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Abstract

3D motion capture (mocap) is the process to record and digitalize the movement of

people or objects. Mocap technology is widely used in computer animation, man-

machine interaction games, athletic training and 3D movies, etc. However, it is rather

time and manpower consuming to capture human motions as it consists of calibration

of the system and post processing of the captured artifacts. Therefore, it is essential

to either reuse pre-captured data or develop effective methods to synthesize new mo-

tions. To reuse pre-captured data, we need an efficient retrieval mechanism to search

for a particular motion from a large corpus. Human motion retrieval has proven to

be challenging as human motion is high dimensional in both spatial and temporal do-

mains. Besides, semantically similar motions are not necessarily numerically similar

because of the speed variations. With the retrieved similar motions, we propose to

synthesize human motion variations for intended applications. However, the joints of

the human skeleton are highly correlated based on the articulated skeleton structure

and it is challenging to synthesize natural human motions. In this thesis, we develop

new methods to address the problem of reusing human motion capture data, which

includes three sub-problems, i.e., human motion retrieval, human motion variation
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synthesis and human posture reconstruction.

For human motion retrieval, an effective feature representation plays an impor-

tant role during the motion matching procedure. In this thesis, we propose to learn

features from motion data instead of designing features since hand-crafted features

are not comprehensive enough to represent different kinds of motions. Motivated by

the recent advancement of sparse representation which is commonly used to solve

computer vision problems, we propose a temporal sparse representation (TSR) for

human motion retrieval. Compared with existing methods that adopt sparse rep-

resentation, our TSR encodes the temporal information within motions and thus

generates a more compact and discriminative representation. In addition, we pro-

pose a spatial temporal pyramid matching (STPM) kernel based on TSR, which can

be used for logical comparison between motions. Our STPM improves the effective-

ness of motion retrieval in terms of accuracy and speed. To allow the user to retrieve

desired motions in a natural and intuitive way, we develop a touch-less interactive

human motion retrieval system. The system allows the user to specify the query

motion by performing it directly with Kinect. Besides, the user interacts with the

retrieval system using gestures so no controller is needed and the system delivers a

natural user interface.

With the retrieved similar motions, we synthesize variations that can be used

for intended applications. Human motion variation synthesis is important for crowd

simulation and interactive applications to enhance the synthesis quality. Here, we

propose a novel generative probabilistic model to synthesize variations of human mo-

tion with the retrieved similar motions. Our key idea is to model the conditional



Abstract iii

distribution of each joint via a multivariate Gaussian Process model, namely Semi-

parametric Latent Factor Model (SLFM). SLFM can effectively model the correla-

tions between degrees of freedom (DOFs) of joints rather than dealing each DOF

separately as implemented in existing methods. Detailed evaluation is performed to

show the proposed approach can effectively synthesize variations of different types

of motions. Motions generated by our method show a richer variations compared to

those generated by existing methods.

Besides retrieving motions from pre-recorded motion capture database, human

posture reconstruction with low cost device is an alternative way to obtain human

motions. Recent research works show that devices that can estimate 3D postures

from a single depth image (e.g. Kinect) have made interactive applications more

appealing. In addition, it is rather costly to obtain the postures with mark-based

motion capture technology. Hence, it is necessary to develop a robust method to

reconstruct human posture using Kinect. Yet, it is still challenging to estimate pose

accurately from a single depth camera due to the inherently noisy data derived from

depth image and self-occluding action performed by the user. Here, we present a

probabilistic framework to enhance the accuracy of the postures live captured by

Kinect. We apply the Gaussian Process model as a prior to leverage position data

obtained with Kinect and pose data from marker-based motion capture system. We

also incorporate a temporal consistency term into the optimization framework to min-

imize the discrepancy between the current pose and the previous ones. Experimental

results demonstrate that our system can achieve high quality postures even under

severe self-occlusion situations, which is promising to be used for real-time posture
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based applications.

Our proposed methods can free the user from generating realistic human motions

and capturing new human movements with cheap device. With the proposed meth-

ods, the user can either retrieve motions from a large collection of motion capture

database or synthesize similar motions based on the proposed variation synthesis ap-

proach. Moreover, the proposed posture reconstruction system allows the user to

capture high quality human motions. Our methods are promising to be applied in

computer games and animations to enhance the animation quality by introducing

realistic human motions.
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motions for intended applications.

With the development in motion capture technology, there are public motion cap-

ture database such as CMU05 [9], HDM05 [10] etc. To search for a specific motion

from a large collection of motion capture data, an efficient retrieval mechanism is es-

sential. Synthesis of human motion is another direction to reuse motion capture data.

Here, we focus on human motion variation synthesis that can be used for crowd sim-

ulation. In this chapter, we introduce motion capture technology, followed by human

motion retrieval, human motion variation synthesis and posture reconstruction.

1.1 3D Motion Capture

There are three methods for motion capture, namely vision based motion capture,

optical motion capture and non-optical motion capture. Vision based motion cap-

ture consists of video-based motion capture and depth camera based motion capture.

Video based motion capture is the technology to estimate pose sequences from ei-

ther a monocular video or 3D videos. Such technology is preferable for surveillance

applications. The basic idea is to subtract human silhouette from background and

use different feature representation to estimate body joints. Figure 1.1(a) shows an

example of video based motion capture, where the top two pictures represent the

video sequence and the bottom pictures show the corresponding animations generat-

ed from the estimated motion data from the video. Recently, with the development

of depth camera, RGB-D motion capture has emerged as a hot research topic. Depth

camera provides more information of the human body such as the relative distance
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(a) (b)

Figure 1.1: Vision based human motion capture. a) Video based motion capture [1];
b) RGB-D based motion capture [2].

to the camera’s location. Figure 1.1(b) shows an example of estimated poses from

depth images. Although vision based motion capture technology is widely discussed

and shows convincing results, the accuracy and robustness are not as satisfactory as

optical motion capture system or non-optical motion capture system.

1.1.1 Motion Capture Devices

Optical motion capture system captures movements of the user by triangulating the

3D position captured by one or more cameras, and these cameras provide overlapping

projections. The subject usually wears a tight suit with reflective markers on his body.

For example, Figure 1.3(a) shows the subject wearing a black tight suit with markers

on his body, and the markers represent the joints of the human body. These markers

can either be active or passive. The active marker can radiate lights which can be

detected by the system. Made of reflective material, the passive marker reflects lights

radiated from infrared camera. Photos of the passive marker and infrared camera are
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(a) (b)

Figure 1.2: Facilities of optical motion capture system. a) Reflective marker; b)
Infrared camera.

shown in Figure 1.2.

Non-optical motion capture system uses sensors to record movements of human

body. There are three types of sensor based motion capture system, which are me-

chanical, magnetic and inertial system as shown in Figure 1.5. In mechanical system,

orientation sensors and potentiometers are put on the body of the performer to track

his/her movements and are often considered as exoskeleton motion capture system.

The user wears the device and performs motions to articulate the mechanical parts,

and the system can measure the user’s relative movements. There is no range limita-

tion of the user’s movement since the user carries the devices with himself, and it is

also less costly compared to optical motion capture system. The device is quite heavy

and hence not convenient for the user to perform fast and complicated motions. The
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magnetic motion capture system has magnetic markers that are put on the subject

and the system captures the motions of the performer in a magnetic field. The range

of magnetic sensor is limited and it is sensitive to the noise of the environment such

as the noise made by other electric devices. Inertial motion capture system uses gy-

roscopes to measure the rotational rates of the movements and these rotations are

translated to be a skeleton in the system, together with biomechanical models. The

inertial system is quite light and convenient for the user to carry, and the capturing

volume is relatively large. However, the motions tend to be floating, where the per-

former looks like a marionette on a string. In addition, the lower accuracy of position

will compound over time, which dramatically degrades the accuracy of the system.

Considering all the above matters, we use an optical motion capture system in our

laboratory, which is more stable and accurate to capture human motions.

1.1.2 Procedure of Motion Capture

The optical motion capture system used in our laboratory consists of 7 infrared

cameras, which are installed at different locations on the wall so that together they

cover the range of the capturing area, see Figure 1.4. The performer should do

motions in a specified area, otherwise there will not be enough cameras to detect the

markers and the system will fail to recover the 3D position of these markers.

In our system, there are 35 reflective markers on the tight suit the performer is

wearing, each of which representing a joint of the human skeleton and some other

body parts so that the system has sufficient data to articulate and recover the whole

movement as shown in Figure 1.5(a). We can observe that these markers turned
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(a) (b)

(c) (d)

Figure 1.3: Typical motion capture devices. a) Optical based device; b) Mechanical
device; c) Magnetic device; d) Inertial device.
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Figure 1.4: The motion capture facilities.

to be white as the markers reflect the flash light of the camera during photo taking.

Figure 1.5(b) shows the visualization of the digital format of the motion data captured

by our optical motion capture system. The dots of the skeleton correspond to the

reflective markers and the lines between dots correspond to the bone segments.

Before actual motion capture, we need to calibrate the system to set up the

range of capturing area and the coordinate system. The first step of calibration is

to set up the coordinate system. We use a L-stick with markers on it to determine

the coordinate system. Here the short stick corresponds to the x axis, long stick

represents y axis, and the vertical direction corresponds to the z axis. The second

step of calibration is to specify the range limit of the capturing volume. The user

uses a T-stick with markers scanning the area and the system tracks the trajectories

of the marker to determine the capturing area. Moreover, we manually specify which

marker corresponds to the joint of a pre-defined skeleton, and the purpose of this

step is to allow the system to recognize the markers.

With the above procedure, the optical motion capture system can estimate the
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(a) (b)

Figure 1.5: The capturing subject and the corresponding captured skeleton. a) Opti-
cal markers adhered on the body; b) Captured 3D posture represented by a skeleton.

3D positions of the markers. On one hand, due to the occlusion problem, there will be

artifacts of the obtained motion data, because the marker will not be tracked if there

are not enough cameras for detection and the system will consider it as a missing

marker. On the other hand, if two markers are too close during the movement, the

system will mix up these two markers and induce errors. Thereby, we need to clean

up the data to make sure the movement is smooth and there is no marker missing.

One example of raw data is shown in Figure 1.6, which is of the right elbow joint. The

curves at bottom represent the x, y, and z coordinates of the joint. It can be observed

from these curves that they are not smooth and certain segments are split up because

this marker was occluded and not recognized by the system during the movement. We

need to manually correct and clean up the noise frame by frame. The task is rather

time consuming as you have to check each frame and each joint manually, especially

for the motions with frequent occlusions. Here, we use the software EvaRT to post-
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Figure 1.6: The raw motion capture data of the right elbow joint.

process the artifacts. The cleaned up data of the right elbow joint (i.e. Figure 1.6)

is shown in Figure 1.7. Comparing Figure 1.7 with Figure 1.6, we can observe that

the curves in Figure 1.7 are smoother and there is no missing segment.

1.1.3 Motion Data Formats

In this section, we give details to the motion data format used in our projects. The

frame rate of the motion data depends on the motion capture device, which can

be either 60 frames per second or 120 frames per second. There are two kinds of

data used in this thesis. One is 60 frames per second, which is captured in CityU

motion capture laboratory. The other one is 120 frame per second from public data

set, such as CMU05 [9] and HDM05 [10]. In CityU motion capture laboratory, the
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Figure 1.7: The cleaned up motion capture data of the right elbow joint in Figure 1.6.

optical motion capture system is developed by Motion Analysis Company. The output

motion data format is called MotionAnalysis TRC format (.TRC). One example of

TRC data is shown in Appendix A. The header of a TRC file describes the detailed

configuration of the data, including data rate, number of frames, number of markers

and units, etc. The data part corresponds to the x, y and z coordinates of each joint

at each frame. For example, the dimension of data part at each row is 105 given that

there are 35 markers.

However, TRC is the estimated 3D position of the markers, which more or less

deviates from actual postures performed by the subject. The reason is that the

markers are attached to the surface of the human body instead of the human body,

e.g. skeleton. TRC format represents the actual position of the markers instead of



1.1.3 Motion Data Formats 11

the real body joints. Hence, it will be more robust to estimate the joint position of

the skeleton by mapping TRC to a pre-defined character model. The joint position

can be calculated by the nearby joints with the Kinematic constraints such as bone

length constraint, skeleton hierarchy constraint etc. Usually, people adopt Biovision

Hierarchy (.BVH) and Acclaim Motion Capture (AMC) to store the joint rotation

and skeleton information. Here, we use BVH format in this thesis as AMC needs

another file to store the predefined skeleton information, namely Acclaim Skeleton

File (ASF). We use the commercial software Autodesk MotionBuilder to convert TRC

format into BVH format. One example of BVH data is shown in Appendix B. The

BVH file contains ASCII text, the header of which specifies the start pose of one

movement, and the information of the skeleton. The information of the skeleton

consists of the bone length, which is indicated by the offset between two joints.

Moreover, it defines the skeleton hierarchy between joints. Specifically, it provides

parent-child relationship between joints. The data part contains the root position

and poses information of other joints. The world position of the root joint provides

the 3D world location of the skeleton. The position of other joints can be calculated

by the transformation information specified by the offset and rotation related to its

parent joints. In this thesis, we pre-define a skeleton with 20 joints and 5 end-sites

as shown in Figure 1.8(a). However, such definition of skeleton hierarchy is different

from the public motion capture such as CMU05 [9], HDM05 [10] etc. Hence, we need

to carefully select and convert different skeleton hierarchies into the same skeleton

structure. The chosen joints and the definition of skeleton depend on the application.

