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Abstract—Surgical workflow anticipation can give predictions
on what steps to conduct or what instruments to use next,
which is an essential part of the computer-assisted intervention
system for surgery, e.g. workflow reasoning in robotic surgery.
However, current approaches are limited to their insufficient
expressive power for relationships between instruments. Hence,
we propose a graph representation learning framework to
comprehensively represent instrument motions in the surgi-
cal workflow anticipation problem. In our proposed graph
representation, we maps the bounding box information of
instruments to the graph nodes in the consecutive frames and
build inter-frame/inter-instrument graph edges to represent the
trajectory and interaction of the instruments over time. This
design enhances the ability of our network on modeling both the
spatial and temporal patterns of surgical instruments and their
interactions. In addition, we design a multi-horizon learning
strategy to balance the understanding of various horizons indif-
ferent anticipation tasks, which significantly improves the model
performance in anticipation with various horizons. Experiments
on the Cholec80 dataset demonstrate the performance of our
proposed method can exceed the state-of-the-art method based
on richer backbones, especially in instrument anticipation (1.27
v.s. 1.48 for inMAE; 1.48 v.s. 2.68 for eMAE). To the best of
our knowledge, we are the first to introduce a spatial-temporal
graph representation into surgical workflow anticipation.

Index Terms—Surgical Data Science, Surgical Workflow
Analysis, Deep Learning, Graph Representation Learning

I. INTRODUCTION

Surgical workflow anticipation is a highly essential task
for surgical workflow analysis in the computer-assisted in-
tervention (CAI) systems for surgery. Firstly, anticipating the
occurrence of surgery instruments and phase can be regarded
as a kind of Context-aware Assistance in surgery [1], which
can improve the performance of surgery teams. For instance,
the anticipation for instrument occurrence can support a
more efficient collaboration in the surgery team. Secondly,
the surgical workflow anticipation is also a key component
for automatic surgery intervention, which can bridge the
understanding between current and future scenarios. That can
eventually facilitate automatic surgery decision-making like
the intervention time selection in the CAI system [2].

Currently, various works have investigated anticipation of
surgical workflow [2]–[8]. Most works are solely based on
pixel-level visual features extracted by ResNet [9] and similar
backbones, and learn these features directly with temporal
models [10]. This design may ignore semantic information
like the interaction between instruments [7], which gives
a rise to the limitation in expressing high-level scenario
information like the surgeon’s intention.

The state-of-the-art in surgical workflow anticipation for
instruments and phases, IIA-Net [7], used the non-visual
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features. It proposed an instrument interaction module into
their feature extractor to reflect instrument interactions via
geometric relations of instrument bounding boxes and se-
mantic segmentation maps. However, this design ignores the
interaction between different instruments and cannot repre-
sent complex relationships in the real scenario. Additionally,
IIA-Net [7] still use visual features and also introduce
the ground-truth annotation into their features for temporal
modeling via Multi-Stage Temporal Convolutional Network
(MSTCN) [11]. That lets this work need more backbones for
features learning and phase/tool recognition when deployed
in an automatic CAI system, which may limit their actual
performance in real-world scenarios.

Recent works also attempted to introduce non-visual fea-
tures into surgery activity analysis via graph representa-
tion and graph neural networks (GNNs) [12], [13], due to
highly expressive power for complex abstract relationships
in graphs. The data structure in graph represents a set of
objects (nodes) and their relationships (edges) [14], and
GNNs are the widely modeling method for the graph data
due to their demonstrated performance [14]. [12] represents
the interactions between the defective tissue and surgical
instruments in a form of the graph structure, and learn
the graph data with inductive graph representation learning
[15]. [13] represents the joint pose estimations of surgical
tools into a spatial-temporal graph, and model with graph
convolutions [16], which can learn the spatial and temporal
patterns from the graph nodes and their neighbors. These
previous attempts demonstrate graph structure can contain
enough information for surgical activity understanding.

In our works, we hypothesize that the graph structure of
surgical instruments can reason the future surgical activity
like instrument presence or surgery phase in surgical work-
flow anticipation. To express a more complex relationship
between surgery instruments than [7], we set the instru-
ment interactions as the inter-node edges in our spatial-
temporal graph structure for surgery instruments. Consid-
ering both spatial and temporal features are critical for
surgical workflow anticipation, our works implement the
graph convolution [16] and MSTCN [11] into modeling this
graph representation. Our approach is just based on graph
structure data of instrument bounding box information for
data-efficient learning. To the best of our knowledge, we
are the first to introduce graph representation learning into
surgical workflow anticipation.

