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Abstract

Planar shape morphing, also known as metamorphosis or shape blending, is the

gradual transformation of one shape into another. Shape morphing techniques have

been used widely in animation and special effects packages, such as Adobe After

Effects and HTML5. With these morphing methods, we can transform a human to

a bird or some other objects that people may never experience in real life. Thus,

we want to build an interactive system that blends the human silhouette and other

shapes such that the users can see these interesting transformations. To build such

a system, (1) we need to employ compatible triangulation method to compute the

correspondence between two shapes. (2) we need to apply shape interpolation method

to transform one shape to another. (3) we need to use posture reconstruction method

to address the transformation that involves self-occlusion.

Computing compatible triangulation can build the one-to-one correspondence

between both the boundary and interior of two shapes. In this thesis, we propose

a new method to compute compatible triangulation of two polygons in order to

create a smooth geometric transformation between them. Compared with existing

methods, our approach creates triangulations of better quality, that is, triangulations

with fewer long thin triangles and Steiner points. This results in visually appealing

morphing when transforming the shape from one to another. Our method consists

of three stages. First, we use the common valid vertex pair to uniquely decompose
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the source and target polygons into pairs of sub-polygon, in which each concave

sub-polygon is triangulated. Second, within each sub-polygon pair, we map the

triangulation of a concave sub-polygon onto the corresponding sub-polygon using

linear transformation, thereby generating the compatible meshes between the source

and the target. Third, we refine the compatible meshes, which can create better

quality planar shape morphing with detailed textures.

Shape interpolation algorithms determine the path that transforms the source

shape into the target one. Traditional image space interpolation methods use different

features, points or line segments for example, to discretize the image. To achieve

realistic morphing results, users need to carefully draw the corresponding features

on both the source and target images. Previous work has shown that rigid shape

interpolation methods can maximize the rigidity of a blended shape, which results

in sensible transformations. However, the rigid shape interpolation approaches will

suffer from inconsistent rotations whenever the rotation is more than π. We offer an

efficient algorithm that gives a unique rotation assignment with minimum rotation

angle. We create a graph with each original rotation angle as one vertex of the

graph. During the searching process, we fix any jump that is larger than π by adding

or subtracting multiple 2π. All the correct rotations in the thesis are generated by

this efficient scheme.

It is still challenging to accurately recognize postures from a single depth camera

due to the inherently noisy data derived from depth images and self-occluding action

performed by the user. In this thesis, we propose a new real-time probabilistic

framework to enhance the accuracy of live captured postures that belong to one of

the action classes in the database. We adopt the Gaussian Process model as a prior

to leverage the position data obtained from Kinect and marker-based motion capture
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system. We also incorporate a temporal consistency term into the optimization

framework to constrain the velocity variations between successive frames. To ensure

that the reconstructed posture resembles the accurate parts of the observed posture,

we embed a set of joint reliability measurements into the optimization framework. A

major drawback of Gaussian Process is its cubic learning complexity when dealing

with a large database due to the inverse of a covariance matrix. To solve the problem,

we propose a new method based on a local mixture of Gaussian Processes, in which

Gaussian Processes are defined in local regions of the state space. Due to the

significantly decreased sample size in each local Gaussian Process, the learning time is

greatly reduced. At the same time, the prediction speed is enhanced as the weighted

mean prediction for a given sample is determined by the nearby local models only.

Our system also allows incrementally updating a specific local Gaussian Process in

real time, which enhances the likelihood of adapting to run-time postures that are

different from those in the database.

Experimental results show that our method can create compatible meshes

of higher quality compared with existing methods, which facilitates smoother

morphing process. The proposed algorithm is robust and computationally efficient.

Our posture reconstruction system can generate high quality postures even under

severe self-occlusion situations. Our system can be applied to produce convincing

transformations such as interactive 2D animation creation and special effects in

movies.
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Chapter 1

Introduction

Planar shape morphing is the process of smoothly transforming a source shape into

a target one [80, 15, 17]. Shape morphing techniques have been widely used in

animation and special effects packages, such as Adobe After Effects and HTML5.

Computing compatible triangulation tackles the vertex correspondence problem for

shape morphing. Previous work [2, 23, 71, 7] has shown that computing compatible

triangulations can successfully create smooth transformations for both the boundary

and interior of a shape. However, we observed that the majority of existing compatible

triangulation approaches may either create a large number of skinny triangles or are

too complex for real-time shape morphing. We thus want to study how to generate

compatible meshes with few long thin triangles and a small number of Steiner points,

which enables smooth transformations from one shape to another. In order to

determine the vertex path of each vertex in the mesh, we employ the rigid shape

interpolation method that preserves the local rigidity during morphing process.

Recent advances in depth camera based motion tracking devices such as the

Microsoft Kinect has enabled efficient human-computer interaction using body

movement. We use Kinect as the input device and capture the source shape of
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the user in the scene. In order to deal with the shape with self-occlusion, we

propose a new method for accurately reconstructing human postures using Kinect.

With the estimated human body joint positions, we deform a calibration pose into

the user performed pose with self-occlusion, which implicitly builds the compatible

triangulation between the source shape with self-occlusion and the target shape in

the database.

Thus, we want to build an interacting system that can blend the user’s shape

and other shapes using Microsoft Kinect as the input device of source shape. We

use compatible triangulation to build the bijection between the user and the other

shapes for both the boundary and interior points, see Chapter 3. We apply rigid

shape interpolation method to our system due to its natural transformation and

capacity for texture mapping, see Chapter 4. In order to handle the posture with

self-occlusions, we leverage the joint position using posture reconstruction method,

see Chapter 5. Fig 1.1 shows our system design. The user stands in front of Kinect

and then we could extract the shape of the user using Kinect SDK in step 1. In step

2, we compute compatible triangulation between the human and the shape in the

database where we have predefined many shapes. We apply rigid shape interpolation

algorithm to transform a source shape into the target one in step 3. For complex

motion with self-occlusion, we utilize the posture information to generate sensible

transformation detailed in Chapter 5 and 6.

The calibration shape in Fig 1.1 is used to build compatible triangulation for

shapes that involve self-occlusion. For example, we perform morphing between the

human and the butterfly, then the user could see that the human body is gradually

transformed into a butterfly.
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Figure 1.1: Overview of the system design.

1.1 Compatible Triangulation

Two triangulations are compatible if they have the same combinatorial structure,

i.e., if their face lattices are isomorphic. However, in many situations, compatible

meshes can be generated only if additional points (Steiner points) are added. Thus,

one challenge of building compatible triangulation is using a small number of Steiner

points such that we can reduce the shape morphing complexity. Another challenging

problem of computing compatible triangulation is to avoid the generation of some long

thin triangles, which may cause inconsistent rotation problem and create artifact

when applying to shape interpolation algorithms. Therefore, a good compatible

triangulation contains a small number of Steiner points and keeps a small percentage

of long thin triangles.

Previous work [2, 23, 71, 7] has shown that computing compatible triangulations

can successfully create smooth transformations for both the boundary and interior of a
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shape. [3] first started the study of compatible triangulations by introducing at most

O(N2) Steiner points, where N is the number of vertices of the polygon. Although the

algorithm is conceptually simple, it introduces a large number of Steiner points that

increases the morphing complexity. On the other hand, this method generates many

long thin triangles, which can result in inconsistent rotations for shape interpolation

algorithms such as [2]. [71] constructed compatible meshes based on link paths, which

requires a small number of Steiner points, but a high computational cost that is

prohibitive.

We observed that the majority of existing compatible triangulation approaches

may either create a large number of skinny triangles or are too complex for real-time

shape morphing. In this thesis, we propose an efficient framework for computing

compatible triangulations of two simple polygons, which are defined as planar

shapes with non-intersecting edges that form a closed path. Our method produces

compatible meshes with few long thin triangles and a small number of Steiner points,

which enables smooth transformations from one shape to another.

We conducted the preliminary research in [43], in which we presented a basic

system to construct the compatible triangulations for two simple polygons. Compared

with our previous work in [43], our new compatible polygon decomposition algorithm

is more flexible that will lead to a better mesh quality with less number of Steiner

points as illustrated in Fig. 3.5 and Table 3.2. The method of [43] generates different

triangulation results if we start the convex decomposition from the source or target

polygon. However, our method always produces the same triangulation results even

if it starts from different directions. This is because we consider the source and

target polygon at the same time using common valid vertex pairs. Generally, our

algorithm is faster than that of [43], please refer to Section 3.5 for more details. We
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have conducted extensive experiments to analyze the influence of the mesh quality

on shape morphing.

The major contributions of the compatible triangulation method in this thesis are

summarized as follows: First, we propose a new algorithm to calculate compatible

polygon decomposition based on the common valid vertex pairs, which results in

flexible decompositions of the source and target polygons. Second, for each iteration,

we choose one common valid vertex pair that can maximize the minimum interior

angle to compatibly partition the source and target polygons, which increases mesh

quality. The increase in the ratio of regular triangles leads to a smoother transition

during shape morphing and texture mapping. Third, we propose a new mesh

quality evaluation metric to measure the quality of a mesh generated from the shape

morphing algorithm. Lastly, our framework of compatible triangulations is simple to

implement and computationally efficient.

1.2 Planar Shape Morphing

Planar shape morphing, also known as shape blending, aims at smoothly transforming

a source polygon into a target polygon [80, 15, 17]. 2D morphing techniques have

been used widely in animation and special effects packages, such as Adobe After

Effects and HTML5. With the work on digital heritage, not only an ancient painting

can be preserved and appreciated in a virtual reality environment, but also objects

in paintings can be animated by shape morphing techniques to provide a more vivid

viewing experience to the audience [1]. The key research focus in these applications

is to create high-quality transformations that can avoid collapsing or overlapping of

polygons during the morphing process.
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2D image deformation algorithms such as the rigid shape deformation in [29, 55]

have been extensively explored in the research community. Users can manipulate

constrained handlers to deform a given image. However, such kind of image warping

techniques offer a limited range of transformations. Transforming a shape to a

significantly different one is difficult due to the lack of feature correspondence.

Planar shape morphing methods offer solutions to blend two shapes with different

silhouettes. Previous attempts to tackle the shape morphing problem is to linearly

interpolate the coordinates of each corresponding vertex pair between the source

and the target polygons. However, simple linear interpolation sometimes creates

intermediate polygons that intersect with each other, resulting in geometrically

incorrect transformations. While other image space techniques such as [55, 18]

achieve pleasant blending results, they usually suffer from the overlapping problems

due to the lack of topology information.

Previous work [2, 67, 6] has shown that rigid interpolation algorithm can

successfully create smooth transformations for both the boundary and interior of

a shape. However, the rigid shape morphing algorithm may suffer from inconsistent

rotations whenever the rotation is more than π. In this thesis, we identify the failure

mode related to large rotations that is easily triggered in practical use, and we present

a solution for this as well. Experimental results show that our method well handles

large rotation for rigid shape interpolation algorithm.

1.3 Posture Reconstruction

Human motion recognition is an important component in interactive applications

nowadays. Traditional motion-based systems such as those for dance training are
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based on motion capture technology, where the user’s movement is captured by

an optical motion capture system [13]. While these applications can evaluate user

performance with the accurately captured motions, they are not convenient since

users have to wear capture suits with reflective markers. Moreover, these devices are

relatively expensive and are not affordable for home use.

Depth image based motion sensing devices such as the Microsoft Kinect [45] serve

as an alternative to capture human movement for interactive applications. Kinect is

a controller-free device that infers 3D positions of human body joints from a single

depth image with the help of a data-driven machine learning algorithm [60]. With

such a device, it becomes possible to implement a natural user interface for virtual

reality applications and gesture based systems [46]. While Kinect can robustly

track the 3D postures of the user, the captured data suffer from poor precision

due to self-occlusions and insufficient information provided by the Kinect sensor.

Therefore, Kinect based interactive applications usually require the user to face the

device so that individual body parts are observable, which greatly limits the system

flexibility. In addition, the user has to minimize self-occluded postures, or Kinect

would misrecognize body parts. As illustrated in Fig. 1.2, the blue skeleton represents

the tracked result by Kinect SDK [45]. We can see the tracked arms are twisted due

to self-occlusions. Therefore, it is essential to develop effective posture reconstruction

strategies for interactive applications.

The occlusion problem and incompleteness of the tracked joints remain

challenging despite the posture reconstruction research proposed in the past years.

Generating postures from low dimensional signals is a potential solution for posture

reconstruction [12, 42]. However, these methods assume the low dimensional signal to

be stable and accurate, while joints tracked by Kinect are not. Hence, applying them
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Figure 1.2: Example of an inaccurately tracked posture from Kinect. The blue
skeleton is the tracked result by Kinect.

to reconstruct Kinect postures will create unsatisfying results. Shum et al. [62] apply

reliability measurement to improve the posture reconstruction process. However, the

reconstruction results depend heavily on the similarity between database postures

and input ones. The system therefore requires a huge posture database.

In this thesis, we propose a new method using local mixture of Gaussian Process

(GP) to reconstruct postures captured from Kinect, where the input motion belongs

to one of the action classes in the database. We constrain the solution space such that

the reconstructed posture is accurate while maintaining the originality of the input

posture from Kinect. We follow [86] to adopt Gaussian Process model as a spatial

prior distribution to predict the offset between Kinect and the ground truth, which

aims at improving the accuracy of the postures in the case where there is sensor error

from Kinect. Furthermore, since reconstructing each posture independently cannot

ensure the temporal smoothness of the posture sequence, we follow [86] to introduce
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a temporal consistency term to constrain the velocity variations between successive

frames. Inspired by [62], we embed the reliability of each joint into the optimization

framework to ensure that the reconstructed posture resembles the accurate parts of

the Kinect tracked posture. Lastly, we propose a new method based on local mixture

of Gaussian Processes to alleviate the cubic learning complexity of a regular GP model

such that our system can deal with a large variety of movement. The experimental

results demonstrate that the proposed approach is effective in reconstructing a

number of motions containing self-occlusions. For example, as illustrated in Fig. 5.4a,

our method accurately reconstructs the posture of bending over with a number of

joints occluded.

The major contributions of the posture reconstruction algorithm in this thesis

are summarized as follows:

1. We propose a new unified framework for posture reconstruction using Kinect.

The system optimizes an occluded posture live captured by Kinect, which

maintains the correctness of the posture while preserving temporal smoothness

between frames. The proposed system performs well with significant smaller

training sets comparing with previous work in the field.

2. We propose a new method based on local mixture of Gaussian Processes that

partitions training samples into local regions to relieve the cubic learning

complexity problem of Gaussian Process. With the proposed framework, the

prediction speed is enhanced as only a few local models are considered for each

input posture. It also enables incremental updating of local models in real time,

which enhances the likelihood to adapt to the postures that are different from

those in the database.

Compared with our previous work [85], we have significantly improved the spatial
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prediction algorithm. Firstly, with the newly proposed method based on local mixture

of GP models, our method generates postures of similar quality to that of [85] with

significantly less training data. Secondly, we design a new algorithm to incrementally

update a specific local Gaussian Process in real time, which enables the system to

adapt to run-time postures that are different from those in the database. Lastly,

because of the use of local models, our new framework only needs to consider a few

local models that are close to an input posture rather than the whole database. Such

an enhancement in efficiency allows us to combine all types of motion as a single

database, while in [85] a separate database is built for each type of motion.

1.4 Outline of the Thesis

The organization of this thesis is as follows. In Chapter 2, we discuss related work

in compatible triangulation, planar shape morphing, and posture reconstruction. In

Chapter 3, we propose a new algorithm to calculate compatible triangulation based

on the common valid vertex pairs. In Chapter 4, we offer an efficient algorithm

that gives a unique rotation assignment with minimum rotation angle for rigid

shape interpolation method. In Chapter 5, we present a probabilistic framework for

human posture reconstruction such that we can handle shapes with self-occlusion.

In Chapter 6, we present an interactive shape morphing system using the techniques

discussed in the thesis. We conclude this thesis and discuss about future work in

Chapter 7.
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Related Work

Planar shape morphing involves two sub-problems: vertex correspondence and vertex

path computation [56]. Vertex correspondence determines how the vertex u of the

source polygon P matches the vertex v of the target polygon Q. The vertex path

determines the trajectory along which vertex u will travel to vertex v. The compatible

triangulation approaches tackle the vertex correspondence problem and the shape

interpolation methods deal with the vertex path problem. In order to generate

sensible transformation, we need to build compatible triangulation with self-occlusion.

To do so, we can identify overlapping body parts using joints from Kinect. However,

data from Kinect are noisy and unreliable, thus, we employ posture reconstruction

method to enhance the quality of joint position obtained from Kinect.

2.1 Compatible Triangulation

Two triangulations are compatible if they have the same combinatorial structure,

i.e., if their face lattices are isomorphic. Previous methods for computing compatible

triangulations usually fall into two categories: (1) Transforming source and target



12 2.1.1 Common Space based Compatible Triangulation

polygons into another common space [3, 2, 35]. (2) Iteratively partitioning the source

and the target polygons until both inputs become a set of triangles [72, 25, 71, 7].

2.1.1 Common Space based Compatible Triangulation

[3] constructed the compatible triangulations by overlaying the triangulations of

the source and target polygons in a convex polygon. The intersections of the two

triangulations built a piecewise-linear homeomorphism, which introduced a large

number of Steiner points. To solve this problem, [2] employed Delaunay triangulations

to reduce the Steiner points. [35] proposed another method that the number of

Steiner points can be determined by the number of inflection vertices. While their

method can reduce the number of Steiner points, the algorithm sometimes results

in Steiner points on the edge of polygon. Furthermore, although these methods are

conceptually simple, they require high computational cost and are not suitable for

real-time applications.