For example, in Chapter 3, we use the skeleton based on the skeleton definition of
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Figure 1.8: a) The skeleton definition in CityU mocap system; b) The corresponding
joint hierarchy structure of BVH format.

Kinect.

1.2 Motion Retrieval

Based on the description in Section 1.1.2, reusing motion capture data is a sound

method as it is rather costly to capture new human motions. A number of research

domains that reuse the pre-captured motion data have emerged, such as human

motion synthesis, motion style translation and motion editing etc. These applications

need an efficient retrieval mechanism to search for a specific motion sequence from

a large motion repository, which has been proven to be quite challenging as human

motion is high dimensional in both spatial and temporal domains. In addition, similar

motions can be different in temporal length because of non-uniform speed differences,
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which makes it more difficult to conduct similarity comparison between motions.

It should be noted that effective feature representation plays an important role

in human motion retrieval. In literature, many efforts have been made to design new

features to represent human motion. Müller et al. [11] introduced geometric features

to describe the relations between body parts. Kapadia et al. [12] proposed motion

keys to encode motions, where motion keys represent the structural, geometric and

dynamic features of human motion. Tang et al. [13] used joint relative distance to

describe pose sequences. However, these designed features are not comprehensive

enough to describe different kinds of motions. Recently, sparse representation has

emerged as an effective way to solve many problems in computer vision. In this

thesis, we learn features from data via sparse coding instead of feature designing. It

is suitable to use sparse representation for human motion data, as both the spatial

and temporal domains of human motion are highly correlated, which results in their

sparseness [14]. Sparse coding can achieve fewer reconstruction errors compared with

traditional vector quantization methods. Besides, sparse representation can capture

the salient properties of data [15]. Sparse representation consists of two steps, namely

dictionary learning and sparse coding [16]. The original data can be represented as

linear combinations of the atoms in the learned dictionary, where the coefficients are

called sparse representation through the step of sparse coding. Sparse representation

is combined with bag of features for image and video classification. However, it

either destroys the spatial information for images or the temporal information of

videos. Spatial pyramid matching [15] is thus used to solve the spatial order problem

by dividing an image into segments in different scales.
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Here, we also adopt sparse coding to obtain the sparse representation of human

motion data. Unlike the traditional sparse representation that ignores the temporal

information of human motion, we propose a novel temporal sparse representation (T-

SR) to capture the temporal information within one motion. Our TSR considers the

temporal relationships between frames of sparse coefficients. Similar idea has been

adopted in [17] to capture the spatial information within images by considering the

spatial dependency between visual keywords. In our case, we consider the temporal

dependency within one motion by the outer product of two frames from sparse rep-

resentation. It implicitly takes into account the relationships between one atom in

one frame and all the other atoms in another frame.

Our TSR is a 3-D array of size 𝑀 × 𝑀 × 𝑁 , each slice being a square matrix

(𝑀 ×𝑀) and representing the relations between atoms while 𝑁 being the length of

TSR. However, such local temporal information is still not enough to encode motions

and it is difficult to compare between TSRs as they are 3-D arrays. We further

divide our TSR into spatio-temporal cuboids in both spatial and temporal domains

at different scales. We also derive our spatial temporal pyramid matching kernel

(STPM) by comparing TSR in different temporal and spatial scales, which greatly

improves the accuracy and efficiency for motion comparison.

Exemplar based human motion retrieval methods are not applicable when the

user does not have the query motion on hand. Numaguchi et al. [18] proposed a

puppet interface for human motion retrieval, in which the puppet has 17 degrees of

freedom. Feng et al. [19] proposed a keyframe-based human motion retrieval system

which used a wooden doll to capture the query motion as input. These devices are
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not flexible to express the dynamics of the motion. Besides, it is not convenient to

manipulate these devices as the user has to hold them to express the query motion.

Meanwhile, sketch based method is another way to retrieve motions. For instance,

define the motion by sketching several strokes over a drawn character [20] [21]. Yet

sketch based methods are not suitable for novices as the user has to know how the

system represents motions with drawings. In addition, sketching styles vary among

different users, which will certainly affect the result of motion retrieval.

Human motion tracking hardware has made gesture control applications and

video games more interactive and addictive [22] [23] [24]. In this thesis, we pro-

pose a touch-less human motion retrieval system based on Microsoft Kinect. On one

hand, the system provides sample motions in the database for the user to choose as

a query. On the other hand, the system allows the user to provide the query mo-

tion by performing the query motion. It is more natural and intuitive to capture the

query motion with Kinect since the user knows what kind of motion he/she wants. In

addition, the proposed controller-free interface allows the user to control the system

with different gesture commands, and is therefore more user-friendly than traditional

mouse-keyboard input devices.

1.3 Motion Synthesis

Human motion synthesis is essential to generate human motions for different appli-

cations. There are a lot of researches in human motion synthesis area that depend

on the intended applications, which consist of partial human motion synthesis [25],
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responsive human motion synthesis [26], human-object motion synthesis [27], inter-

action synthesis [28] and human motion variation synthesis [29]. In this thesis, we

focus on human motion variation synthesis. There is a high demand for variation

synthesis in character animation and game domains, since the quality of animation

could be affected by the recurrent motion clones [30]. We observe that real human

subjects tend to perform the same action differently each time. Although motion

capture technology can be utilized to record a person’s movements, it is not practi-

cal to apply this technique to capture different variations of the same motion, as it

costs time and labor. Therefore, it is important to develop an effective method to

automatically generate variations that are based on a small set of example motions.

Human motion variation synthesis can be viewed as a special case of human mo-

tion synthesis [31]. Style transferring is the way to synthesize a new style of motions

by transferring style from one motion to another [32]. However, most style transfer-

ring techniques cannot be used to synthesize variations within the same style. Motion

interpolation extracts style parameters to synthesize motions using interpolation [29],

whereas style parameters are not intuitive and usually difficult to be extracted. An-

other way to generate new variations is motion editing, which is editing existing

motions [33]. However, this technique usually requires a manual tuning procedure,

which is not suitable for novice users. In other words, human motion variation syn-

thesis can be considered as a one-to-many mapping procedure, while existing methods

mainly focus on one-to-one mapping.

In this thesis, we propose a novel generative probabilistic method to generate a

large number of new variants based on a small set of example motions. We divide the
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kinematic skeleton into multiple partitions based on the human skeleton hierarchy,

which not only reduces the complexity of human motion but also helps to model the

relations between joints. We predefine the influence between joints within the same

body partition based on the hierarchy of the skeleton structure. Such influence is

translated into the conditional dependency relations between joints. The conditional

probability distribution for each joint is calculated by Semiparametric Latent Factor

Model (SLFM) [34], which differs from standard Gaussian Process (GP) since SLFM

can capture the dependency between multiple outputs. SLFM is an extension of the

generally used univariate GP for regression problems involving multiple response vari-

ables. The basic idea of this model is to use a set of basic GPs and then linearly mix

them to capture dependency that may exist among the output variables. In our situ-

ation, this model can effectively capture the relations between different DOFs within

one joint. New variants can therefore be synthesized by sampling from the predicted

distribution. Besides, compared to other non-parametric regression methods such as

kernel regression, GP based model can robustly learn from small training sets and

the parameters of kernel function can be optimized without relying on experimental

cross-validation, such as the kernel width for kernel regression. Most importantly, our

synthesized motions show more variations compared with existing methods, which is

because we directly use the skeleton configuration feature as target instead of the

generally used frame difference [8].
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1.4 Human Posture Reconstruction

Human posture recognition is the core part of interactive applications. Chan et

al. [35] proposed a dance training system based on motion capture technology, where

the user’s movements are captured by an optical motion capture system. The dance

training system allows the user to learn the dancing movements interactively. While

these applications can evaluate user performance by accurately capturing user’s mo-

tions, they are not convenient since the user has to wear a tight suit with reflective

markers on it. Wii-mote device (see Figure 1.9(a)) services as an alternative to cap-

ture movements and it is used for interactive applications. For example, Schlomer et

al. [36] used a Wii controller for gesture recognition. Wingrave et al. discussed the

capability of Wii mote as a 3D user interface [3]. Unlike the dance training system

proposed by Chan et al. [35], the user does not need to wear a suit, he/she needs to

hold the device when performing the motions. Therefore, it is essential to develop

an effective posture reconstruction method with controller-free device for interactive

applications.

Recent advance in motion tracking devices that are based on depth camera such

as Microsoft Kinect (see Figure 1.9(b)) have enabled efficient human-computer inter-

action using body movement, and enhance interactive systems such as console games.

Kinect is a controller-free hardware that infers 3D positions of human body joints

from a single depth image with the help of motion recognition technology [37]. It is

convenient and intuitive to use Kinect for gesture based applications such as turning

on/off light, switching slides etc. Kinect can be used to track the user and determine
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(a) (b)

Figure 1.9: Simple posture capture device. a) Wii-mote [3]; b) Kinect [4].

the user’s 3D joint positions in a robust manner, which is convenient for posture

control. Yet the captured data suffers from poor precision due to self-occlusions and

insufficient information provided by Kinect sensor, since Kinect can only detect the

frontal direction related to the location of Kinect. As a result, the Kinect based inter-

active applications usually require the user to face the device as straight as possible so

that the system can track the user’s movements. In addition, the motions performed

by the user should not contain much self-occlusion postures. The occlusion problem

and incompleteness of the tracked joints remains challenging despite the relevant re-

search proposed in the past years. Generating poses from low dimensional signals is

one way for posture reconstruction [38] [39], which assumes low dimensional signals

are stable. Hence, it cannot be applied to posture reconstruction of Kinect as the

tracked joints from Kinect are not stable. Another way for reconstructing postures

is to retrieve similar poses from a pre-defined motion capture database and use these

retrieved postures for recovery. Nevertheless, it needs a large pre-defined database

and the results will degenerate greatly if there are no similar postures in the database.
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In this thesis, we propose a probabilistic model to reconstruct postures captured

from Kinect. We adopt Gaussian Process (GP) model as prior distribution to esti-

mate the most likely correct posture given one posture data from Kinect, which is

called spatial prior. We record the postures with both Kinect and an optical motion

capture system. We used the joint position information from Kinect, and it is in the

same data space as marker-based motion capture data. Normal RGB cameras can be

used for pose estimation, whereas it is time consuming for pose estimation and not

suitable for interactive applications. In addition, calibration between cameras is an-

other challenging problem. The relationship between pairwise data from Kinect and

the motion capture system is extracted for modeling with GP. Unlike other systems

that use a large marker-based motion database, GP based model can be robustly

trained from small training sets. Moreover, the parameters of the kernel function can

be optimized without relying on experimental cross validation. Reconstructing each

posture independently cannot ensure the temporal smoothness of the pose sequence.

To tackle this problem, we introduce a temporal consistency term to constrain the

velocity variations between successive frames. To make sure the reconstructed pose

matches the observed Kinect input data, we embed the reliability of each joint into

the optimization framework. Specifically, we keep the joint value as original as possi-

ble if the tracked joint is reliable (correct). We very the effectiveness of our approach

by reconstructing a number of motion containing self-occlusions.
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1.5 Outline of the Thesis

The organization of this thesis is as follows. In Chapter 2, we provide related work

in human motion retrieval, human motion variation synthesis and human posture

reconstruction. In Chapter 3, we introduce temporal sparse representation for human

motion retrieval and a touch-less human motion retrieval system. In Chapter 4, we

present multivariate prediction framework for human motion variation synthesis. In

Chapter 5, we present a probabilistic framework for human posture reconstruction.

We conclude this thesis and discuss about future work in Chapter 6.



Chapter 2

Related Work

It is labor intensive to use motion capture data since it consists of two time-consuming

steps, which are capturing motions and post processing artifacts. Therefore, it is

essential to develop methods to either reuse pre-captured motion data or synthesize

new human motions for different applications. However, it is a challenging problem

as human motion is high dimensional multivariate time series data. In the past years,

there are many methods have been proposed to solve this problem. In this chapter, we

review the related work on single human motion retrieval (Section 2.1), human motion

variation synthesis(Section 2.2) and human posture reconstruction(Section 2.3).

2.1 Human Motion Retrieval

Human motion is highly coordinated time series data and it is not efficient to match

between two motions directly. A number of methods have been proposed for human

motion retrieval. One category is to construct index structure or transform motion
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data into low dimensional space to speed up retrieval. Another way is to use new

feature representation to extract the salient property of one motion so that the motion

matching procedure will be more efficient. The query specification is also important

so that the user can retrieve motions in an intuitive way. In the following of section,

we will elaborate the details of each category.