Our source code is available on https://github.com/
summerwings/GCN Anticipation. The contributions of this
work can be summarized as follows:

1) We propose the spatial-temporal graph representation
into surgical workflow anticipation, which can repre-
sent the interaction information of surgery instruments

https://github.com/summerwings/GCN_Anticipation
https://github.com/summerwings/GCN_Anticipation


Fig. 1. (a) Network Overview; (b) The Graph Convolution

better than previous approaches.
2) We combine the graph convolution and MSTCN to

implement a network that anticipate the occurrence
of surgical instruments/phases from graph structure
data, of which the performance exceeds or can be
comparable to the state-of-the-art approach.

3) We design a multi horizon learning strategy to bal-
ance the understanding of various horizons in different
anticipation tasks, which significantly improves the
graph convolutional network performance in anticipa-
tion with various horizons.

II. METHODOLOGY

A. Task Formulation

The anticipation task can be formulated as a regression
task [2], [7]. Given a frame t from video x, we firstly extract
instrument bounding boxes bt. Given the observed sequence
{(xt, bt) · · · (xTobs

, bTobs
)} from time 0 to time Tobs, our

model predicts the remaining time until the occurrence of
instrument τ and phase p. The ground truth r(xTobs

, τ/
p) ranges [0, h], where 0 denotes τ/p is happening and h
denotes the horizon that τ/p would not happen within h
minutes.

B. Network Architecture

Figure 1 (a) shows an overview of our network. It
firstly inputs the bounding boxes of instruments detected
by object detection backbones (e.g. YOLOv5 [17]) of each
video sequence, and represent the bounding boxes into a
spatial-temporal graph. Then, this network uses the graph
convolution [16] and the MSTCN [11] to model a spatial-
temporal graph representation. Finally, it uses a multi-horizon
fully connected (FC) layer to regress the anticipation for
instruments or phases for each frame in the input sequence.

Fig. 2. Graph Representation 0: Center Viewpoint; 1: Grasper; 2: Bipolar;
3: Hook; 4: Scissors; 5: Clipper; 6: Irrigator; 7: SpecimenBag.

1) The Graph Representation Strategy: In our graph rep-
resentation for surgery scenario, the complete graph structure
of instruments are modeled in the form of G(V,E). The node
set V = {vti|t = 1, · · ·Tobs, i = 1, · · · , j, · · · , N} includes
the all the nodes i in an observed video sequence, where
N denotes the total number of defined nodes in graph.
Besides the instrument bounding boxes, our proposed graph
also includes the center viewpoint of videos as one node
to provide a fixed surrounding reference for the instrument
nodes and represent the interaction between instruments and
the surrounding scene. The feature vector on a node is:

Fvti = (cxt
, cyt

, wt, ht), (1)

where cxt
and cyt

respectively denote the coordinates of
center point x/y in in frame t, wt and ht respectively denote
the detected width and height of each tool in frame t.

The edge set E consists of two subsets. The first edge
set represents the inter-node edges at each frame, denoted
as Ev = {vtivtj |i, j ∈ H, i ̸= j}, where H is the set of
defined interaction between nodes (instruments or the center
viewpoint). These inter-node edges represent the interaction
between the center viewpoint/the constantly existing instru-
ment defined by prior medical knowledge (e.g. grasper in
the cholecystectomy surgeries) and other instruments. These
inter-node connections in each frame can be represented
in a N × N Adjacency Matrix A where Aij = 1 if
vtivtj ∈ Ev . The second edge set represents the inter-
frame edges for each node, denoted as EF =

{
vtiv(t+1)i

}
.

These inter-frame edges represent the temporal dependency
of instrument motions. Figure 2 shows an example of our
graph representation for laparoscopic cholecystectomy from
Cholec80 dataset [18]. We consider the interaction between
center viewpoint, graspers, hooks, and other instruments as
the inter-node edges in our proposed graph structure, due to
their almost always presence of graspers and hooks across
surgery and their constant interaction with other tools [7].

2) Graph Convolution: Figure 1 (b) shows the structure
of the graph convolution (GC) modified from [16] in our
network to learn inter-node relationships at each frame. The
input graph data Fin in GC is processed with the following
formula to obtain the output graph data Fout [19]:

Fout = Λ−1/2(A+ I)Λ−1/2FinW, (2)

where Λii = ΣjA
ij + Iij , A is the adjacency matrix, I is an

identity matrix and Λ−1/2(A + I)Λ−1/2 is the normalized
adjacency matrix, W is the matrix including the multi-
channel weight vectors for calculating output graph data.