2.1.2 Divide and Conquer based Compatible Triangulation

[25] used the divide-and-conquer method to iteratively partition the source and target

polygons. Their algorithm introduced a small number of Steiner points by using link

paths. However, their method is not suitable for polygons with a small number of

vertices. [71] simplified the algorithm of [25] and they proposed a new remeshing

method to greatly improve the mesh quality by adding a few Steiner points. Their

algorithm requires implementation of many data structures and algorithms in [72]

that makes their method algorithmically complex. [7] proposed a new way of finding

compatible link paths. Based on this new link path generation algorithm, they used

a similar scheme as in [71] to compatibly partition two polygons. Although their
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algorithm of computing link paths is faster than that of [71], the proportion of

regular-shaped triangles (as opposed to long thin triangles) still needs to be improved.

In this thesis, we propose a new framework to construct the compatible meshes of

two simple polygons. Our method draws inspiration from [19], which uses barycentric

coordinates to map a spatial surface triangulation to planar triangulation. However,

[19] demands that every Steiner point of the target polygon Q must be a strict

convex combination of its neighbors, which cannot always be satisfied in practice. As

a solution, we propose an efficient convex decomposition algorithm that partitions the

target polygon Q into a set of convex polygons such that we can solve the compatible

mapping from a sparse linear system.

2.2 Planar Shape Interpolation

Shape interpolation determines the vertex trajectory along which each source vertex

will travel to each corresponding target vertex. Shape interpolation approaches

usually fall into two categories, image space and object space interpolation. Image

space shape interpolation uses different features, points or line segments for example,

to discretize the image. Object space shape interpolation applies explicit polygons

to represent a 2D object.

2.2.1 Image Space Shape Interpolation

Image space shape interpolation uses different features, points or line segments for

example, to discretize the image. Basically, we could employ many kinds of image

space morphing methods to warp the image such as feature based deformation [8],

skeleton based deformation [39], free form deformation(FFD) [38, 44].
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Beier and Neely [8] used multiple pairs of line segments (one specified the

source image, the other one specified the destination image), which defined the local

coordinate system for the mapping. They demonstrated a complex transformation

between two different faces with multiple pairs of lines. However, they noted this

method may sometimes encounter some unexpected distortion due to the unforeseen

combination of different line segment pairs; the user would have to check where this

undesirable interpolation comes from and solve it by adding or deleting some pair

of line segment. Schaefer, McPhail [55] presented a closed-form deformation method

based on Moving Least Squares. Although this method is fast, the algorithm may

generate some white space when two control points approach to each other. Lipman,

Kim [41] introduced a new warping method using 4 control points. They aimed

to keep nice conformal distortion while preserving the scaling and local bijection.

However, the deformation was restricted to the region of interest, and users cannot

simultaneously deform two regions that have an overlapping edge.

Interpolating boundary curve is another topic of shape morphing. [31] represented

curves by sequences of symbols. The curve morphing problem is formulated as

computing a weighted mean of two strings. [68] introduced a square-root velocity

representation for analyzing shapes of curves, which can generate natural deformation

along the geodesic path. [82] proposed a new structure called part figure to represent

the shape. Their method can create smooth transition between the source and target

shapes by interpolating the part figure. However, these curve interpolation methods

only solve the boundary vertex path problem and cannot deal with detailed texture.

Generally, image space morphing methods require the source and target object

to be of similar shape or geometrical structure [8, 80, 55, 33]; or require laboriously

user manipulation on the image. However, the morphing between two very different
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shape is a challenging task due to the different geometrical structures.

2.2.2 Object Space Shape Interpolation

Much of work has been proposed for interpolating two shapes using compatible

mesh. [2] proposed a method that attempted to preserve rigidity. They separately

interpolated the rotation and scale/shear components of an affine transformation

matrix, which generated pleasing results with small rotations for most of cases.

Inspired by [2], [81] presented a 3D morphing method based on Poisson equation

that generated visual pleasing morphing sequences. However, their method suffered

from the inherited problem of rigid interpolation methods that the rotations may

be incorrectly interpolated. In order to fix this problem, [6] proposed a method

to consistently assign rotations. [69] proposed a method that transferred the 3D

deformation of a source triangle mesh onto a different target triangle mesh. However,

their algorithm is designed for the case where there is a clear semantic correspondence

between the source and target. [40] introduced a new type of coordinates for Hermite

interpolation that can be applied to shape deformation. Other methods such as [14]

trying to preserve certain properties like smoothness and distortion for 2D shape

interpolation.

Previous work [2, 67, 6] has shown that rigid interpolation algorithm can

successfully create smooth transformations for both the boundary and interior of

a shape. However, the rigid shape morphing algorithm may suffer from inconsistent

rotations whenever the rotation is more than π. In this thesis, we identify the failure

mode related to large rotations that is easily triggered in practical use, and we present

a solution for this as well. Experimental results show that our method well handles

large rotation for rigid shape interpolation algorithm.
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2.3 Posture Reconstruction

With the advancement in real-time depth cameras such as Kinect, human motion

recognition and posture estimation have become a popular research topic in recent

years. Kinect is based on motion recognition technology proposed by [60], where

they use per-pixel classification method to quickly predict 3D joint positions from

a single depth image. A number of research domains have benefited from Kinect,

such as human-machine interaction [73], natural user interfaces [46], and 3D

reconstruction [30]. A recent review on human activity analysis with Kinect can be

found in [26]. Bailey and Bodenheimer [5] investigated the perceived differences in the

quality of animation generated using motion capture data and a Kinect sensor, which

clearly showed that the data recorded from Kinect was of lower quality compared with

motion capture data from a Vicon motion capture system. Hence, it is essential to

develop an effective posture reconstruction method to enhance the posture quality of

Kinect.

2.3.1 Posture Reconstruction from Low Dimensional Signals

Full body postures can be represented by a set of low dimensional signals [12]. Some

research work has been proposed to reconstruct a full posture with a subset of the

signals. [34] reconstructed human motion from 3D motion sensors on a performer

using kernel CCA-based regression. Given the input data from sparse motion sensors,

they retrieve similar postures from the motion capture database and transform the

low dimensional signal into the full posture space using an online local model. [12]

employed a small set of retro-reflective markers to capture performance animation

in real time. In their system, the low dimensional control signals from the user’s

performance were supplemented by a pre-recorded human motion database. At run
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time, the system automatically learned some local models from the retrieved motion

capture data that were close to the marker locations recorded by the camera. Their

system only needs video cameras and a small set of markers, which makes it low cost

and practical for home use. However, the majority of markers have to be tracked by

the cameras to provide enough information for posture reconstruction.

Liu et al. [42] used a small number of motion sensors to control a full-body human

character. They constructed online local dynamic models from pre-recorded motion

capture database and used them to construct full-body human motion in a Maximum-

a-Posteriori framework, in which the system tried to find the most similar postures

from database for reconstruction. [27] adaptively fused inertial and depth information

in a hybrid framework for posture estimation. Although these methods can be used

to reconstruct postures from low dimensional signals, there is an assumption that

these low dimensional signals are reliable and stable. It is therefore not applicable to

noisy Kinect data.

2.3.2 Data-Driven Posture Reconstruction

Data-driven approaches usually reconstruct postures by evaluating the similarity

between the input posture and a large posture database. [64] presented a data-driven

model based method for 3D torso posture estimation from RGB-D image sequence.

Although their method can extract the upper body posture of users without an

initialization phase, they did not cope with full body posture recovery nor handle

the occlusion problem. [61, 62] proposed a unified framework to control physically

simulated characters with live captured motion from Kinect by searching for similar

postures in a marker-based motion database. They constructed a latent space with

a small number of retrieved similar postures, and applied optimization in the space
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to reconstruct the input postures. [4] introduced a data-driven approach for full

body reconstruction from a depth camera. They proposed an efficient algorithm

for extracting posture features from the depth data. However, for fast movements,

the proposed system required all five extremities to be visible. [59] introduced an

exemplar-based method to correct the postures from Kinect using marker-based

motion data.

[83] introduced a model based framework for full body reconstruction from 2D

video data using motion capture database as the prior knowledge. The postures

were reconstructed in an optimization framework, in which similar motion capture

postures were retrieved through nearest neighbor searching. However, the accuracy

is not robust because the 2D features projected from 3D motion induce posture

ambiguity. [79] solved the reconstruction problem by registering a 3D articulated

model with depth information. They formulated the registration problem into a

Maximum-a-Posteriori framework to register a 3D articulated human body model

with monocular depth via linear system solvers. To tackle the problem of manual

initialization and failure recovery, they combined 3D pose tracking with 3D pose

detection.

In general, these data-driven methods requires large database as prior, and the

reconstruction results depend heavily on the retrieved postures.

2.3.3 Regression based Posture Reconstruction

Structured regression models for posture estimation such as [10] and [9] can model

the correlations between multivariate output and input. [10] presented the Twin

GP model that employs GP priors to model input and output relations. The

output postures were estimated by minimizing the Kullback-Leibler divergence. [9]
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optimized an output-associative functional that incorporates outputs and inputs

using primal/dual formulations and adapts the model to kernel ridge regression

and support vector regression. Shakhnarovich et al. [58] estimated upper body

posture, interpolating k-nearest-neighbor postures matched by parameter sensitive

hashing. [51] presented an inference machine to estimate articulated human pose.

Their method allows learning a rich spatial model and incorporating high-capacity

supervised predictors, which results in substantially improved pose estimation

performance. Recently, it has been shown that deep learning methods such as

[75] and [74] generate high precision pose estimates compared to state-of-art methods.

Gaussian Process (GP) models are flexible probabilistic nonparametric models.

[85] presented a new probabilistic framework based on Gaussian Process to enhance

the accuracy of the postures live captured by Kinect. Their method can generate

high-quality postures even under severe self-occlusion situations. GP models are

usually applied to small data sets of a few hundred samples due to its O(N3) training

complexity, where N is the size of training data. In contrast, our incremental

sparsification method can efficiently handle large data sets.

Previous attempts to solve the cubic learning complexity problem of GP involve

sparse Gaussian Process (SGP) [50, 37, 66] and mixture of experts (ME) [76, 52,

77, 11]. SGP approximates the covariance matrix with a small subset of training

data [37] or a set of inducing variables [66]. While SGP can greatly reduce the

computational complexity, it utilizes a global voting scheme in which all training

samples contribute to the prediction of a new test input. In contrast, ME applies

gating network to partition the input space into different subspaces, where each

GP expert is trained independently [76]. Compared with a regular GP model, the

computational complexity of ME is reduced due to the significantly decreased sample



20 2.3.3 Regression based Posture Reconstruction

size in each subspace [65, 49]. However, for simple expert, the gating network has to

be more complicated to model the function, which results in a higher risk of getting

stuck in local minima or a slower learning process [54].

We follow [85] to reconstruct postures using GP model, which achieves high

reconstruction accuracy. However, the high computational complexity of GP makes

it not suitable for a real-time application. To solve the problem, we propose a new

method based on a local mixture of Gaussian Processes, in which Gaussian Processes

are defined in local regions of the state space. Due to the significantly decreased

sample size in each local Gaussian Process, the learning time is greatly reduced. At

the same time, the prediction speed is enhanced as the weighted mean prediction for

a given sample is determined by the nearby local models only.



Chapter 3

Compatible Triangulation

The compatible triangulation methods tackle the first problem of shape morphing,

that is, they deal with the vertex correspondence between the source and target

polygons. Existing compatible triangulation methods such as [3, 2, 71, 7] may

suffer problems such as (1) Generating too many Steiner points that slows down

the speed of shape interpolation methods. (2) Creating mesh with many skinny

triangles, which may cause numerical problems or lead to inconsistent rotation for

rigid shape interpolation method. In Section 3.1, we give a overview of our compatible

triangulation algorithm. In Section 3.2, we explain our algorithm for compatibly

decomposing the source and target polygons. In Section 3.3, we show how to map

the compatible triangulations using a linear system. In Section 3.4, we propose an

efficient scheme to further refine the initial compatible triangulation. In Section 3.5,

we discuss the time complexity of our algorithm. In Section 3.6, we show various

compatible triangulation results using our method.
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Figure 3.1: Overview of the proposed framework to compatibly triangulate two
simple polygons. (a) The target polygon Q. (b) The source polygon P . (c) We
compute the valid vertex pairs for both the source and target polygons. (d) We
collect the common valid vertex pairs. (e) We use the common valid vertex pair for
compatible decomposition if the common vertex pair exists; otherwise we calculate
the link path, e.g. the 2-link path between vertex u2 and u5 with blue color shown
in (h). (f-h) We use the polyline found in (e) that maximizes the minimum angle
to decompose the source and target polygons. (i) We triangulate each sub-polygon
pi of source polygon P using Delaunay triangulation. (j) We may need to add some
Steiner points on the edge of sub-polygon qi to keep equivalent topology. (k) We solve
a linear system to map the triangulation of sub-polygon pi onto the corresponding
sub-polygon qi of target polygon Q. (l-m) We finally refine the compatible meshes
by operations such as splitting long edges and flipping interior edges so as to improve
the interior angles of the mesh.

3.1 Compatible Triangulation Overview

As illustrated in Fig. 3.1 (a-b), the input data of our system are two simple polygons

P and Q with corresponding vertices ordered in counter-clockwise. We denote P =

{U,EP} and Q = {V,EQ} as the source and target polygons with point set u ∈ U and

v ∈ V , together with the edge set EP , EQ respectively. P and Q are assumed to be

simple polygons without holes, in which the edges do not cross each other and form

a closed contour enclosing each polygon. We define TP and TQ as the triangulations

of polygon P and Q. TP and TQ are compatible if they have equivalent topology that

is defined as:

1. There is an one-to-one correspondence between the vertices of TP and that of
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TQ.

2. There is an one-to-one correspondence between the edges of TP and TQ, meaning

that if there is an edge connecting two vertices of TP , then there is an edge

connecting the corresponding vertices of TQ and vice versa.

3. The boundary vertices of both TP and TQ are traversed in the same clockwise

or counter-clockwise order.

However, in many situations, compatible meshes can be generated only if

additional points (Steiner points) are added. Thus, one challenge of building

compatible triangulation is using a small number of Steiner points such that we can

reduce the shape morphing complexity. Another challenging problem of computing

compatible triangulation is to avoid the generation of some long thin triangles, which

may cause inconsistent rotation problem and create artifact when applying to shape

interpolation algorithms. Therefore, a good compatible triangulation contains a small

number of Steiner points and keeps a small percentage of long thin triangles.

Given two simple polygons P and Q with a boundary vertex correspondence as

illustrated in Fig. 3.1 (a-b), our algorithm works in three stages. First, we compatibly

decompose the source polygon P and the target polygon Q into sub-polygon pairs

(p, q) =
⋃

(pi, qi) as shown in Fig. 3.1 (c-g), where either the target sub-polygon qi or

the corresponding source sub-polygon pi is convex. Consider a sub-polygon, e.g. pi

of P , we triangulate pi using Delaunay triangulation as illustrated in Fig. 3.1 (h-i).

Second, we map the triangulation Tpi of source sub-polygon pi onto corresponding

target sub-polygon qi using a sparse linear system as shown in Fig. 3.1 (j-k). Third,

we refine the compatible mesh to improve the mesh quality shown in Fig. 3.1 (l-m),

which is important for high quality morphing in 2D animation, special effects for
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movies and texture mapping.

3.2 Compatible Decomposition of the Source and

Target Polygons

In order to maintain a small number of Steiner point during the convex decomposition,

we want to choose a pair of vertex indices that are visible to each other in both

the source and target polygons. The core of our framework is that we propose a

new algorithm using common valid vertex pair for partitioning the source and target

polygon pairs, which is more flexible to increase the mesh quality with a small number

of Steiner points.

In the first phase, we compatibly decompose the source and target polygons, P

and Q, into pairs of sub-polygons. In a simple polygon, a vertex u ∈ U is convex if

the angle α formed by two edges at u is less than π radians; otherwise u is considered

to be concave. Our goal is to turn some concave vertices into convex ones through

the decomposition and construct pairs of sub-polygons from the source and target

polygons such that each of a sub-polygon pair contains at least one convex sub-

polygon.

Without loss of generality, we assume the source and target polygons P and

Q each to be a simple polygon with N vertices arranged in counter-clockwise

order. Here, we label the concave vertices of Q as v1, ..., vC
and the convex vertices

v
C+1

, ..., v
N

. Similarly, we label u1, ..., uC′ as the concave vertices and u
C′+1

, ..., u
N

as

the convex vertices of P . We call a vertex pair (i, j) of P valid if ui is visible from uj

and at least one of the two vertices is a concave vertex, e.g. (1, 4) is valid as shown

in Fig. 3.2. If two vertices are visible to each other but they are not a valid pair, then
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it implies that both vertices are convex such as vertex pair (2, 4) as illustrated in

Fig. 3.2. A diagonal uaub of P is a line segment that joins vertex ua and ub of P and

remains strictly inside P . A diagonal such as u2u4 shown in Fig. 3.2 that connects

two convex vertices is redundant in our compatible decomposition algorithm because

it can be removed and the two convex sub-polygons on its sides can be merged into

a convex polygon. Therefore, for the construction of a compatible decomposition,

we consider only the diagonals that connect two vertices that belong to valid vertex

pairs.

u1
α

β

γ
δ

u4

u3

u2

u5

u6

Figure 3.2: A valid vertex pair (1, 4) used to partition the source polygon, which
yields four interior angles between vertex u1 and u4.

In some cases, compatible triangulation can only be constructed if Steiner points

are added. In order to introduce the minimum number of Steiner points, we need

to search for all the potential decomposition combinations in the solution space.

Thus, there can be an exponential number of ways of decomposing a simple polygon

into convex sub-polygons using the valid vertex pair, which forbids the practical use

of the algorithm. Previous work converted the compatible triangulation problem

into a common base domain [3, 2] or used a divide-and-conquer methods [70, 7, 43]

to iteratively partition the source and target polygons. However, these methods

may either need high computational time cost or produce mesh with poor quality.
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Therefore, we want to find an efficient compatible triangulation algorithm with an

improved mesh quality compared with the existing work.