2.1.1 Transformation based Motion Retrieval

Transforming the original motion data into low dimensional space and index con-

struction of the motion database to speed up the retrieval procedure is widely stud-

ied recently. Principle component analysis (PCA) and singular value decomposition

(SVD) are widely used as a dimension reduction method for retrieval purpose. Prad-

han et al. [40] constructed an index structure based on the skeleton hierarchy, and

then Singular Value Decomposition (SVD) was used to map the human motion data

into a low dimensional feature space at each level of the index. The matching be-

tween motions is now transformed into low dimensional signal matching for human

motion retrieval. Jin et al. [41] used Gaussian Mixture Model (GMM) to quantize

human motion based on the center of each cluster, and K-Nearest Neighbor (KNN)

was adopted to find the best single matching motion. Forbes et al. [42] presented a

weighted-PCA pose representation and approximate nearest neighbor (ANN) search

was used for retrieval. Wang et al. [43] performed the matching on individual body

parts as well as on the whole body for pruning irrelevant motion, in which each mo-

tion was represented by eigen vectors. However, such dimension reduction methods

usually end up losing the nonlinear information of the human motion data as well as
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a lot of detailed information of the movement, which makes the retrieval procedure

rather coarse and inaccurate. Recently, Sun et el. [6] proposed a low-rank decom-

position approach to convert the motion sequence volumes into lower dimensional

representations without losing the nonlinear property of the motions.

Index construction of the database is another way to speed up the retrieval. Liu

et al. [44] partitioned the motion library and constructed a hierarchical index tree,

which served as a classifier to find the candidate sequences to the query example.

Tanuwijaya et al. [45] transformed the motion data into textual search problem, where

term frequency and inverse document frequency indexing were used to speed up the

retrieval. Huang et al. [46] decomposed motion files into kinetic intervals, where

the kinetic interval feature was defined as parameters of parametric arc equations

computed by fitting joints trajectories. Multilayer index tree is used to accelerate

the searching process based on the kinetic interval features. Wu et al. [47] used self-

organizing map (SOM) for index and each motion was represented by the nodes of the

map to get the motion strings. The motion matching problem was transformed into

string matching problem, which was solved by the smith-waterman algorithm. Chiu

et al. [48] proposed an index map structure based on the posture distribution of raw

data. The similarity between the query example and candidate clips was computed

through dynamic time warping (DTW). Deng et al. [5] break human motion into part-

based and hierarchical motion representation, where KD-tree based motion pattern

library is used for storing the details of the extracted motion patterns. Building

upon this representation, Knuth-Morris-Pratt string matching algorithm was used for

runtime query processing. Although index based methods can be used to speed up
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motion retrieval, they usually neglect the temporal attribute of the motion sequence,

whereas temporal information is one important property of human motion data.

2.1.2 Feature based Motion Retrieval

As presented in [49] [11], logical similar motions are not necessarily numerically simi-

lar. Various features have been proposed to represent human motion in a semantical-

ly way for logically human motion retrieval. Müller et al. [11] introduced geometric

features to describe the relations between body parts. For instance, one geometric

feature represents whether or not the left foot lands in front of the plan spanned by

the right foot. Recently, Kapadia et al. [12] proposed motion keys to encode motion-

s, which included not only geometric features but also dynamic features. Multiple

combinations of motion keys can be used to facilitate retrieval of complex motion-

s. However, the user has to specify suitable geometric features or motion keys to

better describe the motions, which is not suitable for novices since the user need to

know what kind of keys or geometric features are used to represent motions before-

hand. Besides, such user-determined features are limited and incapable of expressing

a large variety of motions. Tang et al. [13] proposed joint relative distance (JRD) as

a new feature representation to emulate the perception of motion similarity. Tang

and Leung [50] proposed an adaptive feature selection method built upon JRD, which

made the subset feature selection can be according to the properties of the specific

query. Chen et al. [51] extend JRD to be geometric pose descriptor by utilizing fea-

tures on geometric relations among body parts. Clustering methods such as Gaussian

Mixture Model (GMM) can be used to quantize the human motion data to extract
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semantic features, where each frame is represented as the center of each motion class.

Then histogram representation can be extracted for the similarity comparison be-

tween motions [52] [53]. However, hand crafted features are not sophisticated enough

to represent different kinds of human motions.

Learning features from data other than designing features is another way to ex-

tract human motion representation such as sparse representation. Sparse represen-

tation has been proven to be a compact and discriminative feature representation.

It has been successfully applied in various fields such as image denoising [16], face

recognition [54], video based human action recognition [55] etc. The basic idea of

sparse representation is to represent the signal as a linear combination of a set of

atoms (called dictionary), where the coefficients are constrained to be as sparse as

possible. As a result, the sparsity allows the representation to be specialized and

also to capture the salient part of the data [15]. In our motion retrieval system,

sparse coding is adopted to convert the original motion data into its sparse repre-

sentation. The joints of human body are highly correlated in spatial domain and

the frame rate is high in temporal domain. Hence, it is reasonable to assume that

human motion data is sparse. Zhu et al. [7] introduced quaternion space sparse de-

composition for human motion compression and retrieval. The similarity between

motions is obtained through comparison between the dictionaries decomposed from

each motion respectively. In our approach, we obtained the sparse representation in

the Euclidean space. The Euclidean space is more intuitive to measure the errors,

since we can minimize the square errors of the sparse representation directly. In

addition, it avoids the periodicity of angles, which potentially corrupts the sparse
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representation [56]. Unlike the traditional sparse representation, we proposed tempo-

ral sparse representation that encodes the temporal information by considering the

relationship between frames of sparse representation, which is more discriminative as

a human motion representation.

2.1.3 Query Specification Interface

One simple way to retrieve motions is through text matching, where each motion

is annotated with key words [9]. However, this approach is insufficient due to the

complexity of motion data. Recently, external props were used for query motion

specification. Feng et al. [19] presented a key frame based human motion retrieval

system, in which a wooden doll was used as the input device. The user inputs a

key frame by posing a doll with painted joints in front of a monocular camera. It is

suitable when there is no query example motion. However, the user needs to input

each key frame with an artist’s doll, which is not flexible for the query specification.

Numaguchi et al. [18] presented a puppet interface for human motion retrieval, where

the puppet has 17 degrees of freedom. The similarity between puppet and human

motion was computed by the reconstruction errors of projecting the puppet motion

and human motion into each other’s latent space. Although it is more convenient to

capture a motion as the query compared with commercial motion capture system such

as optical motion capture system, it cannot capture the dynamics ( i.e. translation)

of the motion. Furthermore, it is not convenient to manipulate these props.

Another intuitive direction is sketch based motion retrieval, where motions are

specified through sketches. Choi et al. [20] proposed to represent human motions as
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2D stick figure sequence, where the tick figure represent the poses and the curves

corresponding to the dynamic property of the movement. Chao et al. [21] presented

sketch based motion retrieval system, where the system define the required motion

by sketching motion strokes over a drawn character. The user can draw lines of

each certain joint to represent the movement trajectory. However, not all 3D motion

curves can be easily described from a 2D drawing such as hip hop dancing.

Tang et al. [57] adopted a similar idea to project 3D postures into 2D planes, and

embedded limb direction into the feature representation. The user can retrieve desired

motions by drawing 2D figures. Although curves were introduced to represent moving

joints, they cannot describe the continuity of human motion sequence. Besides, the

drawing styles vary between different users, which may thereby affect the retrieval

result. Kapadia et al. [12] proposed a motion retrieval system that allows the user

to use Kinect for query specification. However, the inputs of the user’s gestures are

motion keys instead of the motion data directly, which is not intuitive and convenient

for novices. In this thesis, we propose to use Kinect as a simple but intuitive device to

capture the query motion of the user. Kinect is widely used in interactive applications

because of its freehand control property [22] [24] [23]. Although Kinect cannot capture

motions as accurate as motion capture system due to the occlusion problem, we can

still use it to capture one motion to be input as a query motion. Moreover, our

controller-free interface uses different control commands, which allows the user to

control the system with touch less interactions.
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2.2 Human Motion Variation Synthesis

Human motion synthesis is the main research direction in the motion capture area.

Here, we are particular interested in the work of human motion variation synthesis.

Human motion variation can be defined as the differences within the same type of

motions. For instance, when a group of people perform a punch motion, how they

strike their fists and the strength of their punches can be distinctively different from

each other. Some previous methods were developed for motion variation generation

by adding noise to the existing ones [58]. However, variation is not merely noise or

error, but rather a functional component of data itself [59]. A number of methods

for generating new motions from example motions have been developed during the

past years for different applications. These methods can be roughly categorized as

interpolation based methods, linear statistical methods and nonlinear probabilistic

methods. In the following of this section, we will elaborate the related work in each

category.

2.2.1 Interpolation based Methods

A number of methods that employ interpolation related techniques to generate new

motions from existing example motions have been developed. Rose et al. [60] char-

acterized human motion by emotional expressiveness and control motions such as

turning or going uphill or downhill. They defined these parameterized motions verbs

and the parameters that used to control them adverbs. Radial basis functions and low

order polynomials were used to create the interpolation space based on the verb graph
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to generate new motions. The proposed method is general and scales well with the

dimension of the adverbs. However, the system only accepts variations through the

user’s input. Safonova et al. [61] proposed to synthesize physically realistic variations

provided by interpolation between two time-scaled paths through a motion graph.

The purpose of the graph construction was to support interpolation and pruned for

efficient retrieval. The system allows the user to specify motion by sketching the path

of the character through the environment. However, the system require the poses for

interpolation to be the same contacts.

Ma et al. [29] introduced latent variation parameters to parameterize the variation

of each motion. The relationships between user-defined style parameters and latent

variation parameters are learned by Bayesian Network. As a result, new human

motions can be synthesized by the interpolation between these style parameters.

However, such interpolation based methods have to extract style or user specified

parameters, which may not be easily defined systemically, such as dancing motions.

Unlike the above methods, our generative model can directly learn from the training

data without extracting any interpolation parameters.

2.2.2 Linear Statistical Methods

Linear statistical methods have been widely adopted for motion analysis and syn-

thesis. For example, Urtasun et al. [62] decomposed human motion into principle

motions through principle component analysis (PCA). Motions are parameterized by

different parameters. For example, walking and running motion were parameterized

by speed, and jumping motion was parameterized in terms of jump length. New mo-
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tion variants can be extrapolated by a set of best approximated principle weights from

a set of similar motions with different parameter values. Min et al. [63] proposed to

extract the timing and posture information separately for a bunch of similar motions.

PCA was adopted to represent the timing and postures with principle components,

and then Gaussian Mixture Model was used to model the distribution of these prin-

ciple components. New motion variations can be generated by sampling from the

obtained distribution. However, their purpose was for interactive applications and

cannot generate a lot of variants.

Li et al. [64] proposed motion texture to synthesize statistically similar motion

to the original human motion capture data. Motion texture was represented by a

set of motion textons and their distribution. Linear dynamic systems were used to

capture the local dynamics of motion textons. Although the proposed method can

generate realistic and dynamic motion, the synthesized motion may lack the global

variations when the training data is limited. Kim and Neff [65] used Independent

Component Analysis (ICA) to divide the stylistic example locomotion into sub motion

components. New stylistically different locomotion can be synthesized through the

composition of the sub-motion components. Although linear statistical method is

intuitive and easy to implement, human motions are high dimensional data that may

behave in a non-linear manner and it is difficult to extract style parameters with a

linear perspective.
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2.2.3 Nonlinear Probabilistic Methods

Probabilistic based methods have been used to create new motions for different ap-

plications. Ikemoto et al. [66] proposed a motion editing system to generate new

motions based on Gaussian Process (GP) model. The relationship between original

motion and the one after editing is extract as the input and output of GP model.

To enhance the motion quality, both kinematic and dynamic GP model is adopted

to constrain the solution space. Although the proposed system can make the motion

editing procedure easier and intuitive, it is not applicable to novices as it needs to

know strong knowledge of human motion for editing. Grochow et al. [67] proposed

style-based inverse kinematics system. Style based inverse kinematics was developed

upon Gaussian Process Latent Variable Model (GP-LVM) [68]. The system can pro-

duce the mostly likely pose satisfying a set of user defined constraints. It can generate

human motion variations when constrains are set to be statistically similar. However,

the system did not model the dynamics and take into account the constraints that

produced the smooth human motion. Wang et al. [69] augmented GP-LVM with a

dynamic prior to get smooth trajectories in latent space, and a map from the latent

space to the pose space, which is called Gaussian Process Dynamic Models (GPDM).

Despite the use of small data sets, the GPDM learned an effective representation of

the nonlinear dynamics of human motions in these spaces. These GP-LVM based

models are powerful methods for human motion modeling, yet they are not suitable

for our application as there is no guarantee that the latent space points are densely

connected to synthesize human motion variations. In addition, GP-LVM is construct-
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ed based on the independent assumptions between different observations dimensions.

So the correlations between DOFs of joints cannot be modeled.

Probabilistic methods are one direction for motion modeling, but it seldom con-

siders physical information of motions. Wei et al. [70] used Gaussian Process (GP)

to model the nonlinear probabilistic force field function from prerecorded motion

capture data and combined it with physical constraints. The proposed system can

generate physically valid human motions and react to external forces or changes in

the physical quantities of character body and the environment. Style learning and

transferring can also be viewed as one way to generate variations. Many researchers

have developed effective methods for style-based motion generation, including style

machines based on Hidden Markov Models [71]. Wang et al. [72] proposed a multi-

factor GP model for style-content separation. Hsu et al. [32] transferred the input

motion to a new style while preserving the original content. Style transferring is very

similar to our purpose of generating new variations. The work of Hsu et al. [32] is

about one-to-one mapping, and their purpose is to translate one style of motion to

another style and it cannot generate many variations within one style of motion. Yet

our purpose focuses more on generating variations within the same style of motion,

which can be considered as a one-to-many problem. Specifically, given one style of

motion, our purpose is to synthesize a bunch of variants that are similar to each other

within the same style.

