth cameras automatically. However, it is hard to recover

he occluded textures for human figures with self-occlusion, which

akes it difficult to compute the cross-fade textures for each in-

etween transformation. That is why we need a calibration image

hat offers the full body texture for shape morphing with occlu-

ions. An interesting direction of future work would be to skip

he calibration image and compute the compatible triangulation

irectly from shapes with self-occlusions using data from a com-

odity depth camera.

cknowledgments

This work was partially supported by the INRIA PRE “Smart sen-

ors and novel motion representation breakthrough for human per-

ormance analysis” project, the Engineering and Physical Sciences

esearch Council (EPSRC) (Ref: EP/M002632/1) and the Royal Soci-

ty (Ref: IE160609).
upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.cag.2018.07.002 .

eferences

[1] Wolberg G . Image morphing: a survey. Vis. Comput. 1998;14(8):360–72 .

[2] Chiang C-C , Way D-L , Shieh J-W , Shen L-S . A new image morphing technique
for smooth vista transitions in panoramic image-based virtual environment. In:

Proceedings of the ACM symposium on virtual reality software and technology.
VRST ’98. New York, NY, USA: ACM; 1998. p. 81–90. ISBN 1-58113-019-8 .

[3] Dym N , Shtengel A , Lipman Y . Homotopic morphing of planar curves. Comput

Graph Forum 2015;34(5):239–51 .
[4] Igarashi T , Moscovich T , Hughes JF . As-rigid-as-possible shape manipulation.

ACM Trans Graph 2005;24(3):1134–41 .
[5] Schaefer S , McPhail T , Warren J . Image deformation using moving least

squares. ACM Trans Graph 2006;25(3):533–40 .
[6] Fang H , Hart JC . Detail preserving shape deformation in image editing. ACM

Trans Graph 2007;26(3) .

[7] Alexa M , Cohen-Or D , Levin D . As-rigid-as-possible shape interpolation. In:
Proceedings of the 27th annual conference on computer graphics and inter-

active techniques. ACM Press/Addison-Wesley Publishing Co.; 20 0 0. p. 157–64 .
[8] Gotsman C , Surazhsky V . Guaranteed intersection-free polygon morphing.

Comput Graph 2001;25(1):67–75 .
[9] Surazhsky V , Gotsman C . High quality compatible triangulations. Eng Comput

2004;20(2):147–56 .

[10] Baxter W , Barla P , Anjyo K-i . Compatible embedding for 2D shape animation.
IEEE Trans Vis Comput Graph 2009;15(5):867–79 .

[11] Aronov B , Seidel R , Souvaine D . On compatible triangulations of simple poly-
gons. Comput Geom 1993;3(1):27–35 .

[12] Liu Z , Leung H , Zhou L , Shum HPH . High quality compatible triangulations for
2D shape morphing. In: Proceedings of the 21st ACM symposium on virtual

reality software and technology. VRST ’15. New York, NY, USA: ACM; 2015.
p. 85–94 .

[13] Liu Z , Zhou L , Leung H , Multon F , Shum HPH . High quality compatible trian-

gulations for planar shape animation. In: Proceedings of the ACM SIGGRAPH
ASIA Workshop; 2017. p. 1–8 .

[14] Sederberg TW , Gao P , Wang G , Mu H . 2-D shape blending: an intrinsic solution
to the vertex path problem. In: Proceedings of the 20th annual conference on

computer graphics and interactive techniques. ACM; 1993. p. 15–18 .
[15] Kranakis E , Urrutia J . Isomorphic triangulations with small number of steiner

points. Int J Comput Geom Appl 1999;9(02):171–80 .

[16] Suri S . A linear time algorithm for minimum link paths inside a simple poly-
gon. Comput Vis Graph Image Process 1986;35(1):99–110 .

[17] Gupta H , Wenger R . Constructing piecewise linear homeomorphisms of simple
polygons. J Algorithms 1997;22(1):142–57 .

[18] Xu D , Zhang H , Wang Q , Bao H . Poisson shape interpolation. Graph Models
2006;6 8(3):26 8–81 .

[19] Baxter W , Barla P , Anjyo K-i . Rigid shape interpolation using normal equations.

In: Proceedings of the 6th international symposium on non-photorealistic ani-
mation and rendering. ACM; 2008. p. 59–64 .

20] Sumner RW , Popovi ́c J . Deformation transfer for triangle meshes. ACM Trans
Graph 2004;23(3):399–405 .

[21] Li X-Y , Ju T , Hu S-M . Cubic mean value coordinates. ACM Trans Graph
2013;32(4) 126:1-126:10 .