We start from the source polygon P and find all the valid vertex pairs V PP for

P , similarly, we find the valid vertex pairs V PQ for the target polygon Q. Among

all the valid vertex pairs in V PP and V PQ, we collect the common valid vertex pairs

V P = V PP ∩ V PQ that appear in both V P
P

and V P
Q

. The best partition for P and

Q is the common valid vertex pair that generates the maximum minimum interior

angle IntAng by:

(a, b) = arg max
va,vb∈V
ua,ub∈U
a6=b

min{IntAngP (a, b) , IntAngQ (a, b)} (3.1)

where the IntAngP (a, b) contains four angles formed by the intersection of the source

polygon P and the diagonal uaub that connects a valid vertex pair (a, b). For example,

IntAngP (1, 4) contains ∠α, ∠β, ∠γ and ∠δ in Fig. 3.2.

Decomposing polygons with Equation 3.1 generates a balanced angle partition

for both the source and target polygons, which maximizes the interior angle for both

the source and target sub-polygons in the current iteration. [43] only considered a

balanced angle partition for the target polygon; however, the source polygon may still

generate small interior angles. [71, 7] only considered balanced index partition of the

source and target polygons, which are likely to decrease the mesh quality in terms of

the proportion of small angles of compatible meshes discussed in Section 3.6.2.

In practice, the common valid vertex pair may not be always available in some

cases. For example, as shown in Fig. 3.1(c-d), the intersection of two valid vertex pair

sets {(2, 4), (2, 5)} ∩ {(3, 1), (3, 5)} is empty. Here, we apply link path to determine

the partition line between two vertices instead of using common valid vertex pair. A



3.2 Compatible Decomposition of the Source and Target Polygons 27

link path between vertex ua and ub is a polyline within the polygon that joins the

vertex pair (a, b) such as vertex pairs (2, 6) and (6, 5) in Figure 3.1(h) that define a

2-link path between vertex u2 and u5. A minimum link distance for vertex pair (a, b),

linkDist(ua, ub), is the minimum number of line segments in a polyline, for example,

the minimum link distance for vertex pair (2, 5) in Figure 3.1(h) is 2. We follow [7] to

compute the link path with minimum link distance for all vertex pairs in O(H ·N3
i ),

where H is the number of sub-polygon pairs and Ni is the number of vertices for the

i-th sub-polygon. Algorithm 3.1 summarizes our polygon decomposition algorithm

in an iterative sense.

Algorithm 3.1 Compatible decomposition of the source and the target polygons

Input: The source and target polygons, P and Q

Output: A decomposition of P , p =
⋃
pi, and Q, q =

⋃
qi, where either pi or qi

is a convex sub-polygon
convexDecomposition(P , Q)
if P or Q is convex then

exit
end
Compute valid vertex pairs V PP and V PQ

Find common valid vertex pairs
V P = V PP ∩ V PQ
if V P is not empty then

Calculate the best partition by:
(a, b) = arg max

va,vb∈V
ua,ub∈U
a6=b

min{IntAngP (a, b) , IntAngQ (a, b)}

Decompose P and Q using (a, b) that creates two sets of sub-polygons:
{pi, pi+1}, {qi, qi+1}

else
Decompose P or Q using link path that creates two sets of sub-polygons:
{pi, pi+1}, {qi, qi+1}

end
convexDecomposition(pi , qi )
convexDecomposition(pi+1, qi+1)
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Our method simultaneously decomposes the source and target polygons and we

will stop partitioning a sub-polygon pair if either of the sub-polygon in the sub-

polygon pair is convex. However, [43] will keep partitioning the target polygon until

all the target sub-polygon are convex. The drawback of the method of [43] is that

the decomposition results will be very different if we start from the source or target

polygon. The choice of the convex decomposition strongly influences the resulting

compatible triangulations and the number of Steiner vertices. As shown in Fig. 3.3a,

for sub-polygon pair (Pi, Qi), our method will stop partition them, while [43] will

keep partitioning Pi until all the sub-polygon of Pi are convex. Fig. 3.3a shows that

our method generates better partition results than that of [43]. Fig. 3.3b shows that

our method computes compatible mesh with better mesh quality.

By this stage, we have compatibly decomposed the source polygon P and target

polygon Q into sub-polygons {pi = (Upi , Epi)} and {qi = (V qi , Eqi)} , where (pi, qi) is

a pair of sub-polygons and either pi or qi is convex. We apply Delaunay triangulation

as the initial triangulation of a sub-polygon, which can maximize the minimum

interior angle with no extra Steiner points in O(NilogNi) [21]. Here, we denote

Tpi as the triangulation of the sub-polygon pi and aim at constructing compatible

triangulation Tqi of qi based on Tpi .

3.3 Compatible Triangulations Mapping

The compatible decomposition process may introduce Steiner points on the link path

of either the source polygon P and target polygon Q. In addition, in order to improve

the mesh quality, the mesh refinement process detailed in Section 3.4 will create

Steiner points within each sub-polygon. Therefore, we have two types of Steiner
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Figure 3.3: Comparison between Liu et al., 15 and our method

points: (1) Steiner points that lie on the link path of source sub-polygon pi, and

(2) Steiner points that lie within pi. For (1), we map the Steiner points onto the

corresponding edges of target sub-polygon qi based on the simple line-segment-length

proportion principle. For (2), we solve the mapping by a sparse linear system.
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3.3.1 Mapping Steiner Points on the Link Path of Source

Polygon

We denote us as a Steiner point lies on the link path between vertex ua and ub in the

source sub-polygon pi such as the vertex u6 for vertex pair (u2, u5) in Figure 3.1(h).

We add a Steiner point vs for target sub-polygon qi on the corresponding line segment

vavb based on the linear ratio with the following equation:

vs =
polylineLength(ub, us)

polylineLength(ua, ub)
va +

polylineLength(us, ua)

polylineLength(ua, ub)
vb (3.2)

where polylineLength(ua, ub) is the summation of the length of all line segments on

the link path between ua and ub.

As shown in Figure 3.1(h), the length of the polyline for vertex pair (u2, u5) is

polylineLength(u2, u5) = polylineLength(u2, u6)+polylineLength(u6, u5). We would

place the vertex v6 on the line segment v2v5 based on the Equation (3.2).

3.3.2 Mapping Steiner Points within the Source Polygon

In this section, we will explain how to map the Steiner points inside the source polygon

onto the corresponding locations inside the target polygon. As shown in Figure 3.4,

we have to decide how to map the Steiner point u1 and u2 onto v1 and v2 inside the

target polygon. Here, we calculate the barycentric coordinates of u1 and u2. We

then compute the proper locations for Steiner point v1 and v2 using the barycentric

coordinates found in the source polygon.

Denoting uj, j ∈ {1, ..., Si} as a Steiner point that lies within the source

sub-polygon pi, where Si is the number of Steiner points within pi. We use

barycentric coordinates λ to map the Steiner point uj of source sub-polygon pi
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Figure 3.4: Mapping Steiner points within the source sub-polygon onto the target
sub-polygon. (a) The source sub-polygon with Steiner points u1 and u2. (b) The
corresponding target sub-polygon with unknown Steiner points v1 and v2.

onto the Steiner point vj of target sub-polygon qi. Here, we employ Floater’s mean

value coordinates [20] to calculate the barycentric coordinates λ. The barycentric

coordinates λ of vertex uj can be seen as a weight of its neighboring vertices, which

allows us to generate continues data from these adjacent vertices. We represent the

Steiner point uj as a weighted average of its neighboring vertices:

uj =
M∑
k=1

λj,kuk,
M∑
k=1

λj,k = 1 (3.3)

where M is the total number of points including boundary vertices and Steiner points

for source sub-polygon pi, i.e. M = Ni + Si.

We now explain how to map the Steiner point uj ∈ Upi , j ∈ {1, ..., Si} of source

sub-polygon pi onto the corresponding Steiner point vj ∈ V qi of target sub-polygon

qi, where Si is the number of Steiner points within pi. We define v1, ..., vSi
to be the

solutions of linear equations with Si variables.

vj =
M∑
k=1

λj,kvk,
M∑
k=1

λj,k = 1 (3.4)
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where

λj,k = 0, (j, k) /∈ Eqi

λj,k > 0, (j, k) ∈ Eqi

Note that the barycentric coordinates λj,k can be uniquely determined by

Equation (3.3).

We rewrite Equation (3.4) by breaking the summation term into two sub-terms:

vj =
Si∑
k=1

λj,kvk +
Si+Ni∑
k=Si+1

λj,kvk, j ∈ {1, ..., Si}

vj −
Si∑
k=1

λj,kvk =
Si+Ni∑
k=Si+1

λj,kvk (3.5)

where Si is the number of Steiner points within the target sub-polygon qi and Ni

is the number of boundary vertices of qi .

Denoting vj = (xj, yj) to be a Steiner point within target sub-polygon qi that we

want to solve, Equation (3.5) is equivalent to the following form:

Ax = b1, Ay = b2 (3.6)

where x = (x1, ..., xSi
)T , y = (y1, ..., ySi

)T , and matrix ASi×Si
is in the form:

aj,j = 1, j ∈ {1, ..., Si}

aj1,j2 = −λj1,j2 (j1, j2 ∈ {1, ..., Si}, j1 6= j2).

This linear system in Equation 3.6 has Si unknown variables and Si equations.
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The solution to Equation (3.6) is unique as the matrix A is non-singular. We apply

LU decomposition to solve Equation (3.6) in O(S3
i ) [48], where Si is the number of

Steiner points within target sub-polygon qi.

3.4 Compatible Mesh Refining

While the compatible meshes generated by our method introduce a very small number

of Steiner points, there may still be some long thin triangles such as the second row in

Figure 3.6(a). In practice, we found that these long thin triangles can cause numerical

problems such as inconsistent rotations for shape morphing. Therefore, we have to

refine the compatible meshes to avoid numerical problems.

To refine the compatible meshes, we apply a variation of the remeshing method

in [71]. We only smooth those triangles with small interior angles and long edges.

Specifically, we smooth the mesh using area and angle based remeshing, splitting

long edges, and flipping interior edges to improve the interior angles. The smoothed

results could be found in Figure 3.6(b).

3.5 Method Complexity

In this section, we will analyze the computational complexity of our method. It

takes O(N) time to determine the concave vertices and O(N) time to find a valid

vertex pair using visibility polygon algorithm [32], where N is the number of vertices

of a polygon. Finding common valid vertex pairs using methods like hash table

usually requires O(1) time. Thus, the time cost of decomposing the source and

target polygons into pairs of sub-polygons is O(N2). Finding a corresponding link

path for a sub-polygon, e.g. pi in source polygon P , is O(N3
i ), where Ni is the number
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of vertices of a source sub-polygon pi. The Delaunay triangulation can be finished in

O(NilogNi). Compatible mapping between a pair of sub-polygons requires solving a

linear equation using LU decomposition that leads to O(S3
i ) operations, where Si is

the number of Steiner points of sub-polygon pi.

Table 3.1 compares the computational complexity between our method and

alternative approaches. The main computation of our algorithm is dominated by

computing link paths and solving a linear system, i.e. O(H · max(N3
i , S

3
i )), where

H is the number of sub-polygon pairs. In practice, the most time consuming part

of our algorithm is building the link path as Si is often smaller than Ni. Generally,

our algorithm is faster than that of [43]. This is because our method simultaneously

decompose the source and target polygon and we will stop partitioning a polygon

pair if one of them is convex. However, [43] will keep partitioning the target polygon

until all the target sub-polygon are convex. Our method is much faster than that

of [71, 7] as we solve a small linear sparse system within each sub-polygon pair.

The matrix A in Equation (3.6) is sparse and non-symmetric, thus, we further

speed it up by using iterative methods such as Bi-CGSTAB [78]. Here, we apply an

open library Eigen [24] to solve the sparse linear system. The compatible mapping

process of a sub-polygon pair can be even faster before mesh refinement operations

and it can be completed in O(Si). This is because the Delaunay triangulation can

triangulate the sub-polygon pi with no Steiner points such that we only need to map

the Steiner points on the link path as discussed in Section 3.3.1.
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Table 3.1: Computational complexity: the main computational cost of our method
is computing the link paths, where N is the total number of boundary vertices of
source polygon P , C

P
is the number of concave vertices of P , L and H are the

number of sub-polygon pairs created by Liu et al. and our method, Ni and Si are the
number of boundary vertices and the number of Steiner points of the i-th sub-polygon
respectively.
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3.6 Experimental Results

In this section, we will show the experimental results and present the comparisons

between alternative approaches including [71], [7] and [43]. Qualitative analysis

is conducted to evaluate the mesh quality between the proposed method and other

alternatives. The experiments are conducted on a Intel Core i3-2350M 2.3 GHZ PC

with 4GB RAM.

3.6.1 Compatible Triangulation

To demonstrate the effectiveness of our method, we implemented the as-rigid-as-

possible shape interpolation method introduced in [2]. Figure 3.5, 3.6 and 3.7 show

some compatible triangulation results and some challenging polygon pairs that are

quite different such as the shark and sea horse in the third row of Figure 3.6 and Tai

Chi motions in Figure 3.7.

Figure 3.6(a) shows that our initial compatible triangulation contains few long
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Figure 3.5: Compatible triangulations comparisons. We compare our results with
those of [71], [7] and [43]. While we generally use less Steiner points than the others,
our algorithm creates high quality compatible mesh in terms of the proportion of long
thin triangles.

thin triangles and we may only need to flip some edges of triangles to enlarge the

minimum interior angles. Figure 3.6(b) shows that our compatible meshes can be

further refined by methods such as splitting long edges and average the area of

adjacent triangles.

Given the compatible triangulations of two input polygons, shape interpolation

can be applied to create animations showing the transitions from one shape to

another. Figure 3.6(b) and 3.7 show some interpolation results using our compatible

meshes.
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Figure 3.6: Compatible triangulation results. (a) The initial tessellations of two
polygons. (b) mesh refinement and morphing. Note that our compatible mesh can
be used to blend shapes with large rotations, e.g. shapes in the third row.

3.6.2 Mesh Quality Evaluation

The quality of the compatible meshes would greatly influence the intermediate shapes

generated by morphing techniques. In particular, the mesh with those long and skinny

triangles would suffer from the inconsistent rotation problem [2, 6].

We evaluate the individual and pair-wise mesh quality. We employ the following

criteria to measure the individual mesh quality: (1) minimum interior angle of a given

mesh. (2) The proportion of angles that are smaller than a certain constant value,

which are known to be reasonable mesh quality criteria [53]. We measure pairwise

mesh quality through the triangle deformation when we transform one triangle into
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Figure 3.7: Morphing of Tai-chi motions: we adopt the compatible meshes generated
by our algorithm to blend Tai-chi motions.

another one. We would like to increase the minimum interior angle of a mesh and

decrease the percentage of small angles for individual mesh. Other other hand, for

pairwise mesh, we want to create compatible mesh with less triangle deformation

such that we can generate smooth texture mapping.

Table 3.2 shows a quantitative comparison between our algorithm and three other

alternative methods. [71] tends to create more long thin triangles than the others.

Compared with the results of [71], [7] improves the minimum interior angle. [43]

enhances the proportion of regular triangles but sometimes introduce a few more

Steiner points than [71]. While our results are similar to [71] in terms of the number

of Steiner points, our algorithm creates a much smaller percentage of small angles
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than [71, 7]. Compared with [71, 7, 43], the minimum angle of our method has been

improved greatly while we generally add fewer number of Steiner points than the

alternative methods.

Table 3.2: Quantitative comparisons between triangulation quality

 
 
 
 
 
 
 
 
 
 
 
 

Shape Method #Steiner 
Point 

Minimum 
angle 

Angles 
≤10° 

Angles 
≤15° 

Angles 
≤20° 

Computation 
time(second)

  

Surazhsky-Gotsman, 
04 0 1.6730° 11.57% 16.12% 31.27% 21 

Baxter et al., 09 0 3.3052° 10.61% 14.39% 30.30% 12 
Liu et al., 15 3 3.7557° 5.35% 11.90% 22.02% 7 

Ours 0 6.4161° 8.75% 12.87% 26.93% 3 

 

Surazhsky-Gotsman, 
04 2 0.0441° 27.43% 36.81% 42.36% 24 

Baxter et al., 09 5 0.9779° 21.91% 29.32% 37.96% 14 
Liu et al., 15 2 0.9913° 15.27% 22.91% 32.29% 6 

Ours 1 1.3653° 12.49% 21.08% 26.37% 5 

 

Surazhsky-Gotsman, 
04 6 0.4837° 8.60% 13.03% 20.59% 27 

Baxter et al., 09 4 0.5849° 6.49% 12.42% 18.64% 15 
Liu et al., 15 3 0.6120° 5.29% 11.64% 17.46% 8 

Ours 1 1.6855° 5.18% 9.11% 15.72% 7 

 

 

Surazhsky-Gotsman, 
04 0 0.0347° 28.96% 35.47% 44.88% 35 

Baxter et al., 09 0 0.0229° 21.45% 29.21% 35.48% 18 
Liu et al., 15 0 0.3294° 16.01% 23.77% 29.54% 6 

Ours 0 5.6835° 3.99% 7.63% 12.11% 4 

 

Surazhsky-Gotsman, 
04 0 0.8893° 12.43% 19.16% 24.13% 29 

Baxter et al., 09 0 2.1933° 10.95% 14.68% 21.89% 16 
Liu et al., 15 0 2.6746° 9.95% 14.18% 20.15% 9 

Ours 0 2.9338° 6.21% 10.94% 15.92% 5 
 
 

Triangle Deformation Evaluation

We apply the rigid shape interpolation algorithm [2] to transform a source mesh TP

into the target one TQ. Here, we define an edge deformation function to measure the

deformation of each triangle face during the transformation. Given the vertices of

a source triangle TP 1
= {u1, u2, u3} and target triangle TQ1

= {v1, v2, v3}, the edge
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deformation function is defined as:

Euaub =
| ‖uaub‖ − ‖vavb‖ |

‖uaub‖
, a, b ∈ {1, 2, 3}, a 6= b (3.7)

where ‖uaub‖ is the length of the edge that connects vertex ua and ub.