Among all the related research, Lau’s work [8] is the most relevant to ours. They

introduced Dynamic Bayesian Network (DBN) to model spatiotemporal variation

of human motion. Conditional dependency is learned by a nonparametric kernel
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regression technique from training data. Yet their method was highly affected by

the tuning of kernel width and the selection of neighboring instances. Ma et al. [29]

also used Bayesian Network (BN) to model the relations between user defined style

parameters and extracted variation parameters. However, the structure of their BNs

has to be manually adapted for different motions, which reduces the generalization

ability of this method. In this thesis, the skeleton representation is divided into

multiple partitions to obtain the dependency between joints. This partition based

structure is more general as it does not need to consider the specific type about the

motion.

2.3 Human Posture Reconstruction

With the advancement in real-time depth camera such as Kinect sensor, human mo-

tion recognition and pose estimation are widely discussed in recent years. Kinect

sensor consists of an infrared sensor and combined with a monochrome COMOS sen-

sor, which records video data and depth data. Kinect is based on motion recognition

technology proposed by Shotton et al. [37] , where they use per-pixel classification

method to quickly predict 3D joint positions from a single depth image. Kinect has

fused a wide variety of research areas, such as human-machine interaction [73], natural

user interfaces [74], and 3D reconstruction [75] etc. A recent review on human activ-

ity analysis with Kinect can be found [76]. Bailey and Bodenheimer [77] investigated

the perceived differences in the quality of animation generated using motion capture

data and a Kinect sensor, which showed the data recorded from Kinect is clearly with
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low quality compared with motion capture data by a Vicon motion capture system.

As a result, it is essential to develop an effective posture reconstruction method. In

this section, we briefly review the related works about posture reconstruction.

2.3.1 Tracking based Posture Reconstruction

Human motion tracking can be considered as one way for posture reconstruction.

Tracking based approaches usually require registering a 3D articulated model with

depth information. Wei et al. [2] formulated the registration problem into a Maximum

A Posteriori (MAP) framework to register a 3D articulated human body model with

monocular depth via linear system solvers. They integrate depth data, silhouette

information, full body geometry and temporal pose prior into a unified framework.

To tackle with the problem of manually initialization and recovery from fails, they

combined 3D pose tracking with 3D pose detection. Although the proposed algorithm

is parallel and can be implemented on GPU to accelerate the speed, it requires the

calibration procedure to make the system can be used for different skeleton sizes. On

the contrary, our system is invariant to the location of the user and the skeleton size

of the user.

Yasin et al. [78] proposed to use motion capture database as the prior knowledge

for full body reconstruction from 2D video data. Two dimensional features were

extracted from both the input video sequence and motion capture database. With

the obtained features, postures were reconstructed in a data driven optimization

framework, in which similar motion capture postures were retrieved through nearest

neighbor searching. However, the accuracy is not robust as the projecting 3D motion
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into 2D features will induce ambiguous problem of postures. Oikonomidis et al. [79]

proposed a model-based 3D tracking method for hand articulations using Kinect,

where the system minimizes the difference between a pre-defined hand model and the

actual hand observations. Although the system can obtain robust tracking results,

it lacks the ability of generalization since the whole framework relies on a predefined

hand model.

To enhance the physical validation of reconstructed motions, dynamical models

are adopted to constrain the solution space. For example, Taylor et al. [80] intro-

duced a probabilistic latent variable model for human pose tracking, namely Implicit

Mixture of Conditional Restricted Boltzmann Machines. Vondrak et al. [81] proposed

to use a simulation-based dynamical motion prior for human motion tracking. These

dynamical model based approaches are time consuming and are not applicable for

Kinect based interactive applications.

2.3.2 Posture Reconstruction from Low Dimensional Signals

The full body postures can be represented by a set of low dimensional signals [38].

Some research work has been proposed to reconstruct a posture with a small set of

signals. Kim et al. [82] reconstructed human motion from sparse 3D motion sensors

on a performer using kernel CCA-based regression. Given the input data from 3D

motion sensors, they retrieve similar poses from the motion capture database and an

online local model was proposed to transform the input low dimensional signal into

the pose space. Chai et al. [38] employs a small set of retro-reflective markers to create

a performance control system, where the set of markers are used to find the most
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matched motion examples for reconstruction. In their system, the low dimensional

control signals from the user’s performance were supplemented by a database of pre-

recorded human motion. At run time, the system automatically learned some local

models from the retrieved motion capture examples that were closed to the marker

locations captured by the camera. Their system is low cost since it only needs video

cameras and small set of markers, which is practical for home use. However, the user

cannot move freely in the space as most of the markers needed to be seen by at least

one camera.

Liu et al. [39] used a small number of motion sensors to control a full-body

human character. They construct online local dynamic models from prerecorded

motion capture database and use them to construct full-body human motion in a

maximum a posteriori framework, in which the system tried to find the most like

poses from database for reconstruction. Helten et al. [83] adaptively fused inertial

and depth information in a hybrid framework for pose estimation. Although these

methods can be used to reconstruct postures from low dimensional signals, there is

one assumption that these low dimensional signals are reliable and stable. It is not

applicable to Kinect data as poses from Kinect are not stable and consistent.

2.3.3 Data-Driven Posture Reconstruction

Kinect is a RGB-D sensor, which provides more information than monocular camera.

Sigalas et al. [84] proposed to estimate 3D torso poses from RGB-D images based on

a data-driven model. Their system showed good estimation for torso poses, however,

their approach is not suitable for full body pose reconstruction nor handle the oc-
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clusion problem. Shum et al. [85] proposed a unified framework to control physically

simulated characters with live captured motion from Kinect by searching similar pos-

es from marker-based motion database. They constructed posture space based on the

retrieved similar postures. The postures were reconstructed with the posture space

in an optimization framework. Baak et al. [86] introduced a data driven approach

for full body reconstruction from a depth camera. They proposed a variant of Dijk-

stra’s algorithm to extract the posture features from depth information and a novel

late-fusion scheme based on computable sparse Hausdorff distance, which is used for

local and global pose estimation. Although their approach can obtain good results, it

requires the query procedure in database that increase the complexity of the system.

Shen et al. [87] introduced an exemplar-based method to correct the poses from

Kinect using marker-based motion data. Data-driven methods need to construct a

large motion capture database a prior knowledge. In this thesis, we use Gaussian

Process (GP) to model the prior distribution of poses from Kinect with marker-

based motion data. Our approach delivers the power and effectiveness even with

small training data as GP based model can robustly learn from small training sets.

Moreover, our method requires no manual intervention such as marker labeling in

model based works.



Chapter 3

Human Motion Retrieval

To search for a particular motion from a large collection of motion capture data, an

efficient retrieval mechanism is essential. This has been proven to be challenging as

human motion is high dimensional in both spatial and temporal domains. Besides,

semantically similar motions are not necessarily numerically similar because of the

speed variations. In this chapter, we propose a novel temporal sparse representa-

tion (TSR) for human motion retrieval. Compared with existing methods that adopt

sparse representation, the proposed TSR encodes the temporal information within

motions and thus generates a more compact and discriminative representation. In

addition, we propose a spatial temporal pyramid matching (STPM) kernel based

on TSR, which can be used for logical comparison between motions. Moreover, it

improves the effectiveness of motion retrieval in terms of accuracy. Through our ex-

perimental evaluations, we demonstrate that the proposed human motion retrieval

system has better performance and allows the user to retrieve desired motions from

motion capture database. Finally, we implemented a touch-less human motion re-
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trieval system with Kinect. The system allows the user to specify the query motion

by performing it directly. Besides, the user interacts with the retrieval system inter-

actively using gestures so no controller is needed and the system delivers a natural

user interface.

Pyramid 2D histograms

Motion database

Ranked Results

Spatial Temporal 
Pyramid Matching

Sparse Coefficients 

Sparse Coefficients Temporal Sparse Representation

Temporal Sparse Representation

Pyramid 2D 
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Online Retrieval

Figure 3.1: Framework of the proposed TSR based motion retrieval system.

3.1 Overview

The overview of the proposed TSR based motion retrieval framework is shown in

Figure 3.1, which consists of two major stages: offline training and online retrieval.

In the offline stage, all the motions in database are used to train a dictionary by

dictionary learning (Section 3.3.1). The sparse representation of each motion can

be obtained with the learned dictionary. Meanwhile, temporal sparse representation

(TSR) is calculated based one the sparse representation of each motion by considering

the temporal information within one motion (Section 3.3.2). TSR is transformed into

pyramid 2D histograms by dividing the TSR in different spatial and temporal scales
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(Section 3.4.1). In the online stage, pyramid 2D histograms can be obtained for the

query motion with the same procedure as offline stage, where the query motion can

either choose from existing database or performed by the user directly. Finally, human

motion retrieval is conducted with the proposed spatial temporal pyramid matching

kernel (Section 3.4.2), which shows the effectiveness in our later experiments.

3.2 Motion Representation

In this chapter, human motion is represented in the Euclidean space. Each human

motion sequence is represented as:

𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑡} (3.1)

where 𝑡 denotes the number of frames. And 𝑦𝑡 ∈ 𝑅3×𝐽 represents the joint positions

of one pose (frame) in 3D space with a total of 𝐽 joints. The skeleton structure

used in this chapter consists of 20 joints as shown in Figure 3.2. These 20 joints are

the major joints of the human body to articulate motion. It is consistent with the

skeleton definition of Kinect [88]. The motion clips in the database are performed

by different users, so the bone length may vary for different performers. To make it

comparable between different users with the joint position representation, we adopt a

simple yet effective method proposed by Shum et al. [22] to retarget the motion data

to a fixed skeleton structure. Given the joint position 𝑝𝑖 of joint 𝑖 and 𝑝𝑗 of joint 𝑗,

where joint 𝑗 is the parent joint of joint 𝑖 in the hierarchy structure of the skeleton,
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the normalized vector direction between these two joints can be expressed as:

𝑢𝑖 =
𝑝𝑖 − 𝑝𝑗

|𝑝𝑖 − 𝑝𝑗|
(3.2)

The retargeted position of joint 𝑖 can be calculated as:

𝑝𝑟
𝑖 = 𝑝𝑟

𝑗 + 𝑢𝑖 ×𝐷(𝑖, 𝑗) (3.3)

where 𝑝𝑟
𝑗 is the retargeted position of joint 𝑗, 𝐷(𝑖, 𝑗) is the bone length of joint 𝑖 and

𝑗 for the commonly used skeleton. As we can see, the retargeted position depends

on its parent joint, thus it should start with the top level joint, namely the root

joint (HIP CENTER). Here, we conduct the other two steps for normalization of the

motions in database to make it invariant to the body orientation and location of the

movement: 1). Remove the global 3D translation information by translating the root

joint to the origin of the coordinate system; 2). Remove the global rotation along the

vertical axis.

3.3 Temporal Sparse Representation

Sparse coding has been successfully used for image denoising [16], face recognition [54]

and human action recognition [55] etc. Sparse coding (SC) and vector quantization

(VQ) are highly related. Traditional VQ method applies K-means clustering to find

𝐾 cluster centers, which are called codebooks. Each sample vector in the database

is assigned to one and only one of the centers in terms of the minimum Euclidean
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Figure 3.2: Commonly used set of joints for all the motions in database.

distance. This VQ procedure can be viewed as a special case of sparse coding, where

each sample vector is represented by only one cluster center. Such representation is a

coarse approximation. However, we can relax this constraint to reduce the approxi-

mation errors, where each sample vector is represented as a linear combination of the

atoms (cluster center in VQ). A set of atoms together form the dictionary in sparse

coding. The corresponding coefficients are regarded as sparse representation of the

original input data, which has been verified as effective and discriminative for image

based applications. Human motion capture data can be considered as a sequence of

images, where each image represents one pose. When traditional SC is applied to

human motion, each pose corresponds to its own sparse coefficients. However, human

motion is a time series sequence and traditional SC neglects the temporal information

within motions. To capture the temporal information within one motion, we propose

a novel temporal sparse representation (TSR) by considering the relations between
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the sparse coefficients.

3.3.1 Dictionary Learning

The dictionary learning procedure can be interpreted as the process of obtaining a

set of atoms that can be used to approximate the data through linear combinations.