3) Multi-Stage Temporal Convolutional Network: The
temporal inter-frame relationships of GC output graph data
will be modeled by MSTCN. This includes multi-stage
multi-layer temporal convolutional networks with dilated
convolutions [11]. In our network, we use the causal dilated
convolution in MSTCN to ensure the online inference in
anticipation tasks [7], where anticipation in each frame only
relies on the previous and current information. Compared
with IIA-Net [7], we still set two stages for MSTCN but set
the layer number of each stage as 14 instead of 10, to ensure
our network can summarize longer temporal information for
different video sequences of various lengths.

4) Multi Horizon Learning: Surgical workflow anticipa-
tion tasks normally contain the short-horizon tasks and long-
horizon tasks. Previous works train these tasks with the MAE
(mean absolute error) of the anticipated remain time v.s true
remain time directly or the remaining time based on the
ground truth of max-horizon anticipation. Hence, the opti-
mization for the relatively small errors in specified horizon
anticipations can be disturbed by the large errors in other
horizon anticipations. Hence, to balance the understanding of
various horizons in different anticipation tasks, we propose
a multi horizon learning strategy. We use a multi horizon FC
layer to output our final results in different horizon levels. In
this FC layer, the output of one frame t is in the following
form:

Yt = (Yh1,c1 ;Yh1,c2 ; · · · ;YhH ,cC−1
;YhH ,cC ) ∈ RH×C , (3)

where h ∈ H is the set of horizons and c ∈ C is the set
of instruments or phases to anticipate. An example is the
horizon FC layer setting in our experiment for Cholec80
dataset [18]. In our experiment, we anticipate the future
occurrence of instruments or phases with three horizons of 2,
3, and 5 minutes. Then, our multi-horizon FC layer outputs
the vector with the anticipation results of three horizons.

As the anticipation needs to consider performance in both
occurrence and non-occurrence in short-term and long-term
horizons, the anticipation loss would use the combination of
wMAE [7] which is the mean MAE of where ground truth
ranges (0, h) and where ground truth is out of h, inMAE [7]
where ground truth ranges (0, h), inMAE [7] where ground
truth ranges (0, h), pMAE [2] where predicted anticipation
ranges (0.1h, 0.9h) and eMAE [7] where ground truth
ranges (0, 0.1h). In optimization, different horizon outputs
are back propagated according to loss with corresponding
horizons. Hence, the loss in training would be:

Loss = ΣαwMAEh+βinMAEh+γpMAEh+δeMAEh,
(4)

where h denotes the corresponding horizon, and α, β, γ, δ
denote the corresponding weight for each loss.

III. EXPERIMENT AND RESULTS

A. Experiment Setup

We evaluated our method on the publicly available
Cholec80 dataset (http://camma.u-strasbg.fr/datasets, [18]),
which includes laparoscopic cholecystectomy procedures.
It consists of 80 videos ranging from 15 min to 90
min. We separated the dataset to 40/20/20 for training,
validation, and testing. We resampled the video from 25

fps to 1 fps and inputted the whole video for backward
propagation. To detect the surgical instrument bounding
boxes, we trained a YOLOv5 object detector [17] from
the dataset m2cai16-tool-locations (https://ai.stanford.edu/
∼syyeung/resources/m2cai16-tool-locations.zip, [20]). The
graph representation in experiments is as Figure 2. In train-
ing, the Adam optimizer was used for training. The hyper-
parameters epoch, learning rate, and batch size were set as
100, 0.002, and 1, respectively. The training loss weights
α, β, γ, δ were set as 0.9, 0.1, 0.8 and 0.3, respectively. The
hyper-paramaters were selected by Bayesian hyper-parameter
search method via the Weights & Biases platform [21]. We
implemented our method with PyTorch 1.10.1 and trained
models using one Nvidia GeForce GTX 2080 Ti GPU.

The horizon set is {2, 3, 5} in our experiment, to let our
method be compared with previous works [7]. Referring the
state-of-the-art study [7], we evaluate the performance of our
method by inMAE, pMAE and eMAE for h ∈ {2, 3, 5}.
All evaluations were based on the online inference mode,
which means anticipation in each frame can only rely on
the previous and current information. Our anticipation targets
will not include graspers, hooks due to their nearly constant
presence, and the preparation phase due to its always first
position.