The deformation of a triangle is defined as:

E =
1

3

∑
ua,ub∈TPf

Euaub (3.8)

where ua and ub are vertices of the f -th source triangle in TP .

The deformation function E measures the deformation degree of each triangle.

A source triangle TPf
will experience very small deformation to transform into the

target triangle TQf
as E approaches 0; Otherwise, a source triangle will experience

a big distortion as E becomes larger. For a good compatible triangulation, a larger

percentage of small deformation E is preferred, which benefits applications such as

shape morphing and texture mapping. Fig. 3.8 shows that our method generally

creates compatible mesh with higher percentage of triangles that experience small

deformation E; On the other hand, our method generates fewer triangles that need

large deformation during the shape morphing.

It would be more informative to consider the area or angle changes for the triangle

deformation. However, it is not sufficient to evaluate the triangle deformation using

only the area changes. As show in Figure 3.10, the area of triangle TP123 retains

nearly the same when we transform triangle TP123 into TQ123 , while the triangle TP123

experiences a big distortion to be transformed into triangle TQ123 . This indicates that

only using area changes may not be a good indicator. We can enhance it by adding

additional constraints such as the ratio of the minimum, Lmin, to the maximum,
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(a)

(b)

Figure 3.8: Mesh deformation evaluation. (a) Dog and cat. (b) Alligator.

Lmax, length of the edges of a triangle defined by q = Lmin

Lmax
.

On the other hand, measuring the angle changes is especially suitable for scaling

transformations. Our edge deformation is able to capture all the triangle changes for

rigid deformation, which does not include uniform scaling. However, for non-rigid

transformations that involve scaling operation as shown in Figure 3.11, the angle

changes could be a good complement for the edge deformation function defined in

Equation 3.8

As illustrated in Fig. 3.9, we demonstrate the texture mapping using compatible
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(a1) (a2) 

 
 

(b1) (b2) 

 
 

(c1) (c2) 

 
 

(d1) (d2) 

 
 

(e1) (e2) 
 

Figure 3.9: Texture mapping comparison. (a1-a2) Source shape with texture. Adding
texture to the target shape using compatible meshes generated by methods of (b1-
b2) Surazhsky-Gotsman, 04. (c1-c2) Baxter et al., 09. (d1-d2) Liu et al., 15. (e1-e2)
Ours.
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Figure 3.10: Measure the angle changes.

Figure 3.11: Measure the angle changes.

triangulations generated by methods of [71], [7], [43] and ours. The system input

is a source polygon with texture and one target polygon without texture. We first

build the compatible triangulations of two shapes with alternative approaches, as

shown in the third and fourth row in Fig. 3.5. Based on the compatible mesh,

we map the texture of a source shape onto the target one. In general, mapping

the texture of a shape to another very different one always suffers from the texture

stretching. As shown in the dog-cat example in Fig. 3.9 (b-e), nearly all the squares

experience some distortion due to the creation of some long thin triangles as shown

in the third example of Fig. 3.5. These long thin triangles need large distortion

to transform into the target triangles. We can still observe that both [43]and our

method preserved some regular squares around the upper body of the cat while our

method only generates 1 Steiner point. We then try to map the texture of an alligator

between two postures. For the method of [71], we can see some distortions appear
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around the abdomen of the alligator. The stretched pattern can also be observed at

the back of the alligator for both methods of [7] and [43]. Compared with the other

methods, our method generates smoother pattern around the back of the alligator

and the deformation of the abdomen makes more sense. This is because our method

generates much more regular triangles that only involve small deformation during the

shape morphing process, as shown in Fig. 3.8(b).

3.7 Summary

In this chapter, we propose a new method to compute compatible triangulation of

two polygons in order to create a smooth geometric transformation between them.

Compared with existing methods, our approach creates triangulations of better

quality, that is, triangulations with fewer long thin triangles and Steiner points.

This results in visually appealing morphing when transforming the shape from one

to another.

Our method consists of three stages. First, we use the common valid vertex pair

to uniquely decompose the source and target polygons into pairs of sub-polygon, in

which each concave sub-polygon is triangulated. Second, within each sub-polygon

pair, we map the triangulation of a concave sub-polygon onto the corresponding

sub-polygon using linear transformation, thereby generating the compatible meshes

between the source and the target. Third, we refine the compatible meshes, which

can create better quality planar shape morphing with detailed textures.

Experimental results show that our method can create compatible meshes of

higher quality compared with existing methods in terms of fewer long thin triangles

and smaller triangle deformation values during shape morphing. These advantages
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enable us to create more consistent rotations for rigid shape interpolation algorithm

and facilitates smoother morphing process. The proposed algorithm is robust and

computationally efficient. It can be applied to produce convincing transformations

such as interactive 2D animation creation and texture mapping.
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Chapter 4

Planar Shape Interpolation

The shape interpolation methods solve the second problem of shape morphing, that

is, they determine the trajectory along which the source vertex u will travel to the

target vertex v. In Section 4.1, we review three commonly used shape interpolation

methods and determine which method is more suitable to our task. In Section 4.2,

we discuss the problem of large rotations for rigid shape interpolation methods and

present an efficient solution for this as well. We show the experimental results in

Section 4.3.

4.1 Choosing Shape Interpolation Approaches

In this section, we review three commonly used shape interpolation method:

line segment based, control point based shape interpolation and the rigid shape

interpolation method. Line segment based and control point based shape

interpolation are representative image space shape morphing. The rigid shape

interpolation method is an powerful object space interpolation, which can retain the

original texture and keep rigidity during the transformation. With the line segments
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or control points, it is more obvious for the user to understand what will happen

when lines or control points are added and moved. Previous work [2, 69, 67] has

shown that rigid shape interpolation methods can maximize the rigidity of a blended

shape, which results in realistic transformations.

4.1.1 Line Segment based Shape Interpolation

Line segment based shape interpolation mainly solves the image warping problem.

Fig 4.1 shows the idea of using a single pair of line segments. For each point X

in the intermediate image, the corresponding point X1 for the source and X2 for

the destination image are found based on the u and v. Finally, the cross dissolve is

employed to get the pixel value of X in the intermediate image.

P

Q

X
v

u

Intermediate Image

Q1

P1

Q2

P2

u v
X1

X2

vu

Destination ImageSource Image

Figure 4.1: Single line-segment-pair mapping

The capital characters in Equations 4.1, 4.2 and 4.3 refer to coordinates of points

such that a line segment are a pair of two points such as PQ; u and v are two scalars,

where u is the projection of X along the line segment PQ and v is the distance
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between a pixel and line segment.

u =
(X − P ) · (Q− P )

‖Q− P‖2
(4.1)

v =
(X − P )Perpendicular(Q− P )

‖Q− P‖
(4.2)

X ′ = P ′ + u(Q′ − P ′) +
vPerpendicular(Q′ − P ′)

‖Q′ − P ′‖
(4.3)

Fig. 4.2 illustrates warping with multiple line segment pairs. The pixel X ′ in

the source image is a weighted average of X ′1 and X ′2 calculated by two pairs of line

segments. The weight is inversely proportional to v.

Intermediate Image

Q1'

P1'

Q1''

P2''

u1' v1 X2'

X1''

vu1''

Source Image

P1

Q1

Xv1

u1 P2

Q2

v2

u2

Q2'

P2'
v2

u2'

u2''

X

X1'

X2''
X''

X'
X

Q2''

P2''

Destination Image

Figure 4.2: Multiple line-segment-pair mapping

4.1.2 Shape Interpolation Using Moving Least Squares

Schaefer et al. [55] proposed a deformation method that can smoothly transform

between two images of similar structure using moving least square (MLS). As shown

in Fig. 4.3, the user could specify a set of control points at pi and a new deformed
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position qi of the control point at pi, based on pi and qi the user could generate some

realistic intermediate shapes as if they are manipulating the real object.

Figure 4.3: Deformation with control points shown in purple

The goal is to find an affine transformationM that could preserve the local rigidity

as much as possible. We limit the transformation used in moving least squares as

similar and rigid affine transformation. Consider a weighted least square problem for

an image, we have the cost function defined in Equation 4.4:

∑
i

wi|lv(pi)− qi|2, wi =
1

|pi − v|2α
(4.4)

where wi is inversely proportional to the Euclidean distance between pi and each

pixel v in the image, α > 0.

We aim to find the transformation lv(pi), a linear combination of the

transformation matrix M and a translation T , which can minimizes the cost function
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as:

lv(x) = xM + T (4.5)

To minimize the quadratic error of Equation 4.4, set the gradient over free variable

to 0, we get the solution for lv(x), and define f(x) = lv(x)

fa(v) = (v − p∗)(
∑
i

p̂Ti wip̂i)
−1
∑
j

wj p̂
T
j q̂j + q∗ (4.6)

Since the control point at pi would not change its position, we could pre-compute

the term Aj in Equation 4.6 to speed up the algorithm by:

fa(v) =
∑
j

Ajqj + q∗ (4.7)

where Aj = (v − p∗)(
∑
i

p̂Ti wip̂i)
−1∑

j

wj p̂
T
j .

The matrix M is a general transformation matrix that includes uniform

transformation as well as non-uniform transformation, which might sometimes results

in unrealistic distortion. Thus, we want to restrict the linear transformation matrix

M only include rotation, translation, and uniform scaling by:

MTM = λI, fs(v) =
∑
i

q̂i(
1

µs
Ai) + q∗ (4.8)

where Ai = wi

 pi

−pi


 v − p∗

−(v − p∗)⊥


T

, µs =
∑
i

wipip
T
i

Previous work [2, 29, 6] shows that transforming shape as rigid as possible could

give users the impression that they were manipulating the real object. This rigidity

means we need to keep the size of local shape unchanged, thus do not include uniform
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scaling by:

MTM = I (4.9)

4.1.3 Rigid Shape Interpolation

In this section, we review the rigid shape interpolation method. We follow [2] to

solve the rigid shape interpolation by minimizing a quadratic function. Given the

vertices of two triangles T1 = {u1, u2, u3} and T2 = {v1, v2, v3}, they transform T1

into T2 with an affine transformation AT 1 = T2. The matrix A can be factorized

into a rotation matrix R and a scale-shear component S using polar decomposition,

i.e. A = RS. We then independently interpolate the matrix S and rotation angle β

of R to compute intermediate transformation matrix A(t) = R(tβ)((1 − t)I + tS),

where t ∈ [0, 1] is time. Finally, finding the vertex path of all triangles can be solved

by minimizing a quadratic error between the desired matrix A and actual matrix B:

E =
∑
f∈TP

∥∥∥Bf (t)−Af (t)∥∥∥ (4.10)

where Af (t) is an affine transformation for the f th triangle, B is the actual matrix

corresponds to Af (t), and ‖·‖ is the Frobenius norm.

This rigid shape interpolation is capable of integrating texture for each

intermediate shape. For each pixel PIX inside an intermediate triangle Tf (t), we

calculate its three barycentric coordinates. The barycentric coordinates are applied

back to the three vertices of the corresponding source and target triangles, Tf1 and

Tf2, to calculate the pixel on the original source and target images. We denote

the color of pixel PIX within f th triangle for Tf1 and Tf2 as color(PIX1) and
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color(PIX2). The color of pixel PIX on the intermediate f th triangle is assigned by:

color(PIX) = color(PIX1)t+ color(PIX2)(1− t) (4.11)

4.2 Assigning Consistent Rotation for Rigid

Shape Interpolation

In practical situations, orientation may be interpolated incorrectly by current rigid

interpolation approaches such as [2, 81]. Inconsistent rotations can occur anywhere

in a shape, either in the interior or on the boundary. To prove this, consider a single

triangulated shape as shown in Fig.4.4a and a copy of it rotated ε radians as shown

in Fig.4.4b. Now rotating a triangle T1 to T ′1 has two choices: clockwise or counter

clockwise. This will introduce a rotational discontinuity in the neighborhood of

triangle T1. In this section, we first review previous methods on tackling inconsistent

problem, and then we propose an efficient algorithm that gives a unique rotation

assignment with minimum rotation angle.

4.2.1 Previous Methods on Tackling Inconsistent Rotation

[16] proposed an algorithm to generate pleasing interpolations but avoid inconsistent

rotation. Specifically, for an arbitrarily selected triangle T1, select any admissible

rotation angle α(T1). Any time a triangle T has a rotation angle assigned, where the

rotation angles lies in the interval (αT −π, αT +π) to its adjacent triangles that have

not got a rotation angle yet, until all triangles are exhausted. While this method can

assign consistent rotations for triangulation without self-intersection, it need the user

to first specify an admissible rotation.
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(a) Triangulation of a shape.
(b) Copy of shape(a) rotated clock-
wise by ε.

Figure 4.4: The problem of assigning rotations for rigid shape interpolation method:
the triangle T1 could either rotate ε clockwise or −(2π − ε) counter clockwise that
introduces ambiguity.

Similarly, [22, 6] design a simple scheme to choose coherent rotation angles. They

first choose an arbitrary vertex vj and compute its rotation angle αj in [0, 2π), and

then assign the rotation angle for the next vertex (counter clockwise or clockwise) such

that the difference between the two rotation angles is within [−π, π). This assignment

process terminates when all the vertices are visited. However, the resulting rotations

are highly influenced by the starting rotation.

Global search is one way for solving discontinuity if there exist such a consistent

rotation assignment. Removing discontinuities in sequence of rotations is in fact a

classic problem. It is precisely the problem faced when extracting the phase from a

discrete Fourier transform. We can employ the global unwrap method to minimize

the average discontinuity. We put our rotations into an array and just pass it to such

a function. The algorithm scans through the rotation angle and fixes discontinuities

globally. In general, global optimization will result in the best solution for many

optimization problems. While we minimize the average jump among all rotations

using some global unwrap, we cannot guarantee the jump between two adjacent
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rotations is less than π. On the other hand, the global optimization methods often

take more computation time, which will slow down the shape transformations. Thus,

based on the discussion above, we propose a local optimization method for solving

the inconsistent rotation problem.

4.2.2 Our Method for Consistent Rotation Assigning

The rigid shape morphing algorithm may suffer from inconsistent rotations whenever

the rotation is more than π. As shown in Fig. 4.5(top) and Fig.4.6(left column), some

triangles rotate in opposite direction from their neighbors. This problem stems from

the ambiguity of extracting the angle from rotation matrix R. The rotation angle

extracting techniques such as atan2 would just naively return an angle β between

−π and π, which is the smallest magnitude rotation for each triangle. However, the

desired rotation should be β + 2lπ, where l ∈ Z is an integer.

 

 t = 0 t= 0.33 t= 0.67 t = 1 
 

 

 

180° 

-180° 

Figure 4.5: Inconsistent rotations: before fixing inconsistent rotations (top) and
after (bottom). The color represents the rotation magnitudes of clockwise (red) and
counter-clockwise (cyan).

Our input is a set of rotation angles β extracted from rotation matrixR that lie in

the closed interval [−π, π]. We want to generate consistent rotation angles such that
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Figure 4.6: Additional large rotation example. The coloration represents rotation
angle calculated from rotation matrix, red and blue color indicate counter-clockwise
and clock-wise respectively. The original rotations are inconsistent (left column),
after applying our rotation fix the rotations are consistent (right column).
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the jump between adjacent angles is less than π. Previous work [2, 6] has shown that

we may fail to find a solution for inconsistent rotation problem due to the numerical

problem caused by the long thin triangles.

 

 

 
 

 
 

 

 
t = 0 t= 0.2 t= 0.4 t = 0.6 t = 0.8 t = 1

 

 

 

 

-400

°
 

350

°
 

Figure 4.7: Method of [6] tends to create excess rotations when there is no solution
for consistent rotations (top). The fixed results of our method (bottom). The color
indicates the rotation magnitudes of clockwise (green) and counter-clockwise (purple).

Here, we offer an efficient algorithm that gives a unique rotation assignment with

minimum rotation angles, even when consistent rotations do not exist. First, as

illustrated in Figure 4.8(b), we treat each original rotation angle β as one vertex

of a graph G. Second, we set the vertex connectivity of the graph G the same as

the connectivity of the triangles in triangulation TP created in Section 3 such as

the triangulation in Figure 4.8(a). Lastly, we start from one boundary rotation and

examine all its neighbors, fixing any jump that is larger than π by adding 2lπ such

as Figure 4.8(c). We keep searching the graph and adjusting any adjacent rotation

that is inconsistent with the current rotation until all the vertices have been traversed

such as Figure 4.8(d-f).

Specifically, we push the rotations of a triangle on a queue, tagging it as VISITED

and the others as UNVISITED. We start from the triangle with a small rotation and
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Figure 4.8: Making rotation consistent. (a) The triangulation of a polygon. (b) The
graph of rotation angles β that has equivalent topology to (a). (c) We start from one
boundary rotation such as β1. (d-f) We traverse the graph and fix the inconsistency.

enqueue it as the root node as triangles with small rotation will be very steady. We

iteratively dequeue a node and check all its adjacent rotations that are UNVISITED.

For any adjacent rotations that are inconsistent with the dequeued node, set their tag

as VISITED, adjust the rotations and enqueue them. The whole process continues

until the queue is empty. The corrected results in Fig. 4.5, 4.7 and 4.6 were generated

in this way.

During the searching and fixing process, we keep the rotation of the long thin

triangle unchanged if there is a jump of more than π. This is because the inconsistent

rotations often stem from these long thin triangles, which results in numerical problem

for extracting rotation angles. In addition, one triangle lies on the interior of a

source polygon usually needs a small rotation, within −π and π, to be transformed

to the target one. After this process, our method would find a solution to fix these

discontinuity such as the results in Figure 4.7(bottom). All the correct rotations in

this paper are generated by this efficient scheme. Although we cannot prove our

method can always find a consistent rotation assignment, it works well for all the

results in this thesis. When finding consistent rotation is impossible, then we should

probably look for a different compatible triangulations of the source and target before

constructing a high quality morphing.
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4.3 Experimental Results

4.3.1 Line Segment based Shape Interpolation

Fig. 4.9 illustrates the blending between an airplane and a human. This method

calculates complicated warping using multiple pairs of lines. However, as shown in

Fig. 4.10 (t= 0.66), it may suffer from undesired distortion caused by some unforeseen

combination of line segment pairs. For example, we use the same line segment pairs

as Fig. 4.9 but reverse the direction of the line segment between the left elbow and

hand, we would see some undesirable distortions in Fig. 4.10. We need to check where

these ’ghost’ pixels originally come from in the source image and usually we could

solve this problem by adding or deleting a line segment pair. Additional example of

line segment based shape interpolation can be found in Fig. 4.11.