It can be represented as the following optimization problem:

min
𝐷

{||𝑌𝐴 −𝐷𝑋𝐴||2} 𝑠.𝑡. ||𝑥𝑖||0 ≤ 𝑚, (3.4)

where 𝑌𝐴 = {𝑦𝑖}𝑛𝐴
𝑖=1, 𝑦𝑖 ∈ 𝑅𝑑. 𝑌𝐴 is the concatenated matrix of All the motions in

database, and 𝑦𝑖 is a column vector that represents each frame of the motions. 𝑑 is

the dimension of each frame, which is 60 in this chapter. 𝐷 ∈ 𝑅𝑑×𝑞(𝑞 > 𝑑) is the

dictionary to be learned. 𝑋𝐴 = {𝑥𝑖}𝑛𝐴
𝑖=1, 𝑥𝑖 ∈ 𝑅𝑞 is the sparse representation of 𝑌𝐴 over

the dictionary 𝐷. ||𝑥𝑖||0 is the 𝐿0-norm that counts the number of nonzero elements

in 𝑥𝑖. It has been demonstrated that obtaining the exact sparsest representations

is an NP-hard problem [89]. Thus approximate solutions are proposed to solve the

problem in the past decades. Efficient pursuit algorithm based on greedy strategy

is one direction for approximation, such as the matching pursuit (MP) [90] and the

orthogonal matching (OMP) [91] algorithms. Another well-known approach is the

Basis Pursuit (BP) [92], which also solves the problem by replacing the 𝐿0 term with

𝐿1 so as to transform the problem to be a convex one. Recently, Aharon et al. [93]

developed a method called K-SVD to solve the problem. K-SVD performs two steps

to solve the optimization problem: 1). sparse coding and 2). dictionary update. In
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the first step, the dictionary is fixed, and 𝑋𝐴 is computed by the pursuit algorithm

OMP. In the second step, SVD is used to decompose the residual matrix, allowing

the atoms of 𝐷 and the relevant components in 𝑋𝐴 updated sequentially. For more

details about K-SVD please refer to [93].

3.3.2 TSR Encoding

Given one motion 𝑌 , 𝑌 = {𝑦𝑖}𝑡𝑖=1, 𝑦𝑖 ∈ 𝑅𝑑, the corresponding sparse representation

𝑋 can be obtained over the learned dictionary 𝐷, where 𝑋 = {𝑥𝑖}𝑡𝑖=1, 𝑡 is the number

of frames for this motion. 𝑥𝑖 ∈ 𝑅𝑞, and 𝑞 is the size of the learned dictionary 𝐷. 𝑥𝑖

represents the contribution of the atoms in the dictionary that are used to approx-

imate 𝑦𝑖. The procedure of obtaining sparse representation 𝑋 can be formalized as

the following optimization problem:

min
𝑋

{||𝑌 −𝐷𝑋||2} 𝑠.𝑡. ||𝑥𝑖||0 ≤ 𝑚, (3.5)

The OMP algorithm is adopted to solve the above equation as [93] suggested. It can

be observed from the above equation that the temporal information between frames

is not considered in obtaining the sparse representation 𝑋. In this chapter, we con-

sider the temporal information based on the sparse representation by calculating the

relationships between frames of sparse representation. More specifically, we calculate

the outer product between two frames of sparse representation. The two frames are

chronologically chosen based on the temporal order. In our initial experiment, we

calculated the outer product between two adjacent frames of sparse representation to
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capture the temporal information. However, adjacent frames are quite similar due to

the high frame rate. Therefore, the outer product between two adjacent frames can-

not capture much temporal information as these two fames are too similar. Hence,

we propose to use a gap value of frame index to calculate the relationship of two

frames of sparse representation. More specifically, we calculate the outer product

between frame 𝑖 and frame (𝑖 + 𝜎) of the sparse representation, where 𝜎 is the gap

value of frame index. The temporal sparse representation (TSR) can be formulated

as follows:

𝑇𝑆𝑅 = [𝑠1, 𝑠2, ..., 𝑠𝑚] (3.6)

where

𝑠𝑖 = 𝑥𝑖𝑥
𝑇
𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢1

𝑢2

...

𝑢𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[︂
𝑣1 𝑣2 ... 𝑣𝑑

]︂
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢1𝑣1 𝑢1𝑣2 ... 𝑢1𝑣𝑑

𝑢2𝑣1 𝑢2𝑣2 ... 𝑢2𝑣𝑑

... ... ... ...

𝑢𝑑𝑣1 𝑢𝑑𝑣2 ... 𝑢𝑑𝑣𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.7)

𝑖 = {1, 1 + 𝜎, 1 + 2𝜎, 1 + 3𝜎, ..., 1 + 𝑘𝜎} (3.8)

𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑖 + 𝜎, if(𝑖 + 𝜎 < 𝑡)

𝑓𝑚, if(𝑖 + 𝜎 ≥ 𝑡)

(3.9)

In the Equation (3.8), 𝑘 = arg max
𝑘

{1 + 𝑘𝜎 < 𝑡}, 𝑡 is the number of frames for this

motion. The entries of sparse representation represent the activation of atoms in the

learned dictionary. From the above equation, the outer product between two frames
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of sparse representation implicitly considers the relations between the coefficients of

the activation of atoms. A toy example of this procedure is illustrated in Figure 3.3.

As we can see, the resulted TSR is a 𝑞 × 𝑞 × (𝑘 + 1) spatio-temporal volume. Each

slice is a square matrix with dimension 𝑞 × 𝑞, and represents the spatial space of

TSR. The entry of each slice is the product of the entries of the corresponding sparse

representations. The length of TSR is (𝑘+1) which indicates the temporal dimension

of TSR. It is not easy to compare between TSRs directly as they are three dimensional

arrays. In the next section, we propose a spatial temporal pyramid matching method

to do the comparison between TSRs.
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Figure 3.3: Toy example of Temporal Sparse Representation calculation. The top
part is the sparse representation with dimension q = 4 and number of frames 𝑡 = 7.
The bottom part is the resulted TSR, which is a 4× 4× 3 array. In this case, 𝜎 = 2.

3.4 Spatial Temporal Pyramid Matching

As introduced by [94], spatial pyramid matching is proposed as an extension of order-

less bag-of-features image representation. Recently, [95] proposed temporal pyramid
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matching by adapting the pyramid match kernel to 1-D temporal space. For human

motions, variations exist between similar motions both in postures and speed. Sim-

ilar motions are not necessarily matched numerically in the spatiotemporal domain.

Inspired by these works, we propose a method called Spatial Temporal Pyramid

Matching (STPM) to address this problem, where the TSR is divided into layers of

finer segments in both spatial and temporal domains. This procedure is illustrated on

the left side of Figure 3.4. In each level, the TSR is uniformly divided into 3D cubes

in both spatial and temporal domains. More specifically, at level 𝑙 (l = 0, 1, 2,...),

it is divided into 2𝑙 segments in temporal domain and (𝑙 + 1)2 segments in spatial

domain. For example, at level 𝑙 = 1, TSR is divided into 2 segments in temporal

domain and 4 segments in spatial domain. As a result, there will be 2𝑙 × (𝑙 + 1)2 = 8

cubes at level 𝑙.

3.4.1 Pyramid 2D Histogram Representation

The above procedure allows us to capture the local statistics as the TSR is divided into

small finer segments, where each small segment will preserve the local information of

the motion. We obtain the final feature representation by a pooling function that can

capture the global statistics. Different pooling functions capture different statistics,

for example, Yang et al. [15] defined the pooling function as max pooling function on

the absolute sparse codes, which was proved to be effective for image classification.

In this chapter, we also use the max pooling function to pool over the absolute entries

of TSR across temporal domain. The pooling procedure allows the system to capture

similar characteristic when the user performs the same motion but with different
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speed. We denote the resulting features as pyramid 2D histogram representation. It

can be formulated as :

𝑍𝑙ℎ(𝑖, 𝑗) = 𝑚𝑎𝑥{|𝑇𝑆𝑅𝑙ℎ
1 (𝑖, 𝑗)|, |𝑇𝑆𝑅𝑙ℎ

2 (𝑖, 𝑗)|, ..., |𝑇𝑆𝑅𝑙ℎ
𝑡 (𝑖, 𝑗)|} (3.10)

At level 𝑙, there are ℎ = 2𝑙 × (𝑙 + 1)2 cubes and 𝑡 is the number of slices cor-

responding to that cube. 𝑍𝑙ℎ ∈ 𝑅𝑝×𝑝, 𝑝 is the dimension of the spatial domain of

the resulted TSR. For example, at level 𝑙, we divide the TSR into (𝑙 + 1) segments

in spatial domain. The dimension of spatial domain is 𝑞, thus, 𝑝 = 𝑞
𝑙+1

. It can

be observed that the max pooling function used in this chapter differs from previous

works. Here, max pooling is applied across the temporal domain in a 2D matrix. The

pooling direction of max pooling function is depicted by the red arrow in Figure 3.4.

The resulting feature 𝑍𝑙ℎ can be considered as a 2D histogram and thus we derive the

pyramid 2D histogram representation, 𝑍. The similarity between two motions can

be obtained by the pairwise comparison between their final feature representation 𝑍

at different levels.

3.4.2 STPM Kernel

Equipped with the above information, we further derive our Spatial Temporal Pyra-

mid Matching (STPM) kernel as the similarity matrix the matching between two

TSRs. In fact, it can be formulated as a weighted sum kernel:

𝐾(𝑍, ̃︀𝑍) =
𝐿∑︁
𝑙=0

1

2𝑙

2𝑙×(𝑙+1)2∑︁
ℎ=1

𝑘(𝑍𝑙ℎ, ̃︀𝑍𝑙ℎ) (3.11)
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The above equation indicates that the weights applied in each level ensure that the

similarity between smaller cubes plays a less important role. 𝑘(·, ·) is a kernel that

compares the similarity between 2D histograms. In this chapter, we adopt the his-

togram intersection kernel that shows effective results in our motion retrieval system.

Level 2 

Max pooling 
Temporal Sparse Representation Z 

Level 1 

Level 0 

Figure 3.4: The illustration architecture of our Spatial Temporal Pyramid Matching
based on Temporal Sparse Representation. At each level, the TSR is divided into
segments in both spatial and temporal domains except for level 0. Max pooling
function is applied on each obtained cube to get the global statistics. The red arrow
represents the pooling direction of max pooling function.

3.5 Controller-free Motion Retrieval System

In this section, we will describe our controller-free natural user interface for motion

retrieval. Thanks to the human motion recognition technology derived from Kinec-

t [37], we are able to capture the user’s motion as a query. Besides, we use different

gestures to represent different control commands, which are more convenient than

traditional input devices such as mouse and keyboard. Our motion retrieval system

provides two modes for motion retrieval. In the first mode, the user can select the
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User

Screen Projection

Kinect

Notebook

Figure 3.5: The set up of our controller free motion retrieval system.

query motion from the motion database as shown in Figure 3.11. The interface dis-

plays the motions in database with the user’s right hand up. If the user is not satisfied

with the motions shown in the current scene, he/she can wave his right hand right

and left to view other motions in the next page or the previous page. In the second

mode, the retrieval procedure is processed using live captured motion performed by

the user with Kinect. It is particularly helpful when the user does not have query

motion on hand. It is intuitive to ask the user to perform the query motion, since the

user knows what motions he would like to retrieve. The motion captured by Kinect

is noisy because of the self-occlusion problem, which will be solved in Chapter 5.

However, we use it as a query motion to retrieve more accurate motions from motion

capture database. The user can switch to the second mode with his hand clapping as
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shown in Figure 3.6(b). The user performs a motion he wants, and then our system

records his movement and considers it as a query motion to retrieve similar motions

in the database.

There are other gesture commands in our system. For example, the user can zoom

in/out the scene with the distance changing between hands as shown in Figure 3.6(c).

The rotation of the view point can be made via the rotation of the user’s right hand

as shown in Figure 3.6(d).

3.6 Experimental Results

In this section, we evaluate the proposed method for human motion retrieval. All the

experiments were conducted on a desktop computer with Intel Core 2 Duo 3.17 GHZ

processor. The data set used was obtained from the public HDM05 database [10].

The HDM05 database consists of 130 different motion classes, with multiple trials

performed by five subjects in each class. Among the 130 classes of motions, some

of them are quite similar to each other and some motions contain more than one

action. To better compare our method with previous works (i.e. [5–7]), we chose

10 different types of human motion sequences to form our experimental database.

There are in total 210 motion clips, including walking, jumping jack (jumpj), kicking,

punching, hopping, sit down chair (schair), elbow-to-knee (etk), clapping, throwing

and squatting. On average, the search time per query is 6ms. In the following parts

of this section, we conducted various experiments to verify the effectiveness of the

proposed human motion retrieval scheme.
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(a)

(b)

(c)

(d)

Figure 3.6: The interface and some example functions of our motion retrieval system.
a) Right hand up to show the motions in database; b) Clap hand to capture the
user’s motion as a query; c) Both hands to zoom in the scene; d) Rotating right arm
to rotate the view point.
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3.6.1 Parameter Settings

The selection of parameters for dictionary training, TSR and STPM will be detailed

in this section. It should be noted that we set the parameters based on the query

data from existing motion capture database without using the query motion captured

by Kinect as the motion capture data is more accurate and robust.

Dictionary Training Parameters. There are several parameters in our motion

retrieval mechanism. In the dictionary learning stage, all the motions in database

are concatenated together to be used as the training data, where each column corre-

sponds to one frame. As presented in section 3.2, joint position is used as the motion

representation. A totally of 20 joints are chosen from the hierarchy skeleton, meaning

that the dimension of each frame is 60. In the sparse coding stage, the number of

non-zero elements of sparse coefficients and the size of the dictionary are empirically

set to be 35 and 700 respectively. In considering these two parameters, it is impor-

tant to balance the computation efficiency and the reconstruction error induced in

Equation (3.5). To achieve a smaller reconstruction error of the objective function,

more computational time will be required and vice versa.