B. Results and Discussion

TABLE I
SURGERY INSTRUMENT ANTICIPATION COMPARISON OF

inMAE/pMAE/eMAE

inMAE/pMAE/eMAE
2 min 3 min 5 min

Bayesian
CNN-LSTM [2], [7] 0.77/0.64/1.12 1.13/0.92/1.65 1.80/1.49/2.68

IIA-Net [7] 0.66/0.42/1.01 0.97/0.69/1.46 1.48/1.28/2.14
Ours 0.57/0.47/0.65 0.81/0.74/0.94 1.27/1.32/1.48

TABLE II
SURGERY PHASE ANTICIPATION COMPARISON OF

inMAE/pMAE/eMAE

inMAE/pMAE/eMAE
2 min 3 min 5 min

Bayesian
CNN-LSTM [2], [7] 0.63/0.62/1.02 0.86/0.85/1.47 1.17/1.37/1.54

IIA-Net [7] 0.62/0.49/1.18 0.81/0.73/1.42 1.08/1.22/1.09
Ours 0.54/0.47/0.47 0.75/0.70/0.64 1.11/1.21/0.90

1) Comparison with State-of-the-Art: Table I and Table II
shows the overview results of comparison with the state-of-
the-art. In instrument anticipation, our method can anticipate
better in inMAE/eMAE or be comparable with the state-
of-the-art method in pMAE (The difference is not larger
than 0.05). In phase anticipation, our method can generally
anticipate better in all metrics in short-term anticipation and
be also comparable in long-term anticipation (The difference
in inMAE is not larger than 0.05). In summary, these results
indicate that our current graph representation for surgery
scenarios via bounding boxes can effectively represent the
future status of surgery scenarios, especially when consid-
ering our model use fewer backbones and less ground-truth
information than the state-of-the-art method.

http://camma.u-strasbg.fr/datasets
https://ai.stanford.edu/~syyeung/resources/m2cai16-tool-locations.zip
https://ai.stanford.edu/~syyeung/resources/m2cai16-tool-locations.zip


TABLE III
ABLATION EXPERIMENTS FOR OUR METHOD. GC: GRAPH CONVOLUTION, GPK : GRAPH REPRESENTATION WITH PRIOR KNOWLEDGE, TC:

MSTCN, HLh=2min , HLh=3min , HLh=5min : HORIZON LEARNING FOR h = 2 MIN, 3 MIN, AND 5 MIN, RESPECTIVELY.

Instrument Anticipation (inMAE)
GC GPK TC HLh=2min HLh=3min HLh=5min h = 2 min h = 3 min h =5 min
✓ 0.90 1.33 2.26
✓ ✓ 0.89 1.33 2.27

✓ 0.96 1.30 2.55
✓ ✓ 0.90 1.42 1.97
✓ ✓ ✓ 0.80 1.26 2.21
✓ ✓ ✓ ✓ 0.59 1.35 2.18
✓ ✓ ✓ ✓ 0.91 0.83 2.26
✓ ✓ ✓ ✓ 0.87 1.33 1.32
✓ ✓ ✓ ✓ ✓ ✓ 0.57 0.81 1.27

2) Running Time Test: On the GTX 2080 Ti GPU we
used, the mean over inference time of our model for each
frame is within 0.030s, which indicates the real-time perfor-
mance of our method in normal consume computers.

3) Ablation Study: We designed an ablation study of our
method to explore the effect of different components (The
fully-connected graph representation was used when ablating
the GPK). Table III shows these components are complemen-
tary and our proposed model with all components performs
effective anticipation in both short/long-term horizons. It also
highlights our horizon learning strategy can improve the
model performance in anticipation for various horizons.

IV. CONCLUSION

In this paper, we propose a graph representation learning
based way for surgical workflow anticipation. It shows that
the graph representation is effective to resolve surgical in-
strument anticipation. Without rich backbones, our model
is a strong baseline for the surgical anticipation works,
especially in short horizons. Furthermore, our multi-horizon
learning schema provides a solution to perform anticipation
tasks within different horizons. As a lightweight model, our
model can be transferred to real clinical scenarios at a low
cost and provide a more smooth collaboration among the
surgery team to improve the surgery performance. Future
work includes a more dynamic representation of surrounding
surgical information to improve long-horizon anticipations.
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