8 

originally come from in the source image; usually we could solve this problem by adding or deleting a 
line segment pair. 

  
t = 0 t = 0.11 t = 0.22 t = 0.33 t = 0.44 

  
t = 0.55 t = 0.66 t = 0.77 t = 0.88 t = 1 

Figure 5 Blending of human and airplane using line segment based morphing 

 

   
t = 0 t = 0.11 t = 0.22 t = 0.33 t = 0.44 

  
t = 0.55 t = 0.66 t = 0.77 t = 0.88 t = 1 
Figure 6 Undesired distortion by reversing the line segment between left elbow and hand in Figure 5 

 

3.2 Image deformation using MLS 

We implemented a deformation system based on the work of Schaefer, McPhail [1], and it can smoothly 
transform between two images of similar structure. As shown in Figure 7, the user could specify a set of 
control points pi and a new deformed position qi of the control point pi , based on pi and qi the user could 
generate some realistic intermediate shapes as if they are manipulating the real object. 

Figure 7 Deformation with control points shown in purple 

Our goal is to find an affine transformation M that could preserve the local rigidity as much as possible. 
We limit the transformation used in moving least squares as similar and rigid affine transformation. 
Consider a weighted least squares problem for an image, we have the cost function in equation(5). 

Figure 4.9: Blending of the human and airplane using line segment based
interpolation.
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3.2 Image deformation using MLS 

We implemented a deformation system based on the work of Schaefer, McPhail [1], and it can smoothly 
transform between two images of similar structure. As shown in Figure 7, the user could specify a set of 
control points pi and a new deformed position qi of the control point pi , based on pi and qi the user could 
generate some realistic intermediate shapes as if they are manipulating the real object. 

Figure 7 Deformation with control points shown in purple 

Our goal is to find an affine transformation M that could preserve the local rigidity as much as possible. 
We limit the transformation used in moving least squares as similar and rigid affine transformation. 
Consider a weighted least squares problem for an image, we have the cost function in equation(5). 

Figure 4.10: Generating undesired distortion by reversing the line segment direction
between left elbow and hand in Fig.4.9.
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t = 0                 t = 0.11 

 
t = 0.22               t = 0.33 

 
t = 0.44               t = 0.55 

 
t = 0.66               t = 0.77 

 
t = 0.88               t = 1 

 

Figure 4.11: Additional example of shape interpolation using line segment based
interpolation.
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4.3.2 Shape Interpolation Using Moving Least Squares

Fig. 4.12 (a) and (b) shows two inputs, source and target image, we want to transform

from Fig. 4.12 (a) to Fig. 4.12 (b) by some transformation function. Fig. 4.12

(c) shows the results of similar affine transformation, we can see that the upper

arm is stretched due to some non-uniform scaling of M defined in Equation 4.5.

Compared with MLS affine transformation, Fig. 4.12 (d) shows a more realistic result

using similar affine transformation. Fig. 4.12 (e) shows the result using rigid affine

transformation, the upper arm preserved better angle than the other transformaions

and it gives us an impression that we are operating the real object.

10 

Figure 8 (a) and (b) shows two inputs, source and target image, we want to transform from Figure 8 (a) 
to Figure 8 (b) by some transformation function. Figure 8(c) shows the results of similar affine 
transformation, we can see that the upper arm is stretched due to some non-uniform scaling in M. 
Compared with MLS affine transformation, Figure 8(d) shows a more realistic result using similar affine 
transformation. Figure 8(e) shows the result using rigid affine transformation, the upper arm preserved 
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Figure 4.12: Shape deformation with sparse control points using MLS.

Fig. 4.13 shows that this method may generate some white space when the elbow

approaches the waist, there are some blank between them. Fig. 4.14 blends the

human and airplane with dense control points. Because this rigid MLS transformation

only rotates and translates the shape, it is more suitable for blending two shapes of

similar geometrical structure. We can see the jagged edge along the contour of the

shape such as time slice t = 0.66 shown in Fig.4.14, which are caused by moving

the dense control points that preserves local rigidity. Fig. 4.15 shows an additional

example of transformation using MLS.
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Figure 4.13: Fold back happends when two parts approach to each other.
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t = 0 t = 0.11 t = 0.22 t = 0.33 t = 0.44 
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Figure 10 Image deformation with dense control points using MLS 

proportion principle, but more complex alignment methods [23] could be incorporated into our algorithm. 
In this section, we aim to construct compatible triangulations of the given two simple polygons based on 
the assumption that the two polygons have one-to-one vertex correspondence. We then introduced two 
mesh smoothing methods to improve the quality of the mesh. 

 

4.1 Isomorphic dissections of shapes 

Compatible meshes are isomorphic meshing of the interiors of two polygons that having a bijection 
between their vertices. Figure 11 shows that given two simple n-gons, we may fail to triangulate the two 
n-gons in a compatible manner if only using the vertices on the polygon. However, Aronov, B., et al. 
[24]proved that we can generate compatible triangulations if at most O(N2) additional inner vertices are 
allowed. 

 

 

Figure 11 We cannot generate compatible triangulations for P1 and P2 without inner vertices 

Given a pair of arbitrary simple polygons P and Q with a correspondence between their vertices, we 
attempt to construct compatible triangulations of P and Q. We then define an arbitrary convex n-gon M 
with a correspondence the same as P and Q. For any triangulations (without any inner vertices) T1 of 
polygon P, map the chords of T1 to the chords of M. This generates a triangulation T1’ of M and a 
piecewise-linear isomorphism I1: M->P that map the vertices of M to those of P. Repeat this process for 
polygon Q and we would construct a new triangulation T2 of M and another piecewise-linear isomorphism 
I2: M->Q. We subdivide the convex polygon M by overlaying the triangulations T1 and T2, which would 
introduce O(N) vertices. We arbitrarily triangulate the subdivision with S such that no additional vertices 

Figure 4.14: Image deformation with dense control points using MLS.

4.3.3 Rigid Shape Interpolation

The two-dimensional shapes for the rigid shape interpolation are generated by

extracting a contour out of an image. For the correspondence of contours, we

defined manually several vertex-to-vertex correspondences, while the remaining

vertices were automatically aligned. A more intelligent way of computing the feature

correspondence is using the geodesic distance to compute the similarity between two

polygons.

As shown in Fig.4.16, we can see the human are smoothly transformed into an

airplane. These local transformations are naturally interpolated over time and serve

as the basis for composing a global coherent least-distorting transformation. Fig.4.17

shows one more example of rigid shape interpolation.

Compared with previous methods, i.e. line segment and control point based



4.3.3 Rigid Shape Interpolation 63

 
t = 0                 t = 0.11 

 
t = 0.22               t = 0.33 

 
t = 0.44               t = 0.55 

 
t = 0.66               t = 0.77 

 
t = 0.88               t = 1 

 

Figure 4.15: Additional example of shape interpolation using MLS.
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t = 0                 t = 0.11 

 
t = 0.22               t = 0.33 

 
t = 0.44               t = 0.55 

 
t = 0.66               t = 0.77 

 
t = 0.88               t = 1 

 

Figure 4.16: Rigid shape interpolation.
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t = 0                 t = 0.11 
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t = 0.44               t = 0.55 

 
t = 0.66               t = 0.77 

 
t = 0.88               t = 1 

 
Figure 4.17: Additional example of blending shapes using rigid shape interpolation.
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shape interpolation, rigid shape interpolation algorithm is able to blend shape of

different geometrical structure and generate smooth transformations. In addition,

rigid shape interpolation offers the possibility to add texture to the shapes such that

shape blending becomes applicable to images.

4.3.4 Regulating the Rotation for Rigid Shape Interpolation

As shown in Figure 4.18a, the rotations extracted from polar decompositions are

the original rotations without any fix. More details about polar decomposition

can be found in Section 4.1.3 and [2]. We can see that the rotations extracted

from polar decompositions have big jump at the 5th and 15th boundary rotations in

Figure 4.18a. [6] fixes this inconstant rotation problem through adding 2lπ, where l

is an integer. The global search tries to find a global solution that each jump among

adjacent rotation is within π. The results of our method are the same as [6] and the

global search method.

Figures 4.18b shows another example that there is no consistent rotations, in

which the compatible meshes are created by the method of [71]. There is a big

jump at the 20th boundary triangle rotation. The problem stems from the rotation

of the 19th boundary triangle, which is a long thin triangle. [6] starts from one

boundary rotation and propagates the rotations inward either clockwise or counter-

clockwise. In order to reduce the jump between adjacent rotation, their method tends

to add additional rotations that lead to a big jump between the starting and ending

rotation. In contrast, our method starts from one boundary rotation and searches

both clockwise and counter-clockwise to fix inconsistent rotations, which can avoid

the poor results by [6]. Our method ignores these long thin triangles and keeps

these rotations unchanged, which minimizes the jump between all adjacent rotations.
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Figure 4.18: Computing consistent rotations by starting from the 1st triangle. (a)
The boundary rotations of the swirl-like shape to stick, (b) human to butterfly.
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This is because (1) We observed that triangles lie on the interior of a source polygon

usually need a small rotation, within −π and π, to transform to the target one. (2)

Long thin triangles are more likely to cause inconsistent rotations. Our results are

similar to the global search method except for the 20th and 21th rotations. However,

the total amount of jumps between our method and global search is very small for

the example shown in Fig.4.18b.

Here, we discuss the influence of choosing the starting boundary vertex for solving

inconsistent rotation problem. As shown in Fig.4.18a, with the polar decomposition,

there are two jumps at the 5th and 15th vertex respectively. Now we test the starting

vertex at the 5th and 15th vertex respectively. As illustrated in Fig.4.19a, while

our method generates consistent rotation by starting from the 5th triangle, the total

amount of rotation is larger than the solution of starting from the first triangle as

shown in Fig.4.18a. Fig.4.19b shows the case of starting from the 15th vertex, which

is the same as starting from the 5th triangle. The transformations with different

starting vertices in Fig.4.19 can be found in Fig.4.20. We choose the rotation of the

leftmost (1st) triangle of the stick-like shape as shown in Fig.4.5 because (1) The

1st triangle just needs a small rotation to be transformed into the target triangle

and thus is more stable during shape morphing. (2) The total amount of rotations

starting from the 1st triangle is smaller than the other solutions.

Compared with previous work such as [6], we offer an improvement over their

method by taking additional steps to ensure that the rotation assignment chosen is

unique and minimal. In addition, previous methods are slightly more succinct than

ours, made so by the elimination of the special boundary handling step. Lastly, our

method is able to deal with cases that consistent rotation assigning does not exist

while the other methods [16, 22, 6] tend to generated excess rotations as illustrated
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Figure 4.19: Fixing inconsistent rotations for swirl-like shape to stick-like shape by
starting from the (a) 5th and (b) 15th triangles respectively.
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in Fig.4.7(top) and Fig. 4.18b. More examples of assigning consistent rotation using

our method can be found in Fig. 4.21.

  

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 4.20: Shape transformations with rotation fix that starts from the vertices
at the (a) 1st, (b) 5th, and (c) 15th triangles. The case of (b) and (c) need a larger
amount of total rotation than (a).
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Figure 4.21: Additional consistent rotation examples using our method.
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4.4 Summary

In this chapter, we first discuss the image space and object space morphing methods.

Specifically, for the image space morphing approaches, we apply the line segment

based morphing and control point based shape deformation to blend an airplane and a

human. The line segment based morphing can generate complicated shape morphing

results, however, it may suffer from the undesired distortion due to the unforeseen

combination of line segment pairs. While the control point based deformation creates

smooth transformation between similar shapes, it is not suitable for blending two

shapes of very different geometrical structure. For object space morphing, we apply

the rigid shape interpolation method, which handles shape with different geometrical

structure and keep the rigidity during morphing process. However, the rigid shape

morphing algorithm may suffer from inconsistent rotation whenever the rotation

is more than π. Finally we identify the failure mode related to large rotations

that is easily triggered in practical use, and we present a solution for this as well.

Experimental results show that our method well handles large rotation for rigid shape

interpolation algorithm.



Chapter 5

Human Posture Reconstruction

Recent advances in depth camera based motion tracking devices such as the Microsoft

Kinect has enabled efficient human-computer interaction using body movement,

which enhances interactive systems such as motion-based gaming and sport training.

In this thesis, we use RGBD camera (i.e. Kinect) as our purpose is for interactive

applications and Kinect can estimate human poses in real time. While Kinect can

be used to track the user and determine the user’s 3D joint positions in a robust

manner, the captured data suffer from poor precision due to self-occlusions. In this

chapter, we propose a new real-time probabilistic framework to enhance the accuracy

of live captured postures that belong to one of the action classes in the database.

In Section 5.1, we illustrate the operation for data acquisition and preprocessing.

In Section 5.2, we propose a new real-time probabilistic framework to enhance the

accuracy of live captured postures. In Section 5.3, we show the posture reconstruction

results using our method.
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5.1 Data Acquisition and Preprocessing

For brevity, in this thesis we will use MOCAP to represent human motion data

captured by an optical motion capture system. The postures obtained from Kinect

are noisy and incomplete while MOCAP is accurate and stable. Hence, we can

use MOCAP captured in an offline training stage to reconstruct postures captured

by Kinect in real time.

5.1.1 Data Acquisition

We build a motion database captured from an optical motion capture system of

Motion Analysis Corporation [47] with 7 cameras. Our database consists of different

types of motions such as golf swinging and Tai Chi. The skeleton of the MOCAP

system is a superset of that of the Kinect system, so we manually select 20 joints

from the skeleton of the MOCAP system to match those of Kinect. Each posture in

the database denotes a set of 3D positions of the body parts.

In this thesis, we model the relationship between Kinect data and MOCAP with

Gaussian Process. Specifically, we capture motions with Kinect and optical motion

capture system at the same time to identify their correspondence. The setup of this

capturing procedure is shown in Fig. 5.1. The posture of Kinect at time t is denoted

as Xt = (x1t , x
2
t , ..., x

n
t ), xit ∈ R3, where xit represents the 3D joint position of joint i

over time t. There are 20 joints based on the skeleton definition of Kinect, i.e. n = 20.

The corresponding MOCAP of Xt is denoted as Mt = (m1
t ,m

2
t , ...,m

n
t ),mi

t ∈ R3.

To enhance the robustness of the spatial prediction model (Section 5.2.1) and

to make the system invariant to different subjects, we follow [62] to conduct the

normalization and retargeting processes, as they are simple yet effective. The posture

normalization procedure is done by removing the rotation along the vertical axis and
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Figure 5.1: Human motion capture with Kinect and an optical motion capture system.

the global 3-D translation. The retargeting procedure ensures the system to be

invariant to the skeleton size of the user.

5.1.2 Posture Budgeting

In this subsection, we introduce a data pruning scheme called posture budgeting to

discard redundant samples.

We employ the probabilistic GPs to determine the samples that are informative

to the model. We remove a specific training sample if such a sample can be precisely

predicated by its neighbors in terms of the mean and variance. Specifically, we

iteratively check each training sample (xit, y
i
t) of joint i and determine its redundancy

by calculating the relative entropy of the prediction of the training sample (xit, y
i
t) with

respect to the rest of the database. Following [77], we compute the Kullback-Leibler
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(KL) divergence by:

D
KL

(p(yit|X i, Y i, xi
t)||p(yit|X i − xi

t, Y
i − yit, x

i
t)) (5.1)

where (X i, Y i) is a set of training samples, (xi
t, y

i
t) is one of the samples in (X i, Y i),

and yit is the difference between MOCAP data and Kinect data. Since both

p(yit|X i, Y i, xi
t) and p(yit|X i − xi

t, Y
i − yit, x

i
t) are Gaussian Processes, we can solve

the KL divergence in close form as:

∫
p(yit|X i, Y i, xi

t) log
p(yit|Xi,Y i,xi

t)

p(yit|Xi−xi
t,Y

i−yit,x
i
t)
dx (5.2)

Further details of solving p(yit|X i, Y i, xi
t) can be found in section 5.2.1 and 5.2.2.

Fig. 5.2 shows the impact of posture budgeting. The unfiltered Walking motion

database includes 1120 training samples, which is reduced to 681. Nearly 40% of the

training data can be pruned while maintaining a similar error level. For the details

of the reconstruction error definition, please refer to Section 5.3.3.

Figure 5.2: Posture budgeting: We can shrink up to 40% of the training data while
the mean error almost remains constant.



5.2 Posture Reconstruction 77

5.2 Posture Reconstruction

To ensure that the reconstructed posture is accurate and resembles the input data

from Kinect, we formulate the posture reconstruction as an optimization problem by

minimizing an energy function. Such an energy function consists of three energy terms

to constrain the solution space, which are the spatial prediction term, the temporal

prediction term, and the reliability term. In the following, we will elaborate the

definition and purpose of each term.

5.2.1 Spatial Prediction

Assuming that the MOCAP posture Mt is the corrected posture of the Kinect posture

Xt, we design a spatial prediction term to evaluate how well the reconstructed posture

fits with the MOCAP data, which implicitly favors solutions that are more similar

to the correct posture.

Due to self-occlusions and sensor error, there exists a residual offset between Xt

and Mt, which is calculated by Yt = Mt − Xt, where Yt = (y1t , y
2
t , ..., y

i
t), y

i
t ∈ R3.

During run time, the objective is to predict the residual offset Yt so that we can

obtain the reconstructed posture Mt by appending Yt to Xt.