TSR and STPM Parameters. The gap value 𝜎 between frame index can be

regarded as a down sampling parameter. The larger the value of 𝜎, the larger will be

the interval between frames, meaning that less frames of sparse representation will

be extracted for TSR calculation. TSR is based on the outer product between two

frames of sparse representation. At the same time, when the value of 𝜎 is large, it

may not be able to capture the temporal variations during the time gap. On the
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other hand, two frames tend to be similar if the value of 𝜎 is small since their indices

are close, thus it will not contain much temporal information when the chosen two

frames are very close in time.

To capture the feature of TSR with various levels of detail, we derived STPM by

dividing TSR in both spatial and temporal domains at different scales with 𝑙 levels.

The top level captures more global statistics of the motion while the lower levels

contain finer details but are also more prone to noise thus it is essential to determine

a suitable number of levels.

As explained above, the selected values of 𝑙 and 𝜎 will influence the retrieval

results. We chose these two parameters alternatively as they are independent. More

specifically, we fix one parameter and choose the other one based on the optimal

average retrieval accuracy. The retrieval accuracy calculation will be presented in

Section 3.6.2. The relationships between these two parameters and retrieval accuracy

is shown in Figure 3.7. From the results, we can observe that the retrieval accuracy

is less than 0.8 without the usage of pyramid matching (𝑙 = 1). For each selection of

𝜎, the system achieves the best result when 𝑙 = 3. The best retrieval accuracy can be

obtained when 𝑙 = 3 and 𝜎 = 7. The result is consistent with our expectation. On

the other hand, the curve (retrieval accuracy) tends to be flat if the values of 𝑙 and 𝜎

located in a small range. It means that our method is robust and not that sensitive

to the selection of the two values.
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Figure 3.7: The retrieval accuracy between two parameters 𝑙 and 𝜎. 𝑙 axis represents
the level value and 𝜎 axis represents the gap value.

3.6.2 Performance Evaluation

In this section, we compared our human motion retrieval system with three other

related works [5–7]. In [5], Deng at al. transformed motion retrieval into string

matching, which is based on the hierarchical motion representation. In [6], Sun at al.

conducted motion retrieval using low-rank subspace decomposition of motion volume,

where motion volume is constructed from the self-similarity matrix of each motion.

In [7], Zhu at al. adopted sparse coding in quaternion space, where each motion

is represented as one dictionary, the similarity between motions is computed with

the optimal one-to-one map between corresponding dictionaries by minimizing the

total distance. In the following sections, we will detail the comparison between our

approach and these three related works.

Retrieval Accuracy. To evaluate the accuracy of the proposed approach for

human motion retrieval, we adopt a similar strategy as Kovar et al. [49]. The objective
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of motion retrieval is to retrieve similar motions that belong to the same class as the

query motion. Here we use two types of data sets: one is called single type (ST)

data set and the other is called mixed types (MTs). ST consists of motions of the

same class. MTs consist of multiple classes of motions. Given a query motion, we

retrieve motions from these two data sets, where ST is the same class as the query

motion. The results from ST data set are considered to be the ground truth. We

collect four classes of motions as ST data sets, including walking, kicking, jumping

jack and punching. True positive (TP) is used as the accuracy criteria to evaluate the

retrieval results, which is defined as the percentage of correctly retrieved results from

MTs that are in the retrieval results from ST, where ST is with the same category as

the query motion. Here, we use the top 20 results for TP calculation. As our system

provides two modes for the query specification, here, we also evaluate the accuracy

performance for these two modes separately. For the first mode, we choose the query

from the database directly. For the second mode, we ask the user to perform the

query motion to be captured by Kinect. We did not compare with [7] in the second

mode since the approach of [7] is based on quaternion whereas the data captured

by Kinect are joint positions. Figure 3.8(a) and Figure 3.8(b) demonstrate that our

approach outperforms the other three methods. For the first mode, the average true-

positive ratio of our method is 0.947 and 0.889, 0.892, 0.895 for three other compared

methods respectively. For the second mode, the average true-positive ratio of our

method is 0.906 and 0.859, 0.864 for the other two compared methods respectively.

Confusion Matrix. We not only consider the correctly retrieved results with

true positive ratios, but also evaluate the mistakenly retrieved results using a con-
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Figure 3.8: True positive ratios of the proposed method, Deng et al. [5], Sun et al. [6]
and Zhu et al. [7]. (a) Query selected from existing motions; (b) Query captured by
Kinect.
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fusion matrix. Confusion matrix is a specific table layout which can visualize the

performance of classification algorithm, where each entry reveals the confusion be-

tween two classes. Here, we use confusion matrix to evaluate the confusion of retrieved

results, where each column represents the instances in a retrieved class and each row

represents instances in the actual class. As a result, it is easy to tell whether the

retrieval system is confusing two classes. Figure 3.9(a) and Figure 3.9(b) are the

confusion matrix for these two modes respectively. As we can see, it can differentiate

motions in various classes very well. Only some classes are confused. For example,

punch motion is confused with clap motion and throw motion. It is acceptable as

these three motions preserve similar patterns among them although they belong to

different types of motions.

Precision VS. Recall. In addition to the evaluation of the retrieval accuracy,

we also use precision-recall to verify the robustness of our human motion retrieval

system. Precision is the ratio of correctly retrieved motions to the total number

of retrieved motions. Recall is the ratio of correctly retrieved motions to the total

number of relevant motions in the database. The average precision-recall curve is

shown in Figure 3.10. Here, we only use the first mode for evaluation, in which

the query is selected from the motion capture database. It can be observed that

the performance of our approach is much better than the compared methods, which

indicates the robustness of the proposed human motion retrieval system.
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Figure 3.9: Confusion matrix for 10 classes.(a) Query selected from existing motions;
(b) Query captured by Kinect.
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Figure 3.10: The Precision-Recall curves of the proposed method, Deng et al. [5],
Sun et al. [6] and Zhu et al. [7].

3.6.3 Demonstration

We have implemented a prototype of the proposed TSR based human motion re-

trieval system, in which we have also integrated the gesture commands presented in

Section 3.5 into the system. The system allows the user to control it in a more intu-

itive way. Some results and the interface of the system are shown in Figure 3.11. The

buttons of the system allow the user to select the query motion from the database and

conduct the retrieval procedure. The character in front represents the query motion

and others are the ranked retrieved results. From the results we can observe that the

top ranked retrieval results are similar as the query motion.

3.7 Summary

In this chapter, we propose a unified framework for human motion retrieval which

allows the user to retrieve desired motions from the database in an efficient and effec-
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(a) (b)

(c) (d)

Figure 3.11: The interface and retrieval results of the proposed human motion re-
trieval system. a) Punch motion; b) Kick motion; c) Walk motion; d) Throw motion.

tive way. To this end, we propose spatial temporal pyramid matching that captures

both the global and local statistics based on the proposed temporal sparse representa-

tion. Unlike the traditional sparse representation, our temporal sparse representation

encodes the temporal information by considering the relationship between frames of

sparse representation. In our system, a natural interface is developed with Kinect,

and the system provides two modes for query specification for human motion re-

trieval. One mode allows the user to select the query as an example motion from

database. The other mode allows the user to perform a query motion by himself,

which is live captured by Kinect. Besides, our Kinect based retrieval system allows

the user to control the interface with gestures, such as motion selection with hand

waving, zoom in/out the interface through varying the distance between hands etc.



Chapter 4

Human Motion Variation Synthesis

Human motion variation synthesis is important for crowd simulation and interactive

applications to enhance the animation quality. With the proposed method in Chap-

ter 3, we can retrieve similar motions from the motion capture database and then use

the retrieved results for crowd simulation. However, what if there are not enough sim-

ilar motions for an intended application? Can we automatically synthesize a group of

similar motions? To solve this problem, we propose a novel generative probabilistic

model to synthesize variations of human motion. The key idea is to model the con-

ditional distribution of each joint via a multivariate Gaussian Process model, namely

Semiparametric Latent Factor Model (SLFM). SLFM can effectively model the cor-

relations between degrees of freedom (DOFs) of joints rather than dealing each DOF

separately as implemented in existing methods. Detailed evaluations are conducted

to show that proposed approach can effectively synthesize variations of different types

of motions. Motions generated by our method show a richer variations compared to

existing ones. Finally, the user study shows that the synthesized motion has similar
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level of naturalness as motion capture data. Our method has great potential to be

applied in computer games and animations to improve the quality of animations by

introducing motion variations.

4.1 Motion Representation

In Chapter 3, we represented human motion in the Euclidean space with 3D positions.

In this chapter, the hierarchy structure of each frame is represented as root positions

and joint rotations. The reason will be detailed in Section 4.2.2. The representation

of each frame at time 𝑡 is formulated as:

𝑦𝑡 = {𝑝0,𝑞0, 𝑞1, ..., 𝑞𝑖} (4.1)

where 𝑝0 and 𝑞0 are the global world 3D positions and orientations of the root joint,

𝑞𝑖 is the rotation of the 𝑖th joint with respect to its parent joint. We encode the

joint angles with parameterized exponential maps [96]. The joints are highly corre-

lated during movements based on the articulated skeleton structure. Dividing the

skeleton into partitions, either to reduce the complexity for motion recognition [97]

or for partial motion synthesis to enrich motion database [31] [65], has been effective.

We therefore divide the human skeleton into five partitions based on the skeleton

hierarchy as shown in Figure 4.1, which are RA (Right Arm), LA (Left Arm), RL

(Right Leg), LL (Left Leg) and TH (Torso and Head). There are two reasons for us to

partition the skeleton. First, it helps us to extract the relations between joints as the
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joints are more correlated within the same body part (e.g. wrist, elbow, shoulder).

Second, we only need to take into account the joints that are in the same partition

when we considering one joint, which makes the system simpler.

TH (Torso-Head) 

RA (Right Arm) LA (Left Arm) 

RL (Right Leg) LL (Left Leg) 

Figure 4.1: Five partitions of the skeleton, RA (Right Arm), LA (Left Arm), RL
(Right Leg), LL (Left Leg) and TH (Torso and Head). The same color dots represent
joints within the same partition.

4.2 Model Construction

In this section, we describe the way of specifying the dependency between joints

with our partition based skeleton structure and the features used in SLFM prediction

model.
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4.2.1 Partition based Structure

Predicting the distribution of one joint based on some prior knowledge is the most

important component for motion variation synthesis. In this work, we extract features

from the ancestor joints of the current joint, which are defined as input features, as

prior knowledge for prediction. By this way, the relations between joints in the same

partition are formalized as the conditional dependency between one joint and its

ancestor joints.

For a given joint 𝑗𝑖, its ancestor joints are defined as the set of all joints in the

higher levels of the skeleton hierarchy within the same partition as 𝑗𝑖, which are

denoted as 𝐴𝑖. Using the right wrist joint as an example, its ancestor joints are

right elbow, right shoulder and right clavicle. It should be noted that the top level

joint (e.g. right clavicle) has no ancestor joints, thus 𝐴𝑖 = ∅. Figure 4.2 shows the

relationships between joint 𝑗𝑖 and its ancestor joints. The blue dot represents the

given joint 𝑗𝑖 at time 𝑡, 𝑡 − 1 and 𝑡 − 2. The green dots are ancestor joints of 𝑗𝑖 at

time slices 𝑡− 1 and 𝑡− 2, which are denoted as 𝐴𝑖(𝑡− 1) and 𝐴𝑖(𝑡− 2), respectively.

𝐴𝑘
𝑖 represents the 𝑘-th joint in 𝐴𝑖. More specifically, 𝐴𝑖 is one set of joints and 𝐴𝑘

𝑖 is

one joint that belongs to 𝐴𝑖. Starting from the third frame, we adopt a second order

temporal model to predict the distribution of one joint at the current frame. This

is an observation we found in our initial experiments, in which the first order model

performs sub-optimally. In particular, by analyzing the synthesized motions, we find

that the movements tend to randomly move away from the original input data, since

only one previous frame is not enough to constrain movement ranges, so we need to
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Figure 4.2: The graphical representation of the conditional dependency between
joints. Blue dot represents joint 𝑗𝑖, green dots represent the ancestor joints of 𝑗𝑖.
a) at time 𝑡 = 1; b) at time 𝑡 = 2; c) at time 𝑡 > 2.

consider the information from more frames. To minimize the noise introduced by the

newly added information, we have to select suitable features for prediction. In the

following part, we will detail the feature selection both for input features and output

features.

𝑃 (𝑗𝑖[𝑡]) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃 (𝑗𝑖(𝑡)|𝐽𝑝𝑖(𝑡− 1), 𝐽𝑝𝑖(𝑡− 2), 𝐽𝑝𝑖(𝑡− 1), 𝐽𝑝𝑖(𝑡− 2)), 𝑡 > 3;

𝑃 (𝑗𝑖(𝑡)|𝐽𝑝𝑖(𝑡− 1), 𝐽𝑝𝑖(𝑡− 2), 𝐽𝑝𝑖(𝑡− 1)), 𝑡 = 3;

𝑃 (𝑗𝑖(𝑡)|𝐽𝑝𝑖(𝑡− 1)), 𝑡 = 2;

𝑃 (𝑗𝑖(𝑡)|𝐴𝑖(𝑡)), 𝑡 = 1.