22] Chen R , Weber O , Keren D , Ben-Chen M . Planar shape interpolation with

bounded distortion. ACM Trans Graph 2013;32(4):108 .
23] Floater MS . Parametrization and smooth approximation of surface triangula-

tions. Comput Aid Geom Des 1997;14(3):231–50 .
24] Surazhsky V , Gotsman C . Explicit surface remeshing. In: Proceedings of the

2003 Eurographics/ACM SIGGRAPH symposium on geometry processing. Eu-
rographics Association; 2003. p. 20–30 .

25] Fortune S . A sweepline algorithm for voronoi diagrams. Algorithmica

1987;2(1–4):153–74 .
26] Floater MS . Mean value coordinates. Comput Aid Geom Des 2003;20(1):19–27 .

[27] Murota K . Lu-decomposition of a matrix with entries of different kinds. Linear
Algebra Appl 1983;49:275–83 .

28] Sarrate J , Palau J , Huerta A . Numerical representation of the quality mea-
sures of triangles and triangular meshes. Commun Numer Methods Eng

2003;19(7):551–61 .

29] Ben-Chen M , Weber O , Gotsman C . Variational harmonic maps for space de-
formation. ACM Trans Graph 2009;28(3):34:1–34:11 .

30] Au OK-C , Tai C-L , Chu H-K , Cohen-Or D , Lee T-Y . Skeleton extraction by mesh
contraction. ACM Trans Graph 2008;27(3):4 4:1–4 4:10 .

[31] Tagliasacchi A , Alhashim I , Olson M , Zhang H . Mean curvature skeletons. Com-
put Graph Forum 2012;31(5):1735–44 .

32] Shotton J , Fitzgibbon A , Cook M , Sharp T , Finocchio M , Moore R , et al. Real–
time human pose recognition in parts from single depth images. In: Proceed-

ings of the CVPR 2011; 2011. p. 1297–304 .

33] Liu Z , Zhou L , Leung H , Shum HPH . Kinect posture reconstruction based on
a local mixture of gaussian process models. IEEE Trans Vis Comput Graph

2016;22(11):2437–50 .
34] Joe B , Simpson RB . Corrections to lee’s visibility polygon algorithm. BIT Numer

Math 1987;27(4):458–73 .

https://doi.org/10.1016/j.cag.2018.07.002
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0001
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0001
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0002
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0002
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0002
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0002
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0002
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0003
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0003
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0003
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0003
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0004
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0004
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0004
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0004
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0006
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0006
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0006
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0009
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0009
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0009
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0011
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0011
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0011
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0011
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0012
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0012
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0012
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0012
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0012
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0016
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0016
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0017
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0017
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0017
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0019
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0019
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0019
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0019
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0020
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0020
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0020
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0021
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0021
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0021
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0021
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0023
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0023
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0026
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0026
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0034
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0034
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0034

72 Z. Liu et al. / Computers & Graphics 76 (2018) 60–72

[

[35] Van der Vorst HA . Bi-cgstab: A fast and smoothly converging variant of BI-CG
for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput

1992;13(2):631–44 .
[36] Guennebaud G., Jacob B., et al. Eigen v3. http://eigen.tuxfamily.org ; 2015.

[37] Belongie S , Malik J , Puzicha J . Shape matching and object recognition using
shape contexts. IEEE Trans Pattern Anal Mach Intell 2002;24(4):509–22 .
38] Mai F , Chang CQ , Hung YS . Affine-invariant shape matching and recognition
under partial occlusion. In: Proceedings of the 2010 IEEE international confer-

ence on image processing; 2010. p. 4605–8 .

http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0035
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0035
http://eigen.tuxfamily.org
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0036
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0036
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0036
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0036
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0037
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0037
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0037
http://refhub.elsevier.com/S0097-8493(18)30101-8/sbref0037

	High-quality compatible triangulations and their application in interactive animation
	1 Introduction
	2 Related work
	3 Compatible triangulations
	3.1 Compatible decomposition of the target and source polygons
	3.2 Compatible triangulations mapping
	3.2.1 Mapping the Steiner Points onto the Link Path of the Source Polygon
	3.2.2 Mapping the Steiner points within the source polygon

	3.3 Compatible mesh refining

	4 Computing Compatible triangulation with self-occlusion
	4.1 The problem of shape morphing with self-occlusion
	4.2 Enhancing shape morphing with self-occlusion
	4.3 Collision detection and depth adjustment

	5 Method complexity
	6 Experimental results
	6.1 Compatible triangulations
	6.2 Mesh quality evaluation
	6.3 Triangle deformation evaluation
	6.4 Interactive shape morphing system

	7 Conclusions
	 Acknowledgments
	 Supplementary material
	 References