In this thesis, we adopt the non-parametric GP as the predictor. More formally,

let X i = [xi1, . . . , x
i
T ]T be the input data of an arbitrary joint i, where T is the

total number of frames. Let Y i = [yi1, . . . , y
i
T ]T denote the output values such that

yit is the corresponding output of the input xit. Here, we model the sensor error as

the difference between the Mocap data and the Kinect data using Gaussian process,

which transforms the input X i of the ith joint into the output Y i by:

yit = f(xit) + ε (5.3)
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where ε ∼ N (0, β−1) is a noise variable, which is independent for each data point.

The joint distribution of the output Y i conditioned on input X i is given by:

p(Y i|X i) =

∫
p(Y i|f i, X i)p(f i|X i)df = N (Y i|0, K) (5.4)

where K is the covariance matrix, in which the element k(xia, x
i
b) is defined as:

k(xia, x
i
b) = θ0 exp

(
−1

2
(xia − xib)

T
W (xia − xib)

)
+ θ1 + β−1δab

(5.5)

where a and b are indices of training samples of joint i, δab is Kronecker’s delta

function, W is kernel width, θ0 is signal noise, θ1 is a constant bias. At the training

stage, with the obtained training data from Kinect and MOCAP, we can learn the

hyper-parameters of Φ = {θ0, θ1,W, β} by maximizing the log marginal likelihood:

log p(Y i|X i,Φ) = −1

2
Y iTK−1Y i − 1

2
log |K|+ C (5.6)

where K is the covariance matrix defined in (5.5) and C is a constant. Obviously, the

computational cost of learning GP is dominated by the cubic complexity of computing

the inverse of covariance matrix K−1.

Human body joints are highly coordinated and it is important to take into account

the relationship between them. Here, given an arbitrary joint, we use its neighboring

joints for prediction. Specifically, given a joint i at time t, xit, its neighboring joints

N(xit) are defined as the set of joints that are directly connected with the same

bone segment as joint i. Therefore, the input feature xit for obtaining yit of joint

i is the union set of x̃it and N(x̃it), where N(x̃it) is the normalized position of the
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neighboring joints for joint i. The input data of joint i is thus defined as X i =

[(x̃it1 , N(x̃it1)), . . . , (x̃
i
tn , N(x̃itn))]T , where t1, . . . , tn are time slices. The output data

Y i correspond to X i of the prediction model. To simplify notation, we use xi∗ =

(x̃i∗, N(x̃i∗)) to denote new input of the ith joint at time t∗ and use yi∗ to represent the

corresponding output of xi∗ in the remaining parts of the thesis.

With the learned model, we formulate the above prediction for yi∗ as a conditional

probability distribution, yielding the spatial prediction energy term of the ith joint

as defined below:

Ei
S = ln p(yi∗|X i, Y i, xi∗) ∼ N (µ(xi∗), σ(xi∗)) (5.7)

where

µ(xi∗) = k(xi∗, X
i)K−1Y i = k(xi∗, X

i)α (5.8)

σ(xi∗) = k(xi∗, x
i
∗)− k(xi∗, X

i)K−1k(xi∗, X
i)T (5.9)

are the predicted mean and variance respectively, K is the covariance matrix defined

in (5.5), α = K−1Y i is the so-called prediction vector that can be pre-calculated from

training samples, and the predicted mean is determined by the vector k(xi∗, X
i).

The term ES ensures that the reconstructed postures are similar to the correct

postures as much as possible. Predicting the offset of each joint reduces the searching

space compared with inferring individual joints directly. The use of the weighted local

GP models allows synthesizing variations in postures based on the motion database.

There are several publicly available implementations of Gaussian Process. In this

thesis, we used the library developed by Lawrence [36].
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5.2.2 Incremental Learning of Local Gaussian Processes

The major problem of using full GP is its cubic learning complexity of the inverse

covariance matrix K−1 in (5.6). Here, we propose a new method based on a local

mixture of Gaussian Processes that has the following advantages: 1) The local GP

models are created by partitioning the posture space into Q local regions using

clustering algorithm, and training Q local GP models independently. This relieves

the cubic computational cost for learning the full GP model. 2) Since we use the

weighted average prediction of nearby local models in which only a small number

of training samples are involved, the prediction process is fast. 3) With the use of

local models, it becomes possible to incrementally update a specific local GP with

the complexity of O(S2), where S is the size of local GP. With the newly added

predicted samples, the system accuracy can be enhanced for run-time postures that

are different from those in the database.

Our algorithm consists of three major parts: 1) learning the hyper-parameters

of local GP models; 2) performing the weighted prediction of local GP models; 3)

incremental updating of corresponding local GP models, that is, adding a new sample

into the closest local model and updating the inverse covariance matrix K−1 in (5.8).

Fig. 5.3 shows an example of applying the local mixture of GP models. To simplify

illustration, we project the 3D joint positions onto the XZ plane.

Learning of local Gaussian Processes

We cluster the training samples into Q regions and learn the hyper-parameters at

each local region. In our system, Q is empirically set as 30. Similar to Section 5.2.1,

the hyper-parameters of Φ for each local model can be estimated by maximizing the

log marginal likelihood in each local region as defined in (5.6).
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Figure 5.3: Overview of the local mixture of GP models. (a-b) We capture postures
by the MOCAP system and Kinect at the same time to generate the training samples.
(c) At the training stage, we partition the samples into Q = 4 local regions by K-
means and learn Q local GPs with S = 10 training samples independently. (d) During
prediction, we extract feature of the ith = 7 (left hand) joint, x7∗ = (x̃7∗, N(x̃7∗)). (e) For
a given test sample, xi∗, shown in red star, we find the nearby L = 3 local models by
similarity measurement defined in (5.10). (f) We compute the local predicted mean
by the lth local GP model and then generate the weighted mean prediction µ(xi∗)
using L nearby local models given by (5.13).

Here, we explain how to partition the samples into different local regions. Given

a new input xi∗ of joint i, assigning xi∗ to the qth local region is straightforward by

measuring the similarity between xi∗ and the center of cluster Cq. Here, we use the

Gaussian kernel to measure the similarity, which is in the same form of (5.5):

similarity(q) = exp(−1

2
(xi∗ − Cq)TW (xi∗ − Cq)) (5.10)

where Cq is the center of the qth cluster (q ∈ Q) and W is the kernel width.

To speed up the run-time computation, we learn these hyper-parameters as an
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offline process named GP-offline. Its computational complexity is the summation of

the complexity of clustering, O(QdN), and the complexity of learning Q local GP

models, O(QS3), where Q is the number of local models, d is the dimension of input,

N is the total training data, and S is the size of each local model. The first part of

Algorithm 5.1 summarizes the training of local GP models, where the kmeans(X i, Q)

function partitions the X i into Q clusters, and returns an index set ςq of samples for

the qth local model.

Prediction of local Gaussian Processes

Note that the mean of the prediction in (5.8) can be written as a function of Y i:

µ(xi∗) =
∑T

t=1
wity

i
t (5.11)

where wit is the tth element of k(xi∗, X
i)K−1, T is the total number of frames. In

this view, the mean of the prediction distribution is determined by the weighted

combination of the N training outputs. We therefore propose to interpret the full

GP as a global voting process, in which all weighted training outputs contribute to

the decision of the test sample xi∗ of joint i. We observed that local neighborhoods

behave similarly such that nearby samples are likely to have similar output. With

this insight, the full GP could be locally approximated by a small number of GPs

near a given feature xi∗ of joint i, which could significantly reduce the computational

cost and speed up the prediction.

Here, we explain how to determine the vote of local models. Similar to the

model in [84], the contribution of each local model is determined by the distance

to each local model. Given a new input xi∗ = (x̃i∗, N(x̃i∗)) of joint i, the weight

of each local GP model can be determined by the normalized distance to lth local
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model. Specifically, we compute the averaged prediction of L nearby local models by

µ(xi∗) = E{µ
l
|xi∗} =

∑
l∈L

µ
l
(xi∗)p(l|xi∗) where µ

l
(xi∗) is the predicted mean using the lth

local model given by (5.11) and p(l|xi∗) is the weight of each local GP, which is given

by:

p(l|xi∗) = similarity(l)
/∑
η∈L

similarity(η) (5.12)

where similarity(l) measures the similarity between xi∗ and the center of the lth local

model given by (5.10). Hence, we calculate the weighted prediction by:

yi∗ =
∑
l∈L

( similarity(l)∑
η∈L

similarity(η)

)
N (µ

l
(xi∗), σl

(xi∗))

=
∑
l∈L

∑
ς∈S

( similarity(l)∑
η∈L

similarity(η)

)
wilςy

i
lς

(5.13)

where L is total number of the nearby local models, S is the size of training samples

in each local model, ς is the index of local training samples in S, wilς is the element of

k(xi∗, X
i
ς)K

−1
ς,ς , and yilς is one of the offsets in S that belongs to lth local model. The

prediction process is summarized in the second part of Algorithm 5.1.

The prediction of our model is computationally inexpensive as those local models

are learnt from a very small set of neighborhoods. L and S are parameters of our

model, and typical small values are sufficient to generate satisfactory results. In our

implementation, the size S of each nearby local model is 50 and the number of nearby

local models L is 9. The influence of L and S are discussed in Section 5.3.3.

Incremental updating of local Gaussian Processes

One limitation of the data-driven method for posture reconstruction is that the

reconstruction quality might drop significantly if we cannot find similar postures
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Algorithm 5.1 Local mixture of GP models and prediction

Offline: Learning of hyper-parameters
Q: total number of local GP models
CQ: the center of each local GP model
ςq : the index set of samples for the qth local model(
CQ, ςQ

)
= kmeans (X i, Q)

for q = 1 to Q do
{φ̄q} ⇐ max(ln p(Y i

ςq
|X i

ςq
, φ̄q))

end
Online: Prediction of a new input of joint i
Input: new input, xi∗, of joint i
L: the number of nearby local models
S: the size of training samples for each local GP model
for l = 1 to L do

Compute the similarity to the center of lth cluster:
similarity(l) = exp(−1

2
(xi∗ − Cl)TW (xi∗ − Cl))

Compute the local predicted mean by the lth local model and ς
l

is the index
set of lth local training samples:
µ

l
(xi∗) = k(xi∗, X

i
ς
l
)K−1ς

l
,ς
l
Y i
ς
l

σ
l
(xi∗) = k(xi∗, x

i
∗)− k(xi∗, X

i
ς
l
)TK−1ς

l
,ς
l
k(xi∗, X

i
ς
l
)

end
Compute the weighted prediction of new input xi∗ of joint i by the L local models:

yi∗ =
∑
l∈L

(similarity(l)

/∑
η∈L

similarity(η))N (µ
l
(xi∗), σl

(xi∗))

in the database. To relieve this problem, our model should be able to learn from the

newly estimated samples such that we are more likely to adapt to unknown postures

that are different from those in the database.

Here, we explain the major process of incremental updating of local GP models.

During the local GPs learning process, we learn the hyper-parameters of Φ and

factorize the covariance matrix K by (5.14). At the prediction stage, the local models

would predict the offset yi∗ given a new input xi∗. During the incremental updating

process, we preserve the samples (xi∗, y
i
∗) with high reliability and low predictive

variance and append it into the nearest local model using the similarity measurement

given by (5.10).
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We calculate the similarity between xi∗ and the mean of each local Gaussian

Process. If the similarity values with all local GPs are smaller than a predefined

threshold wsimilar, we create a new local model centers at xi∗. Otherwise, we update

the local GP with the highest similarity value. Notice that during the incremental

learning process, the number of newly added samples can be further reduced by

posture budgeting introduced in section 5.1.2.

To update a local GP, we need to first update both the prediction vector and

the mean of the local model. To update the prediction vector α = K−1Y i, we adapt

[57] in which the K−1 is updated by adjusting Cholesky factorization. As K is a

symmetric, positive-definite matrix, we can uniquely factorize K as:

K = UTU (5.14)

where U is a upper triangular matrix with positive diagonal elements. We then

update the mean of the corresponding local model.

Given a new input xi∗ of joint i, we need to add additional rows and columns to

K and U as follows:

Knew =

 K knew

kT
new knew

 (5.15)

UT
new =

 UT 0

uT u∗

 (5.16)

where knew = k(X i, xi∗), knew = k(xi∗, x
i
∗). Then, we can solve u and u∗ by completing

Knew = UT
newUnew as:

Uu = knew, u∗ =
√
knew − uTu (5.17)

Once we have solved Unew, we can update the prediction vector α in
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UT
newUnewαnew = Y inew through back-substitution. The cost of back-substitution for

a local model is O(S2), where S is the number of training samples in a local model.

Finally, we recalculate the corresponding local model using (5.8).

Table 5.1 compares the complexity of the full GP and our method. The

computation of the Cholesky factorization is O(QS3), where Q is the number of

local GP models and S is the number of training samples in a local model. The

prediction cost is O(LS2), where L is the number of nearby local GPs given an

input. Thus, the offline learning complexity, O(2QS3 + QdN), dominates the main

computational complexity of our method. The cost of incremental updating is

O(S2) due to the update of Cholesky factorization, which enables our system to

incrementally update a specific local Gaussian Process in real time. Algorithm 5.2

summarizes the incremental learning of local models.

Table 5.1: Computational complexity: The main computational cost of our method
is the offline learning while the incremental updating is fast.

Proposed Method Full GP
Learning O(2QS3 +QdN) O(N3)
Prediction O(LS2) O(N2)
Incremental Updating O(S2) N/A

5.2.3 Temporal Prediction

The above spatial prediction considers each posture independently. To ensure the

temporal smoothness between consecutive frames, the relationship between frames is

modeled as a second order temporal model, which has been verified to be effective

in preserving temporal smoothness [63]. Specifically, we adopt a constant velocity

variation to smooth velocity, which is formulated as below:

ET = ln p(Mt|Mt−1,Mt−2) (5.18)
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Algorithm 5.2 Incremental learning of local models

Input: new input, xi∗, of joint i
L: the number of nearby local models of xi∗
Cl: the center of the lth local model, where l ∈ L
Q: total number of local GP models
B: the training samples B = (X i, Y i) and Bq represents the samples of the qth local
model
Predict the offset, yi∗, by L nearby local models (see Algorithm 5.1)
for l = 1 to L do

similarity(l) = exp(−1
2
(xi∗ − Cl)TW (xi∗ − Cl))

end
Find the most similar jth local model
max

similar
= max(similarity)

if max
similar

<= wsimilar then
Create a new local model:
CQ+1 = {xi∗}
BQ+1 = {(xi∗, yi∗)}

else
Append {xi∗, yi∗} to the nearest local model j
Bjnew = {Bj; (xi∗, y

i
∗)}

Update the mean of jth model
Cjnew = mean(X i

jnew
)

Update α = K−1Y i of the jth local model:
Compute u , u∗, and Unew
Compute αinew by back-substitution

end

Mt, Mt−1, and Mt−2 are the reconstructed postures at time slices t, t − 1, and

t − 2. We have the following relationship between the reconstructed posture, input

posture and the residual offset:

Mt = Yt +Xt
(5.19)
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Therefore, we can rewrite (5.18) as:

ET = ln p(Yt +Xt|Mt−1,Mt−2)

= ||(Mt −Mt−1)− (Mt−1 −Mt−2)||2

= ||Mt − 2Mt−1 +Mt−2||2

= ||Yt − (−Xt + 2Mt−1 −Mt−2)||2

(5.20)

which facilitates the continuity in the reconstructed motions.

5.2.4 Reliability Embedding

The accuracy of each tracked joint is different depending on the degree of occlusion.

The incorrectly tracked joints from Kinect will incorrectly guide the system to infer

the joint positions. The residual offset, Yt = Mt −Xt, of the correctly tracked joints

should be smaller as they are closer to the corrected posture, namely Mt. Thus, it

is essential to consider the reliability of each joint to constrain the residual offsets of

these joints with higher confidence during the prediction of Yt. We use a reliability

term ER to penalize the residual offset of each joint based on its reliability, which

implicitly ensures that the reconstructed posture resembles the input posture from

Kinect as much as possible. More specifically, the residual offset value yit of joint i

should be smaller if the corresponding joint is with higher reliability.

We adopt the strategy proposed by [62] to evaluate the reliability of the tracked

joints from Kinect. They evaluate the reliability in three aspects: behavior reliability,

kinematics reliability, and tracking state reliability. The behavior reliability refers to

abnormal behavior of a tracked joint, which is calculated by the cosine similarity

between two consecutive displacement vectors of one joint. The kinematics reliability

represents the kinematic correctness of the tracked joints, which measures the change
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of bone length for bones connecting with the joint. The tracking state reliability tells

if a joint is tracked, inferred or not tracked when it is completely occluded. More

details about the calculation of the reliability of each joint can be found in [62]. As

a result, the reliability rate of each joint is a value between 0.0 and 1.0 (inclusive).

We embed the reliability of each joint into the optimization framework and formulate

the following reliability term:

ER = ||RYt||2F (5.21)

|| · ||F is the Frobenius norm. The entry of R is the reliability of each joint, which

ensures the reconstructed posture does not deviate from the input posture from

Kinect. Intuitively, while minimizing the objective function, the value of yit tends

to be small when its reliability value is large.

5.2.5 Energy Minimization Function

With the terms defined in the above sections, the posture reconstruction problem is

formulated as the following optimization function:

E = arg min
Yt

{wSES + wTET + wRER} (5.22)

where wS, wT , and wR are the weights of the energy terms. In our implementation,

they are empirically set to be 0.6, 0.2, and 0.2, respectively. We optimize (5.22) by

using the gradient descent method. We sample a number of potential postures in

the solution space in each iteration. The posture that minimizes the cost function

will be considered as the initial posture sample in the next iteration. Our posture

reconstruction system is frame-based. The initial posture for optimization at each

frame is defined as the previous reconstructed posture, which allows the system to
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have higher chance to find the optimized posture. The optimization procedure stops

when an optimal solution is found or the number of iterations reaches a predefined

threshold.