(4.2)

4.2.2 Feature Extraction

To facilitate the calculation of conditional distribution in this section, we use the

term parent joints 𝐽𝑝𝑖 to represent these joints that will influence joint 𝑗𝑖. Except

𝐴𝑖, 𝑗𝑖 itself will also influence 𝑗𝑖 thus 𝐽𝑝𝑖 = {𝐴𝑖, 𝑗𝑖}. The partition based structure
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constructed above allows us to determine the conditional dependency between one

joint and its parent joints, for example, 𝑃 (𝑗𝑖(𝑡)|𝐽𝑝𝑖(𝑡− 1), 𝐽𝑝𝑖(𝑡− 2)), where 𝑡 > 2. 𝑃

represents the conditional probability distribution. The semiparametric model SLFM

will be used to model the conditional distribution for each joint. The performance

of this model depends heavily on the input features, so it is important to define and

select effective features.

In this work, we use the skeleton configuration feature (SCF) [66] as the output

feature to reconstruct poses. SCF is represented by joint angle and is parameterized

by exponential maps [96]. We do not use joint position as the joint representation, as

constraining bone lengths defined in the skeleton hierarchy introduces extra system

complexity. It should be noted that the output features of root joint are the transla-

tion along the ground-plane, and rotation around the vertical axis of the root relative

to the root at last frame. With this information we can reconstruct the movement

path by integrating the elapsed time and root transformation. Our output feature

differs from that used in Lau et al. [8], in which the frame difference is used as the

output of their regression model. However, the adjacent frames of one motion are

often very similar due to the high frame sampling rate, which limits the range of

movement and hence the variation of the synthesized movement.

SCF is also used as the component of the input features. In addition, dynamic

feature is introduced to convey the temporal information between frames. The dy-

namic feature is defined as the positional velocity between current frame and previous

frame. For the joints at the first frame, we only use SCF from its ancestor joints as

the input feature. For the second frame of each joint, the input feature only includes
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SCF from its parent joints as there is no dynamic feature for the first frame. For the

third frame, we use the SCF from the first two frames and the dynamic feature from

the second frame as the input feature. Both SCF and dynamic feature from previous

two frames are used as the input features for the subsequent frames. After defining

source and output features, we use the SLFM to model the distribution of one joint at

different time slices as given by equation 4.2, where 𝐽𝑝𝑖(𝑡−1) and 𝐽𝑝𝑖(𝑡−2) represent

the dynamic feature at time 𝑡−1, 𝑡−2, respectively. In the following section, we will

show the details of modeling the conditional distribution of one joint by SLFM.

4.3 Computing Conditional Distribution by SLFM

Estimating the conditional probability distributions of the multivariate variable 𝑗𝑖(𝑡)

from the input features, i.e. Equation 4.2, is the key component of our synthesis

method. Traditional methods model this distribution using a parametric model, such

as using a multivariate normal distribution and then optimizing its related means and

covariance matrices by maximizing the posterior distribution of training instances.

However, these methods involve a lot of parameters and often suffer from local optima.

Nonparametric method, like Gaussian Processes (GP) has been extensively used

in animation domain, such as motion editing [66], motion generation [70] and motion

transition modeling [98]. GP is based on the assumption that adjacent observations

should convey information about each other, and the coupling between observations

takes place by means of the covariance matrix. More formally, let X = [𝑥1, . . . , 𝑥𝑁 ]𝑇

be a matrix representing the input data, which is constructed by concatenating the
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extracted source features. Let y = [𝑦1, . . . , 𝑦𝑁 ]𝑇 denote the output values, which is

the DOF of joints. 𝑦𝑖 is the corresponding output of the input 𝑥𝑖, 𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖

where 𝜖 ∼ 𝑁(0, 𝛽−1) is a noise variable, which is independent for each data point.

The shape of function 𝑓 is determined by the selection of covariance function, in this

work we use the following covariance function:

𝑘𝑐(𝑥𝑖, 𝑥𝑗) = 𝜃0 exp

(︂
−𝜃1

2
‖𝑥𝑖 − 𝑥𝑗‖2

)︂
+ 𝜃2 + 𝛽−1𝛿𝑖𝑗 (4.3)

where 𝛿𝑖𝑗 is Kronecker’s delta function and Φ = {𝜃0, 𝜃1, 𝜃2, 𝛽} are the hyper-parameters.

When the standard GP is applied to human motion modeling, GPs are indepen-

dently learnt for each DOF of one joint. However, as the DOFs are highly dependent,

it is advisable to take the dependency into account. In this thesis, we use the recently

developed multivariate GP model Semiparametric Latent Factor Model (SLFM) [34]

to predict the distribution for each joint. In our case, our purpose is to predict the

distribution of each joint. In our initial experimental testing, GP was adopted to

synthesize variations. However, the movements tended to be ambiguous as GP can-

not model the relations between the outputs. The DOFs of each joint are highly

correlated, so it is more appropriate to consider them together rather than treating

them independently. SLFM also inherits the advantages of GP method, e.g. SLFM

can be robustly learned from small training data sets and the parameters of sim-

ilarity function can be optimized without relying on experimental cross-validation.

Moreover, variation trend of mean function can be easily adapted by changing the

combination factors of different style kernel functions.
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The structure of our SLFM for modeling the correlations between three DOFs

of one joint is shown in Figure 4.3. Similar to standard GP, each output 𝑦𝑖 with

𝑖 ∈ {1, 2, 3} is independently generated from its own latent function 𝑓𝑖(𝑥). The

difference between standard GP and SLFM is that 𝑓𝑖(𝑥) is a linear mixing of some

basic GPs 𝑢𝑖(𝑥), which can capture the dependencies that exist among DOFs. The

kernel function of latent function 𝑘𝑙(𝑥) is expressed as:

𝑘𝑙(𝑥, 𝑥
′) =

3∑︁
𝑝=1

𝜑2
𝑖,𝑝𝑢𝑝(𝑥, 𝑥

′), (4.4)

where 𝑢𝑝(𝑥, 𝑥
′) is the kernel function of the 𝑝-th GP for the input feature instances

𝑥 and 𝑥′, and {𝜑𝑖,1, 𝜑𝑖,2, 𝜑𝑖,3} are the mixing weights for 𝑓𝑖(𝑥). SLFM can be viewed

as an augmented GP which models output dependencies by sharing kernel hyper-

parameters (i.e. the parameters of 𝑢𝑝(𝑥, 𝑥
′)) of basic GPs. As a result, we can still

use the same learning and prediction method as GP. The basic training procedure is

as follows. First, we use a series of motion of the same motion type as coarse training

data. Then, we use the feature extraction method described in Section 4.2.2 to extract

SCF and dynamic features as the training input and output pairs of SLFM. Finally,

using the conjugate gradient descent [99] methods, we obtain the optimal parameters

for SLFM. A review of the inference and learning of GP can be found in [99].
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Figure 4.3: The graphical models of (a) standard GP and (b) our used semiparametric
latent factor model for three DOFs of a joint. 𝑋 represents the input features and 𝑦𝑖
corresponding to the 𝑖-th DOF.

4.4 Motion Synthesis

After obtaining the learned SLFM, we can synthesize a bunch of variations by sam-

pling from the predicted distribution of each joint. Subsequent frames can be iter-

atively synthesized based on its previous synthesized frames and the learned con-

ditional distribution model. For the joints that have no ancestor joints at the first

frame, we sample from the data distribution directly. More specifically, we calculate

the mean and standard deviation from the training data of these joints which have no

ancestor joints at the first frame. In order to enhance the naturalness of the motions

synthesized by our method, we apply the blending technique proposed in [100] to en-

hance the motion quality. Alternatively, automatic foot strike cleanup methods [101]

can be applied to achieve the similar purpose.
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4.5 Experimental Results

In this section, we will evaluate the proposed method in different aspects. All ex-

periments were conducted on a desktop computer with Intel Core 2 Duo 3.17 GHz

processor. We implemented the system with C++/Matlab. There were two data sets

used in our experiments. The first one was the generally used HDM05 [10] database.

This database consists of 130 different motion classes, with multiple trials performed

by five subjects in each class. The motions were performed at a sampling rate of 120

Hz. We chose three types of motion from this database: walking, single leg hopping

and jumping jack. On average, 0.17 second is required to synthesize 1 second of

motion for this data set. The second data set included Tai Chi motions captured by

an optical motion capture system in our own laboratory. The frame rate is 60 HZ.

We chose Tai Chi motion because of its large range of movement and its complicat-

ed movement features, which can be used to verify the robustness of the proposed

method. The motions were performed 10 times by a professional Tai Chi Master. On

average, 0.14 second is required to synthesize 1 second of motion for this data set.

4.5.1 Model Evaluation

For each type of the motion, we choose 10 example motions as training data set to

learn SLFM. Figure 4.4 shows the synthesized Tai Chi and jumping jack motions by

our method. We can observe that the synthesized motion preserves the major features

of the original one, but differs in both spatial and temporal domains. For the Tai

Chi motion, the range of movement varied at different phases. For the jumping
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Figure 4.4: Human motion variants synthesized by our approach. Left side: The
variants synthesized from Tai Chi motion. Right side: The variants synthesized from
jumping jack motion.

jack motion, the heights of swing arms and jumping legs also varied among different

variants. The synthesized variants of walking motion had different degrees of arm

swing as well as the stride length. For the single leg hopping motion, the maximum

height reached by the jumping motion varied across the variants.

To verify the synthesized motion is similar to the input one, we visualized the

results by applying Principal Component Analysis (PCA) on both motions. The

visualization of the first PCA dimension is depicted in Figure 4.5. We can observe

that the synthesized motions (the gray lines) have the similar variation trend as the

original input data (the red line), so the motion type of the original input data can

be well preserved, while variations are added.

It is difficult to precisely define the degree of variation, and it is also hard to

define how many variations are enough for intended applications. Instead of making

such a definition, we introduce a method to characterize the variation among motions.

Given a set of motions, we use the difference between pairwise motions to evaluate

the variations. Specifically, given N motions, we calculate the difference between one

motion and the other (N-1) motions, where the difference is calculated by Dynamic

Time Warping (DTW) [102]. Hence, we can define the variation among this set of
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Figure 4.5: Plots of 15 variants and one of the training data. Each curve represents
the first PCA dimension of one motion, where the red curve represents one of the
training data and others represent the synthesized results. a) Tai Chi motion; b)
Walking; c) Single leg hopping; d) Jumping jack.

motions as:

𝑉 =
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

2

𝑁(𝑁 − 1)
𝐷𝑡𝑤(𝑀𝑖,𝑀𝑗) (4.5)

where N is the total number of motions, and 𝐷𝑡𝑤 is the distance between two motions

calculated by DTW. Here, we manually selected a set of motions that show obvious

variations, and we calculate the variation with Equation 4.5, which is 435.8. We make

an assumption that 435 is the threshold for the user to observe the variations among

motions. We also quantize the variation for motions synthesized by our approach and

Lau et al. [8], which are 558.7 and 465.4 respectively. It demonstrates that both our

method and Lau et al. [8] can synthesize enough variations, whereas our method can

synthesize more obvious variations compared with Lau et al. [8] .

To verify that our approach can learn from small training data set, we plot the
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number of training data used against the variations synthesized by our approach.

Here, we calculate the variations among 20 variants using Equation 4.5. The result

is shown in Figure 4.6. We can observe that the degree of variations is increasing

greatly with the number of motions increased. The curve tends to be flat when the

number of training data is more than 10, which demonstrates that our approach can

learn from small training data (i.e. less than 10).
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Figure 4.6: The variations synthesized by our approach with different number of
training motions.

4.5.2 User Study

To evaluate the naturalness of the motions synthesized by our method, we compared

the synthesized motions with motion capture data by conducting a user study evalu-

ation. A total of 10 participants were invited. All of them had little or no experience

about motion capture and 3D animation. We created a set of motions consisting of

motion capture data and synthesized motion data. Participants were asked to give
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a score for each motion based on its naturalness without knowing whether the dis-

played motion is captured or synthesized. The score ranges from 1 to 10 (inclusive),

where 1 means the most unnatural, and 10 means the most natural. We performed

a two-way Analysis of variance (ANOVA) [103] on the obtained scores. There are

two factors that influence the score, one is motion type (tai chi, walking, hopping,

jumping jack) and the other factor is method (motion capture, our method). The

result is shown in Table 4.1. The result tells that the user scores are not affected

by the motion types and capturing methods. There is no significant difference in

the obtained scores in terms of perceptual naturalness between motion capture data

and synthesized motions. It verifies that our method produces as natural motions as

motion capture data.

Table 4.1: Two-way analysis result between the naturalness and two factors (method
and motion type).

Source SS df MS F Prob > F

Motion Type 1.00 3 0.33333 0.67 0.5775
Method 6.45 9 0.71667 1.43 0.2069
Interaction 9.75 27 0.36111 0.72 0.8113
Error 20.00 40 0.50000
Total 37.20 79

SS, Sum of Squares; df: degree of freedom; MS, Mean Square.