There are some principles to tune the values of the weights. The weight of

the spatial prediction term should be set the largest, since this term drags the

reconstructed posture to the corrected posture as closely as possible. Second, the

temporal prediction term ensures the temporal stability of the posture sequences.

The reliability term makes sure the reconstructed posture is as similar as the Kinect

posture, since the primary purpose of the system is to reconstruct Kinect postures.

We will evaluate how these terms affect the accuracy of the system in Section 5.3.5.

The proposed framework for posture reconstruction is summarized here. At the

offline stage, we learn a spatial prediction model using Gaussian Process with pairwise

Kinect data and marker-based motion capture data. It ensures that the reconstructed

posture is as accurate as the MOCAP data. We also embed the temporal and

reliability terms in offline process so as to generate temporal smoothness and reliable

postures. At the online stage, the system obtains an optimized posture with live

captured data from Kinect, which ensures the reconstructed posture resembles the

input posture from Kinect while maintaining the temporal smoothness between

previous frames.

5.3 Experimental Results

In this section, we will show the experimental results and present the comparisons

with alternative approaches including Kinect SDK [45], as well as the algorithms

proposed by [59] and [85]. We first show postures with severe self-occlusions
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reconstructed by our approach. Qualitative and quantitative analysis were conducted

to evaluate the accuracy.

The experimental results were conducted on a desktop computer with Intel Core

2 Duo 3.17 GHZ processor. If not otherwise mentioned, we use Kinect official SDK

[45] to obtain posture data. Here, we consider the Kinect device as one additional

reflective marker of the optical motion capture system to eliminate the interference

between Kinect and the optical motion capture system. The setup environment of

Kinect and optical motion capture system is shown in Fig. 5.1.

5.3.1 Posture Reconstruction

The proposed approach works for users with different body sizes and proportions,

because we normalize and retarget the Kinect input posture as explained in

Section 5.1.1. We evaluate our system on a wide range of human motions, including

sports activity such as Tai Chi, bending, golf swinging, and daily actions such as

crossing arms, waving right hand, clapping hands, rolling hands up and down, rolling

hands forward and backward.

We choose these motions because all these motions contain severe self-occlusions,

which are not well tracked by the Kinect system. However, the proposed method can

well reconstruct these inaccurate postures even if a number of joints cannot be tracked

by the Kinect sensor. Fig. 5.4 and 5.5 showed several frames of our results, the lower

right avatar represents the postures reconstructed by our method and the lower left

avatar corresponds to the estimated posture by Kinect SDK [45]. The upper half

shows the RGB and depth images respectively. We can observe that certain parts

of the postures from Kinect SDK are twisted when there exist occlusions while our

method can reconstruct the postures very well.
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(a) (b)

(c) (d)

Figure 5.4: Data set I: postures from Kinect and their corresponding reconstructed
postures. In each picture, the upper half shows the RGB and depth images, in
which the blue skeleton is the tracked results from Kinect. The lower left and right
parts represent the 3D Kinect posture and our reconstructed posture respectively. (a)
Bending over; (b) Crossing arms; (c) Rolling hands forward and backward; (d) Rolling
hands up and down

5.3.2 Qualitative Analysis

In this section, we evaluate the perceptual score for the correctness of postures

reconstructed by our method, postures from Kinect, postures by the method proposed

by [59], [85] and postures captured by an optical motion capture system.

In order to evaluate the perceptual correctness according to the user performed

motion, we measure the perceptual score for the postures of each method using

a survey-based evaluation. Such an experiment has also been performed in [62]
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(a) (b)

(c) (d)

Figure 5.5: Data set II: postures from Kinect and their corresponding reconstructed
postures. In each picture, the upper half shows the RGB and depth images, in
which the blue skeleton is the tracked results from Kinect. The lower left and right
parts represent the 3D Kinect posture and our reconstructed posture respectively. (a)
Clapping hands; (b) Bending leg; (c) Golf swinging; (d) Waving left hand.

and [85]. Notice that while some recent research such as [28] analyzes how viewers

perceive interactions between virtual characters, since the focus of our research is

about posture reconstruction process from noisy data, we do not include detailed

perceptual analysis in the scope of this research.

A total of 15 participants were invited to conduct this experiment. All of them

had little or no experience about motion capture and 3D animation. The purpose

of this experiment is to assess the relative correctness of the obtained postures from

these five methods. We create a set of posture sequences with these five methods
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together with the RGB video so that the participants know what the actual actions

are. Participants were asked to give a score for each motion based on its correctness

according to the performed motion without knowing what method is used. The score

ranges from 1 to 10 (inclusive), where 1 means the most incorrect, and 10 means the

most correct.

The score distribution for Kinect SDK [45], [59], [85], our method and MOCAP

is shown in Fig. 5.6. The overall average scores of these five methods are 5.20, 6.42,

7.51, 7.49 and 9.16 respectively, and the standard deviations are 1.187, 0.578, 0.236,

0.240, and 0.255. As expected, MOCAP data achieve the best scores. We can see

that our method performs better than Kinect and [59] in general. In particular, our

method significantly outperforms Kinect and [59] for motions with more occlusions

such as bending over and rolling hands, as shown in Fig. 5.4a, Fig. 5.4c, Fig. 5.6(b)

and Fig. 5.6(h). The reason is that we embed the reliability term into our optimization

framework, which implicitly ensures the system to recover these joints more than

those with higher reliability. As shown in Table 5.2, our method generates postures

of similar quality compared with [85] with a significantly smaller motion database.

It should be noted that for motion that involves a large range of movement such as

Tai Chi, our method could synthesize postures that are closer to the ground truth

compared to [85]. This is because the weighted prediction of local models allows

synthesizing postures that are not available in the motion database and more possible

solutions are explored.

5.3.3 Quantitative Analysis

In this section, we quantitatively analyze the correctness of the proposed method.

We assume the data from optical motion capture system is the ground truth data.
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Figure 5.6: The perceptual score for the correctness of postures from Kinect, Shen et
al. 2012, Zhou et al. 2014, proposed method, and an optical motion capture system.

To evaluate the accuracy of the reconstructed postures, we define an error function

to measure the distance between reconstructed postures and ground truth postures:

E(F1, F2) =
1

IT

I∑
i=1

Ei(F1, F2) (5.23)

where F1 and F2 are the two sets of postures, I is the total number of joints, and T

is the total number of postures. Ei is the reconstruction error of joint i between two

set of postures, which is defined as:

Ei(F1, F2) =
T∑
t=1

D(F i
1t, F

i
2t) (5.24)

where F i
1t is the ith joint of the posture at time t from F1. D is the Euclidean distance

between two joints of two postures:

D(P i
1, P

i
2) =

√
(P i

1x − P i
2x)

2
+ (P i

1y − P i
2y)

2
+ (P i

1z − P i
2z)

2
(5.25)

With the error function defined in (5.23), we first study the influence of the
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training size of each local model, S, and the number of local models, L, on the

reconstruction error. Fig. 5.7 shows that when we fix the S for each local model, the

3D joint reconstruction error decreases as the L increases. Similarly, for any specific

L, the system accuracy can be enhanced by increasing S. However, the improvement

is not significant when S is raised to 50 and L reaches 9, because the postures become

redundant and do not contribute to the reconstruction process. Thus, the value of S

and L are empirically set to 50 and 9 respectively.

Figure 5.7: Influence of the training size and the number of local GP models on the
3D joint reconstruction error.

As an example, Fig. 5.8 shows the trajectory of the left hand in a golf swinging

movement using offline local GPs (LGP-offline) and local GPs with incremental

updating (LGP-incremental). We can see that the ground truth data (MOCAP)

is smooth and the Kinect data is noisy due to the self-occlusions and sensor error.

The mean error of Kinect, LGP-offline, and LGP-incremental is 12.36, 8.1, and 7.7

cm. Compared with LGP-offline, the LGP-incremental is closer to the ground truth in
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general, which verify the effectiveness of the incremental learning framework. We can

also see that a small number of local GP models (L = 9) is sufficient to reconstruct

postures.

Figure 5.8: Trajectory of the left hand when performing golf swinging motion.

The number of frames in the training database used in our method, [59] and

[85] are reported in Table 5.2, which shows that our database is 35% smaller than

that of Zhou et al. [85], and 83% smaller than that of Shen. et al. [59]. In addition,

our newly proposed local mixture of GPs algorithm allows us to combine all types

of training motion in Table 5.2 as a single database, while in [85] a separate training

database is built for each type of motion.

More comparisons of different type of testing motions between LGP-offline, LGP-

incremental, [59], and [85] can be found in Table 5.3. Here we choose 5 types
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Table 5.2: The number of frames for each type of training motion database used in
our method, Shen et al. 2012, and Zhou et al. 2014.

Motions Our method
Zhou et al.

2014
Shen et al.

2012
Tai Chi 411 650 2320
Bending 201 320 1580
Golf Swinging 296 460 1765
Crossing Arms 245 380 1685
Waving Right Hand 221 350 1650
Clapping Hands 270 420 1720
Rolling Hand Up and Down 308 480 1840
Rolling Hand Forward and
Backward

306 475 2050

Bending Leg 243 385 1890
Mixed motion database 2501 - 16500

of motion for evaluation: clapping hands, crossing arms, bending, Tai Chi, and

waving right hand. As expected, the error of Kinect was large in general. Our

method outperforms [59] as we take into account the reliability of each joint such

that the inaccurately tracked joints will not guide the system to infer the postures.

For all classes of motions, our method consistently outperforms the Kinect and [59],

which verifies the effectiveness of the proposed method in terms of reconstruction

accuracy. It should be noted that the LGP-incremental can generate comparable

system accuracy compared to [85] while the running time is less than [85]. The

computational time of [85] and our system are 37 and 29 ms per frame, respectively.

Table 5.3: Reconstruction error of Kinect, Shen et al. 2012, Zhou et al. 2014, and
the proposed method on the testing data sets.

Motion Type
Number of Frames

for Testing
Kinect (cm) Shen et al. (cm) Zhou et al. (cm)

Proposed Method (cm)
LGP-offline LGP-incremental

Crossing Arms 2052 12.5 9.8 7.2 7.9 7.4
Bending Over 1835 13.7 9.5 8.4 9.2 8.7

Tai Chi 2885 14.5 10.2 7.5 8.0 7.4
Waving Right Hand 1568 12.5 8.8 6.5 6.9 6.6
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5.3.4 Comparison Between Randomized Forests and Our

Method

In this particular experiment, we do not use Kinect SDK to extract joint positions.

To ensure a fair comparison between our method and randomized forests, which is

the method used to train Kinect, we construct a common training database for both

methods.

Our database contains a large number of synthetic depth images that are created

as follow. First, we create a 3D mesh model in which each body part is labeled.

Second, we retarget Mocap data to drive the movement of the 3D mesh model. Third,

we render depth information of the scene into depth images frame by frame. Since

our 3D model comes with body part labels, we can automatically label body part

information for each pixel in the rendered depth images. Finally, we trained the

randomized forests with the labeled depth images and estimated the joint positions

using mean shift. We also trained our GP models with the same data and the joint

positions found by mean shift using the body parts estimated by randomized forests.

Our training database consists of 17K synthesized depth images generated by Mocap

data, including actions such as golf swing, waving hands, crossing hands and clapping

hands.

We use five-fold cross validation to compare the performance of randomized

forests [60] and our algorithm. Table 5.4 shows the comparison of average

reconstruction error. It can be observed that both methods have similar performance

for simpler motions such as T-pose. However, for more challenging motions that

involve self-occlusion such as crossing hands and golf swing, our method generates

better reconstruction results with smaller reconstruction error.

To better observe the relationship between reconstruction error and reconstructed
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Table 5.4: Reconstruction error of randomized forests and our method using five-fold
cross validation (cm).

Motion Type 

Number of 

Frames for 

Testing 

Reconstruction Error with 

Randomized Forests 

Reconstruction Error 

with Our Method 

Crossing Hands 1512 13.7 8.1 

Golf Swinging 731 14.8 9.2 

Waving Hands 1264 13.3 7.2 

Rolling Hand 

Left and Right 
1372 13.5 7.5 

Clapping Hands 1156 14.2 8.3 

T-pose 369 7.9 7.1 

 

 

 

 

Motion Type 
Reconstruction Error with 

Randomized Forests 

Reconstruction Error 

with Our Method 

Crossing Hands 13.8 8.1 

Golf Swinging 14.9 9.4 

Waving Hands 13.5 7.3 

Rolling Hand 

Left and Right 
13.7 7.4 

Bending Over 14.8 9.3 

Clapping Hands 14.3 8.5 

T-pose 7.8 7.1 

 

postures. We use the error function defined in Equation 5.23 for each joint and plot

the reconstruction error across frames. Figure 5.9 shows the joint errors of two

example motions. We can observe that our method can achieve lower reconstruction

errors compared with randomized forests.

(a) (b)

Figure 5.9: Examples of the reconstruction error of one joint across frames. The
green curve corresponding to our method, brown curve is the reconstruction error of
randomized forests. (a) Bending leg motion. (b) Bending over motion.

In this experiment, we feed the same training data to generate a fair comparison

between randomized forests and our method. However, the reconstruction error of
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randomized forest is larger than that of Kinect and this is mainly because of the

difference in the depth and number of trees. Microsoft suggests that two trees each

to depth 10 will generally achieve accepted results, which is the depth and number

of trees we use in our experiment. They also reported that they trained six trees

each to depth 20. This leads to much more accurate tracking results but with a large

extra memory and computation resource, which takes them about a day on a 1000

core cluster. However, we do not have so much computation resource to do such an

experiment, thus, we only train two trees each to depth 10, which will not result in

the best accuracy. That is major reason why the accuracy of our random forest is

slightly worse than that of Kinect.

5.3.5 Effects of Optimization Terms

In this section, we analyze the reconstruction accuracy by examining the effectiveness

of different terms in the objective function of (5.22). We used Tai Chi motion, bending

over and crossing arms for evaluation because of their complicated movement features.

The results are reported in Table 5.5.

Table 5.5: Reconstruction error of the proposed framework with different constraint
terms.

Setup Terms Used Reconstruction Error (cm)
(a) ES 12.0
(b) ES, ET 10.5
(c) ES, ER 9.7
(d) ES, ET , ER 7.9

We found that both the temporal prior term and the reliability term improve

the reconstruction accuracy, especially for the movements with severe self-occlusions.

Although setup (c) achieves better results than setup (b), the obtained movements

are jerky, because setup (c) predicts postures independently without considering
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relationship between consecutive frames.

5.4 Summary

In this chapter,we propose a new real-time probabilistic framework to enhance the

accuracy of live captured postures that belong to one of the action classes in the

database. We adopt the Gaussian Process model as a prior to leverage the position

data obtained from Kinect and marker-based motion capture system. We also

incorporate a temporal consistency term into the optimization framework to constrain

the velocity variations between successive frames. To ensure that the reconstructed

posture resembles the accurate parts of the observed posture, we embed a set of joint

reliability measurements into the optimization framework.

A major drawback of Gaussian Process is its cubic learning complexity when

dealing with a large database due to the inverse of a covariance matrix. To solve the

problem, we propose a new method based on a local mixture of Gaussian Processes,

in which Gaussian Processes are defined in local regions of the state space. Due to

the significantly decreased sample size in each local Gaussian Process, the learning

time is greatly reduced. At the same time, the prediction speed is enhanced as the

weighted mean prediction for a given sample is determined by the nearby local models

only. Our system also allows incrementally updating a specific local Gaussian Process

in real time, which enhances the likelihood of adapting to run-time postures that are

different from those in the database. Experimental results demonstrate that our

system can generate high quality postures even under severe self-occlusion situations,

which is beneficial for real-time applications such as motion-based gaming and sport

training.



Chapter 6

Application: An Interactive Shape

Morphing System

In this chapter, we build an interactive shape morphing system based on the three

techniques discussed in the thesis: compatible triangulation, consistent rotation

enhanced rigid shape interpolation and posture reconstruction. In Section 6.1, we

present the interactive shape morphing system. We discuss the problem of shape

interpolation with self-occlusion and our solution in Section 6.2.

6.1 Interactive Shape Morphing System

We have implemented a prototype of the proposed interactive shape morphing system.

Fig. 6.1 shows the setup of our interactive shape morphing system. We use Kinect

as the input device of the source shape. The user stands in front of the Kinect and

the system can be controlled by gesture command. For example, the system stars to

capture and extract the shape of the user when the user in the scene raising his/her

left hand over the head. More commands such as raising two hands to go back to the
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Kinect
User

System
Interface

Figure 6.1: The setup of the interactive shape morphing system.

default capture view have been added to the system.

Fig. 6.2 shows the interface of the interactive shape morphing system. As shown

in the bottom left of Fig. 6.2a, the user adopts a pose as the source input shape. The

user could select the target shape in the shape database with certain gesture such

as waving hand left, then the target shape is rendered in the right of Edit window

in Fig. 6.2a. We then compute the compatible triangulation between the source and

target shapes. Finally, we transform the source shape into the target shape based

on the compatible mesh. The intermediate results are shown in the Transformation

window as shown in Fig. 6.2b.

Our interactive shape morphing system can be applied to create animation, movie
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(a) The interface for capturing the calibration shape of the user.

(b) The interface for showing the intermediate transformations.

Figure 6.2: Prototype of our interactive shape morphing system

and even special effects software packages. For example, the Monkey King has seventy

two transformations in the Journey to the West, we could apply our system to
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generate these transformations. On the other hand, the normal users usually do

not have professional resources to generate some interesting morphing video, our

method will make it easier to generate the morphing video.

(a) The interface for capturing the shape of the user with self-occlusion.

(b) The interface for showing the blending results.

Figure 6.3: Additional example of the interactive shape morphing system.
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(a) Shape with self-occlusion

(b) Target shape

Figure 6.4: The compatible triangulation between a shape with self-occlusion (a)
and target shape (b)

6.2 Shape Morphing with Self-occlusion

6.2.1 Problem of Shape Morphing with Self-occlusion

As shown in Fig. 6.4a, the user adopts a pose with self-occlusions, e.g. with right

hand placed in front of the torso and left hand behind it. We apply the compatible

triangulation method discussed in Chapter 3 that generates the compatible mesh

as shown in Fig. 6.4 with mesh highlighted in blue color. However, these meshes

such as Fig.6.4a cannot distinguish the hands and the other body parts. We apply

the rigid shape interpolation method introduced in Section 4.1.3 to blend the mesh

as shown in Fig.6.4. The transformations are shown in Fig. 6.5. We can see the

transformations of the in-between images such as the time slice t=0.2857 does not
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t=0 t= 0.0714 t=0.1429 

t=0.2143 t=0.2857 t=0.3571 

t=0.4286 t=0.5000 t=0.5714 

t=0.6429 t=0.7143 t=0.7857 

t=0.8571 t=0.9286 t=1.0000 
 

Figure 6.5: Examples of shape interpolation with self-occlusion.
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t=0 t= 0.0714 t=0.1429 

t=0.2143 t=0.2857 t=0.3571 

t=0.4286 t=0.5000 t=0.5714 

t=0.6429 t=0.7143 t=0.7857 

t=0.8571 t=0.9286 t=1.0000 
 

Figure 6.6: Additional example of shape interpolation with self-occlusion.
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make sense, because we want the hand of the user to be gradually transformed into

the wing of the butterfly. Fig. 6.6 shows another example of shape morphing with

self-occlusions that has the similar problem to Fig. 6.5.

6.2.2 Shape Morphing with Self-occlusion Enhanced

In order to generate sensible transformation, we need to build compatible

triangulation with self-occlusion. To do so, we can identify overlapping body parts

using joints from Kinect. However, data from Kinect are noisy and unreliable,

thus, we propose a posture reconstruction method to enhance the quality of joint

position obtained from Kinect. In this section, we discuss how to combine compatible

triangulation, rigid shape interpolation, and posture reconstruction techniques to

compute shape morphing with self-occlusion such that the transformations make

sense.

Compatible Triangulation with Self-occlusion. First, we capture a

calibration shape of the user as shown in Fig. 6.7a and build the compatible

triangulation between the calibration shape and target shape as shown in Fig.6.7c-d.

Second, we deform the mesh of the calibration shape as shown in Fig.6.7c into the

source shape that involves self-occlusion as shown in Fig. 6.7e, which implicitly build

the bijection between the source shape with self-occlusion as shown in Fig.6.7f and

target shape as shown in Fig.6.7b.



6.2.2 Shape Morphing with Self-occlusion Enhanced 111

Zhiguang Liu

Shape Morphing with Self-occlusion 
Enhanced

8/23/2016 An Interactive Shape Morphing System
Shape Morphing with Self-occlusion Enhanced 72

(c) Target shape(b) Calibration shape(a) Source shape with 
self-occlusion

(d) Compatible triangulation
of butterfly

(e) Compatible triangulation
of  human

(f) Deformed mesh of 
human

Figure 6.7: Overview of compatible triangulation for shapes with self-occlusion. Our
inputs are (a) The source shape with self-occlusion and (c) The target shape. (b)We
introduce calibration shape. (d-e) We build the compatible triangulation between the
calibration shape (b) and target shape (c). We deform the calibration mesh (e) into
the source shape with occlusion (a) using the reconstructed joint positions estimated
from our posture reconstruction method.

Collision detection and depth adjustment.

As the order of polygon partition algorithm is similar to the breadth first search

method, thus, the triangles are not stored in sequence as illustrated in Fig. 6.8.

We must be careful when different parts of the shape overlap. If we assign depths

inappropriately, the overlapping parts can interpenetrate as shown in Fig. 6.9b. We

continuously monitor the mesh for self-intersection and assign appropriate depth

values to the overlapping parts. The depth value we assigned to each triangle is

estimated from the posture reconstruction algorithm. As we have recovered the joint

positions for each human body joint, we know if the hands are in front of or behind

the spine as shown in Fig. 6.9c.

As shown in Fig. 6.10, we blend the human with self-occlusion and the butterfly.
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v6

v5

v1

v4

v2

v3
u1

u2

u5

u3

u4

u6

T1

T3T4

T5
T2

T1

T4

T5 T2
T3

(a) (b)

Figure 6.8: The triangles are not stored in order for compatible triangulation of the
source (a) and target shape (b).

Compared with the transformations that do not consider body parts overlap as shown

in Fig.6.5, the results in Fig. 6.10 make more sense as we now transform the human’s

limbs into the butterfly’s wings. Fig. 6.11, 6.12 and 6.13 show additional examples

of shape morphing using our method.

We can recommend shapes in the shape database that are similar to the user and

this can be done by using shape matching methods such as calculating the geodesic

distance, Hausdorff distance, and Frechet distance.

6.3 Summary

In this chapter, we present an interactive shape morphing system based on the

compatible triangulation, consistent rotation enhanced rigid shape interpolation

and posture reconstruction algorithm. The compatible triangulation determines

the bijection between the source and target shapes. The rigid shape interpolation

determine the vertex trajectory. The posture reconstruction method detects the body

parts overlap and assigns appropriate depth to the occluded parts. Experimental

results show that our system is easy to use and the transformations are sensible.
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(a) Calibration shape

(b) Without depth adjustment

(c) With depth adjustment

Figure 6.9: Collision detection and depth adjustment. Without appropriate depth
assignment, one can see interpenetration (b). We detect overlapping regions and
adjust depth on the fly (c).
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t=0 t= 0.0714 t=0.1429 

t=0.2143 t=0.2857 t=0.3571 

t=0.4286 t=0.5000 t=0.5714 

t=0.6429 t=0.7143 t=0.7857 

t=0.8571 t=0.9286 t=1.0000 
 
 
 

Figure 6.10: Shape interpolation with self-occlusion enhanced using posture
information.
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t=0 t= 0.0714 t=0.1429

 
t=0.2143 t=0.2857 t=0.3571

 
t=0.4286 t=0.5000 t=0.5714

 
t=0.6429 t=0.7143 t=0.7857

 
t=0.8571 t=0.9286 t=1.0000

 
 
 

Figure 6.11: Additional shape morphing example I: enhancing shape interpolation
with self-occlusion.
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t=0 t= 0.0909 t= 0.1818 

   
t=0.2727 t= 0.3636 t= 0.4545 

   

t= 0.5455 t= 0.6364 t=0.7273 

t= 0.8182 t= 0.9091 t= 1 
 

Figure 6.12: Additional shape morphing example II: transforming a man to one wolf
beast.
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t=0 t= 0.0909 t= 0.1818 

   

t=0.2727 t= 0.3636 t= 0.4545 

  
t= 0.5455 t= 0.6364 t=0.7273 

t= 0.8182 t= 0.9091 t= 1 
 
 Figure 6.13: Additional shape morphing example III: transforming a man to one bat

monster.
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Chapter 7

Conclusions and Future Directions

This thesis has been devoted to the study of planar shape morphing with self-

occlusion by using compatible triangulation, consistent rotation enhanced rigid shape

interpolation, and human posture reconstruction techniques. As concluding remarks,

we recap on our main contributions and discuss some interesting future work.

7.1 Conclusions

Here, we summarize the contributions of this thesis in three groups of

techniques: compatible triangulation, rigid shape interpolation, and human posture

reconstruction.

1. Compatible Triangulations. We propose a new method for computing

compatible triangulation of two simple polygons and apply them to 2D shape

morphing and texture mapping. Our method compatibly decomposes the source

and target polygons into sub-polygon pairs and map the triangulations between a

pair of sub-polygons with a sparse linear system.

As an improvement from previous methods, our compatible polygon decomposi-
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tion algorithm offers more flexible way of decomposing the source and target polygons

such that the minimum interior angle can be maximized in each iteration. This leads

to compatible triangulations with more regular-shaped triangles (as opposed to long

thin triangles) as illustrated by the fact that there are fewer triangles whose minimum

angles are small under our approach compared with other methods in [71, 7, 43].

Second, compared with our preliminarily work [43], our method generates the same

compatible mesh no matter we start the decomposition from the source or target

polygon. Third, with our new mesh quality evaluation metric, the mesh generated

by our method usually experiences less distortion for applications such as shape

morphing and texture mapping. Another advantage is the simplicity of the three

stages that all we need is to decompose a polygon, calculate link paths, and solve a

sparse linear system, which enables real-time morphing.

2. Planar Shape Interpolation. The rigid shape morphing algorithm may

suffer from inconsistent rotation whenever the rotation is more than π. We offer an

efficient algorithm that gives a unique rotation assignment with minimum rotation

angle. We construct a graph and treat each original rotation angle β as one vertex

of the graph. We keep searching the graph and adjusting any adjacent rotation that

is inconsistent with the current rotation until all the vertices have been traversed.

After this process, our method would find a solution to fix these discontinuity. All the

correct rotations in this thesis are generated by this efficient scheme. Although we

cannot prove our method can always find a consistent rotation assignment, it works

well for all the results in the thesis.

3. Human Posture Reconstruction. In this thesis, we present a probabilistic

framework to reconstruct live captured postures from Kinect. Postures from Kinect

are noisy, however, such a noise is not a random signal and we observed that there are
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some underlying patterns in it. In this research, we can thus assume that the noisy

data contain useful information in helping us to find the solution. Then, we apply a

machine learning algorithm to learn the correlation between Kinect data and Mocap

data so as to predict the offset given Kinect data. Finally, we verify our assumption

with accurately reconstructed posture results.

To overcome the problem of incorrectly tracked and missing joints in Kinect,

we adopt Gaussian Process (GP) model as a spatial prior to leverage position data

obtained from Kinect and an optical motion capture system. Specifically, we model

the residual offset between postures obtained from Kinect and MOCAP system

instead of using pairwise posture relationship. While GP works well in small training

data sets, it is not competent in systems that require a large database, such as motion-

based gaming, due to its high computational complexity. To solve this problem, we

propose a new method based on the local mixture of Gaussian Processes to speed

up the learning and prediction. Our system allows incrementally updating of local

models in real time, which boosts the reconstruction accuracy of run-time postures

that are different from those in the database.

7.2 Future Directions

Although the methods presented in this thesis have achieved fruitful results on planar

shape morphing, there are several possible directions for works presented in this thesis

to be further studied.

1. Compatible Triangulations. One drawback of our compatible triangulation

algorithm is that we cannot deal with the polygon with holes. One possible solution

is that we add a bridge between the outer polygon and inner polygons (i.e. the holes).
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We connect the outer polygon with all the holes such that we can treat a polygon

with holes as a single polygon. We can then apply our previous method to compatibly

decompose the source and target polygons. While we have shown many examples of

compatible triangulation in the thesis, we also want to test our algorithm on shapes

with complex structure or completely different topology in the future.

2. Planar Shape Interpolation. While our compatible triangulation method

well handles the mapping between shapes, the morphing results need to be further

improved. As we focus on generating compatible mesh, we simply crossfade between

textures in image space. More sophisticated texture blending or image warping

algorithms such as [55] could be incorporated into our method. Currently, the

intermediate images interpolated are uniquely determined by rigid interpolation

method [2], which offers no means of controls. It would be desirable to modify some

parts of the intermediate shapes if the users are not satisfied with them. We could

explore possible solutions such as the linear constraints proposed in [6] to increase

user creativity.

3. Human Posture Reconstruction. For our posture reconstruction method

to work well, the motion performed by the user should belong to one of the action

classes in the database. The proposed method is useful for real-time applications such

as motion-based gaming and sport training where the user is expected to perform a

motion from a set of common moves that are known in advance. While our system

utilizes neighboring joints for prediction, it is difficult to deal with heavily occluded

postures such as turning around, in which there are only few valid joints. As shown

in Fig. 7.1, Kinect incorrectly recognizes the posture. The incorrect joint positions

and the decrease of reliability of body joint greatly impact the recognition quality.

In such cases, the amount of correct data present is so little that our system cannot
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(a)

(b)

Figure 7.1: Turning around motion. (a) The RGB image of turning around motion
(facing backward); (b) The tracking result of Kinect corresponding to (a) (facing
forward).

produce very good result. One possible solution would be using multiple Kinects to

capture postures from different directions.

There is still room to improve the proposed reconstruction system. The assigned

weights for the terms in the objective function are empirically set to be fixed in

the proposed system. However, the weights can be different for different types of

motion to obtain optimal reconstructed postures. One possible solution would be

to formulate the weights w as a function of the residual offset Yt, which is used to

measure the importance of each term. Assuming Yi(t), Yi(t+ 1), and Yi(t+ 2) to be

the 3-D offset of a tracked body part i in three successive frames, we can calculate
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the displacement vectors as:

di(t− 1) = Yi(t)− Yi(t− 1)

di(t− 2) = Yi(t− 1)− Yi(t− 2)

(7.1)

The acute angle between the two vectors can be calculated by their dot product as:

θi(t) =
di(t− 1) · di(t− 2)

|di(t− 1)| |di(t− 2)|
(7.2)

We then define the temporal weight as ET = θ(t). The smooth change of ET for

successive frames indicates small weight for temporal term. On the other hand, we

use the variance vi = variance(Yi(t)) of all the offset value for joint i at time slice

t to determine the importance of reliability term, which can be calculated by the

normalized equation as:

ER =
v −mean(v)

std(v)
(7.3)

Therefore, the weights can be adaptively determined according to the type of

motion. The incorporation of physical constraints into the proposed framework

is another interesting direction as the reconstructed postures in this work are not

necessary physically correct. One possible implementation would be modeling the

physical attributes (i.e. force field) between the Kinect data and MOCAP data

as a prior distribution, and embed them in the optimization framework to generate

physically valid postures. Last but not least, integrating our system with other simple

yet stable devices such as inertia-based Mocap system would be an interesting topic,

because Kinect can only detect limited range of movements while motion sensor can

be used as a complement, e.g. detecting the occluded body part.
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[83] H. Yasin, B. Krüger, and A. Weber, “Model based full body human motion

reconstruction from video data,” in Proceedings of the 6th International

Conference on Computer Vision / Computer Graphics Collaboration Techniques

and Applications, ser. MIRAGE ’13, 2013, pp. 1:1–1:8.



138 Bibliography

[84] X. Zhao, Y. Fu, and Y. Liu, “Human motion tracking by temporal-spatial local

gaussian process experts,” Image Processing, IEEE Transactions on, vol. 20,

no. 4, pp. 1141–1151, 2011.

[85] L. Zhou, Z. Liu, H. Leung, and H. P. H. Shum, “Posture reconstruction using

kinect with a probabilistic model,” in Proceedings of the 20th ACM Symposium

on Virtual Reality Software and Technology, ser. VRST ’14. New York, NY,

USA: ACM, 2014, pp. 117–125.

[86] L. Zhou, Z. Liu, H. Leung, and H. P. Shum, “Posture reconstruction using

kinect with a probabilistic model,” in Proceedings of the 20th ACM Symposium

on Virtual Reality Software and Technology. ACM, 2014, pp. 117–125.


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Compatible Triangulation
	1.2 Planar Shape Morphing
	1.3 Posture Reconstruction
	1.4 Outline of the Thesis

	2 Related Work
	2.1 Compatible Triangulation
	2.1.1 Common Space based Compatible Triangulation
	2.1.2 Divide and Conquer based Compatible Triangulation

	2.2 Planar Shape Interpolation
	2.2.1 Image Space Shape Interpolation
	2.2.2 Object Space Shape Interpolation

	2.3 Posture Reconstruction
	2.3.1 Posture Reconstruction from Low Dimensional Signals
	2.3.2 Data-Driven Posture Reconstruction
	2.3.3 Regression based Posture Reconstruction


	3 Compatible Triangulation
	3.1 Compatible Triangulation Overview
	3.2 Compatible Decomposition of the Source and Target Polygons
	3.3 Compatible Triangulations Mapping
	3.3.1 Mapping Steiner Points on the Link Path of Source Polygon
	3.3.2 Mapping Steiner Points within the Source Polygon

	3.4 Compatible Mesh Refining
	3.5 Method Complexity
	3.6 Experimental Results
	3.6.1 Compatible Triangulation
	3.6.2 Mesh Quality Evaluation

	3.7 Summary

	4 Planar Shape Interpolation
	4.1 Choosing Shape Interpolation Approaches
	4.1.1 Line Segment based Shape Interpolation
	4.1.2 Shape Interpolation Using Moving Least Squares
	4.1.3 Rigid Shape Interpolation

	4.2 Assigning Consistent Rotation for Rigid Shape Interpolation
	4.2.1 Previous Methods on Tackling Inconsistent Rotation
	4.2.2 Our Method for Consistent Rotation Assigning

	4.3 Experimental Results
	4.3.1 Line Segment based Shape Interpolation
	4.3.2 Shape Interpolation Using Moving Least Squares
	4.3.3 Rigid Shape Interpolation
	4.3.4 Regulating the Rotation for Rigid Shape Interpolation

	4.4 Summary

	5 Human Posture Reconstruction
	5.1 Data Acquisition and Preprocessing
	5.1.1 Data Acquisition
	5.1.2 Posture Budgeting

	5.2 Posture Reconstruction
	5.2.1 Spatial Prediction
	5.2.2 Incremental Learning of Local Gaussian Processes
	5.2.3 Temporal Prediction
	5.2.4 Reliability Embedding
	5.2.5 Energy Minimization Function

	5.3 Experimental Results
	5.3.1 Posture Reconstruction
	5.3.3 Quantitative Analysis
	5.3.4 Comparison Between Randomized Forests and Our Method
	5.3.5 Effects of Optimization Terms

	5.4 Summary

	6 Application: An Interactive Shape Morphing System
	6.1 Interactive Shape Morphing System
	6.2 Shape Morphing with Self-occlusion
	6.2.1 Problem of Shape Morphing with Self-occlusion
	6.2.2 Shape Morphing with Self-occlusion Enhanced

	6.3 Summary

	7 Conclusions and Future Directions
	7.1 Conclusions
	7.2 Future Directions

	List of Publications
	Bibliography