4.5.3 Comparison with Related Works

We also compared our method with other methods that can be used to generate

motion variations. An intuitive way to generate variations is to directly add noise

to the original motion data. Here, we adopt the generally used Perlin noise [58] to

generate variations. We visualized one DOF of the left foot joint for two motions
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Figure 4.7: One DOF of the foot joint across frames from two variants synthesized
by adding Perlin noise. The red circle corresponds to the sawtooth peak of the curve.
a) Normal walking motion; b) Fast walking motion.

generated by adding Perlin noise respectively, see Figure 4.7. The sawtooth peak of

the curve is highlighted by the red circle in Figure 4.7. The sawtooth peak point is

the moment that jerky movement happens. We can observe that the motions are not

smooth as there are many sawtooth peak points of the curve shown in Figure 4.7.

This is because variations in real human movement are not merely noise, but are

constructing components of the motion itself. We also synthesized motion variations

with the method proposed by Lau et al. [8]. The relations between joints are modeled

with a second order Dynamic Bayesian Network. New motions can be synthesized

by sampling from the predicted distribution with kernel regression. Snapshots of the

variation results are shown in Figure 4.8. The variants from each methods are put in

the same location on the ground for visualization. The blue characters represent the

motions synthesized by our method. We can observe that motions from our approach

show more variations, including the temporal and spatial variations. The motions

synthesized by [8] showed less variations as they use the frame difference as the output

feature while our approach use SCF as the output directly.
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Figure 4.8: 10 variations of walking motion generate by our method and Lau et al. [8].
The variants from each method are put overlapped for visualization, respectively. The
blue characters represent the results from our method and others are from Lau et
al. [8]

4.6 Summary

In this chapter, we propose a novel generative probabilistic model to synthesize vari-

ations of human motion. Our focus differs from style transferring methods, which

transfer the style of one motion to another. To be specific, we focus on variation

generation within the same style of motion. Our method is appealing for human mo-

tion variation synthesis because our approach can learn from small training sets and

the parameters of motion model can be optimized without relying on experimental

cross-validation. The usage of SLFM can model the relation between the DOFs of

each joint, which is more natural for human motion modeling. The skeleton repre-

sentation is divided into multiple partitions to obtain the influence between joints.

This partition based representation not only reduces the complexity of human motion

but also helps us to define the influence between joints. The conditional dependency

between joints is predefined for the joints within the same body partition based on

the hierarchy structure.



Chapter 5

Human Posture Reconstruction

In Chapter 3, we proposed Temporal Sparse Representation (TSR) based human mo-

tion retrieval method for reusing motion capture data. It will be appealing if there

are other alternatives that can capture human motions with easy to set up and cheap

device. Recent advances in depth camera based motion tracking devices such as the

Microsoft Kinect has enabled efficient human-computer interaction using body move-

ment, enhancing interactive systems such as console games. Kinect is a controller-free

hardware that infers 3D positions of human body joints from a single depth image

with the help of motion recognition technology [37]. In this thesis, we RGBD camera

(i.e. Kinect) as our purpose is for interactive applications and Kinect can estimate

human poses in real time. However, RGB cameras alone are not suitable for interac-

tive applications since it takes time for pose estimation from RGB cameras. While

Kinect can be used to track the user and determine the user’s 3D joint positions in

a robust manner, which is convenient for posture control, the captured data suffers

from poor precision due to self-occlusions. As illustrated in Figure 5.1, the blue skele-
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ton represents the tracked result by Kinect SDK [88], in which some of the tracked

joints are inaccurate when the upper body is occluded by the arms. The occlusion

problem remains challenging despite the relevant research proposed in the past years.

In this chapter, we propose a probabilistic model to reconstruct poses captured from

Kinect. We adopt the Gaussian Process (GP) as a spatial prior to estimating the

most likely correct pose given one posture data from Kinect. Unlike previous works

that require the usage of a larger marker-based motion database, the GP based mod-

el can be robustly trained from small training sets. The parameters of the kernel

function can be optimized without relying on experimental cross validation. We also

introduce a temporal consistency term to constrain the velocity variations between

successive frames. To ensure the reconstructed posture resembles the input pose from

Kinect, we embed the reliability of each tracked joint into the posture reconstruction

framework. The effectiveness of our approach is verified by reconstructing a number

of motions containing self-occlusions. In the following of chapter, we will elaborate

on the proposed framework for posture reconstruction with Kinect.

5.1 Data Acquisition and Preprocessing

For brevity, in this chapter we will use MOCAP to represent human motion data

captured by an optical motion capture system. The postures obtained from Kinect

are noisy and incomplete, whereas MOCAP is accurate and stable. Hence, we can

use MOCAP to recover postures from Kinect.

In this chapter, we model the relationship between Kinect data and MOCAP
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Figure 5.1: Example of an inaccurately tracked pose from Kinect.

with Gaussian Process. Specifically, we capture motions with Kinect and optical

motion capture system at the same time to identify the correspondence between

them. The setup of this capturing procedure is shown in Figure 5.2. The pose of

Kinect at time 𝑡 is denoted as 𝑋𝑡 = (𝑥1
𝑡 , 𝑥

2
𝑡 , ..., 𝑥

𝐽
𝑡 ), 𝑥𝐽

𝑡 ∈ 𝑅3, where 𝑥𝐽
𝑡 represents the

3D joint position of joint 𝐽 over time 𝑡. There are 20 joints based on the skeleton

definition of Kinect, i.e. 𝐽 = 20. The corresponding MOCAP of 𝑋𝑡 is denoted as

𝑀𝑡 = (𝑚1
𝑡 ,𝑚

2
𝑡 , ...,𝑚

𝐽
𝑡 ),𝑚𝐽

𝑡 ∈ 𝑅3.

To enhance the robustness of the spatial prediction model (Section 5.2.1) and

to make the system invariant to different subjects, we normalize the postures for

prediction. Specifically, the prediction model should output the same results given the

same posture performed by different subjects when they are facing different directions.

Here, we use the normalized data of 𝑋𝑡 as the input of the predictor, that is 𝑋̃𝑡 =
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Figure 5.2: Human motion capture with Kinect and an optical motion capture
system.

𝐹 (𝑋𝑡), where 𝐹 (·) represents the posture normalization procedure and retargeting of

the user’s skeleton into a fixed skeleton size. The posture normalization procedure

consists of two steps: removing the rotation along the vertical axis and the global

3-D translation. The retargeting procedure ensures the system to be invariant to the

skeleton size of the user. We follow [85] to conduct the normalization and retargeting

as it is simple yet effective.
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5.2 Posture Reconstruction

To ensure that the reconstructed posture is accurate and resembles the input data

from Kinect, we formulate the posture reconstruction as a optimization problem by

minimizing an energy function. The energy function consists of a set of three energy

terms to constrain the solution space, which are spatial prediction term, temporal

prediction term, and reliability constraint. In the following, we will elaborate the

definition and purpose of each term.

5.2.1 Spatial Prediction

Assuming that the MOCAP posture 𝑀𝑡 is the corrected pose of the Kinect posture

𝑋𝑡, we design a spatial prediction term to evaluate how well the reconstructed posture

fits with the MOCAP data, which implicitly favors solutions that are more similar

to the correct posture.

Due to self-occlusions, there will be residual offset between 𝑋𝑡 and 𝑀𝑡, which is

calculated by 𝑌𝑡 = 𝑀𝑡−𝑋𝑡, where 𝑌𝑡 = (𝑦1𝑡 , 𝑦
2
𝑡 , ..., 𝑦

𝐽
𝑡 ), 𝑦𝐽𝑡 ∈ 𝑅3. During run-time, the

objective is to predict the residual offset 𝑌𝑡 so that we can obtain the reconstructed

pose 𝑀𝑡 by appending 𝑌𝑡 to 𝑋𝑡. Obtaining 𝑌𝑡 is regarded as a prediction problem

when given 𝑋𝑡. In this chapter, we adopt the non-parametric method Gaussian

Process (GP) as the predictor. As GP based models can be robustly learned from

small training sets, the usability of our algorithm is enhanced. GP is based on the

assumption that adjacent observations should convey information about each other,

and the coupling between observations takes place by means of the covariance matrix.
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For more details about GP, we refer the readers to [104].

Human body joints are highly coordinated and it is important to take into account

the relationship between them. Here, given one joint, we use its neighboring joints for

prediction. Specifically, given joint 𝐽 at time 𝑡, 𝑥𝐽
𝑡 , its neighboring joints 𝑁(𝑥𝐽

𝑡 ) are

defined as the set of joints that are directly connected with the same bone segment as

joint 𝐽 . Figure 5.3 shows three examples, the joints in green color are the neighboring

joints of those in red color. For example, Figure 5.3(a) illustrates the neighboring

joint of the right hand is right wrist. With such neighbor relationship extraction, the

prediction model implicitly models the relationship between joints. Therefore, the

input feature for obtaining 𝑦𝑖𝑡 of joint 𝑖 is the union set of 𝑥̃𝑖
𝑡 and 𝑁(𝑥̃𝐽

𝑡 ). 𝑁(𝑥̃𝐽
𝑡 ) is

the normalized data of the neighboring joints for joint 𝐽 . Therefore, the input data

is 𝑋̃𝑡 and 𝑁(𝑋̃𝑡), which correspond to A. The output data is 𝑌𝑡 that corresponds to

B of the prediction model. At training stage, with the obtained training data from

Kinect and MOCAP, we can learn the hyper-parameters of the GP model.

With the learned model, we formulate the above prediction for 𝑌𝑡 as a conditional

probability distribution, yielding the spatial prediction energy term as defined below:

𝐸𝑆 = ln 𝑝(𝑌𝑡|𝑋̃𝑡, 𝑁(𝑋̃𝑡))

= ||𝑌𝑡−𝜇(𝑋̃𝑡,𝑁(𝑋̃𝑡))||2
2𝜎2(𝑋̃𝑡,𝑁(𝑋̃𝑡))

(5.1)

where 𝜇 and 𝜎 are the predicted mean and covariance functions from GP prediction

respectively. The term 𝐸𝑆 ensures that the reconstructed pose are close to the correct

pose as much as possible. We use the residual offset as the output of the predictor be-

cause the system could explore more in the data space by predicting offset rather than
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Figure 5.3: Three cases of neighboring joints. The red dot represents the joint for
prediction, the green dots represent its neighboring joints. a) Right hand joint; b)
Hip center joint; c) Right wrist joint.

the pose data directly, e.g. 𝑀𝑡. There are several publicly available implementations

of Gaussian Process. In this chapter, we used the library developed by Lawrence [105].

To improve the performance of Gaussian Process prediction, we adopted the sparse

approximation strategy proposed by Candela and Rasmussen [106].

5.2.2 Temporal Prediction

The above spatial prediction considers each posture independently. To ensure the

temporal smoothness between consecutive frames, the relationship between frames is

modeled as a second order temporal model, which has been verified to be effective

to preserve temporal smoothness [107]. Specifically, we adopt a constant velocity

variation to smooth velocity, which is formulated as below:

𝐸𝑇 = ln 𝑝(𝑀𝑡|𝑀𝑡−1,𝑀𝑡−2) (5.2)
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𝑀𝑡, 𝑀𝑡−1, and 𝑀𝑡−2 are the reconstructed postures at time slices 𝑡, 𝑡− 1, and 𝑡− 2.

We have the following relationship between the reconstructed posture, input posture

and the residual offset:

𝑀𝑡 = 𝑌𝑡 + 𝑋𝑡
(5.3)

Therefore, we can rewrite Equation 5.2 as :

𝐸𝑇 = ln 𝑝(𝑌𝑡 + 𝑋𝑡|𝑀𝑡−1,𝑀𝑡−2)

= ||(𝑀𝑡 −𝑀𝑡−1) − (𝑀𝑡−1 −𝑀𝑡−2)||2

= ||𝑀𝑡 − 2𝑀𝑡−1 + 𝑀𝑡−2||2

= ||𝑌𝑡 − (−𝑋𝑡 + 2𝑀𝑡−1 −𝑀𝑡−2)||2

(5.4)

which facilitates the continuity in the reconstructed motions.

5.2.3 Reliability Embedding

The accuracy of each tracked joint is different depending on the degree of occlusion.

These incorrectly tracked joints from Kinect will incorrectly guide the system to infer

the joint positions. The residual offset of these correctly tracked joints should be

smaller as they are closer to the corrected posture, namely 𝑀𝑡. Thus, it is essential

to consider the reliability of each joint to constrain the residual offsets of these joints

with higher confidence during the prediction of 𝑌𝑡. We use a reliability term 𝐸𝑅

to penalize the residual offset of each joint based on its reliability, which implicitly

ensures that the reconstructed pose resembles the input pose from Kinect as much

as possible. More specifically, the residual offset value 𝑦𝑖𝑡 of joint 𝑖 should be smaller
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if the corresponding joint is with higher reliability.

We adopt the strategy proposed by [85] to evaluate the reliability of the tracked

joints from Kinect. They evaluate the reliability in three aspects: behavior reliability,

kinematics reliability, and tracking state reliability. The behavior reliability refers to

abnormal behavior of a tracked joint, which is calculated by the cosine similarity

between two consecutive displacement vectors of one joint. The kinematics reliability

represents the kinematic correctness of the tracked joints, which measures the change

of bone length that connected with that joint. The tracking state reliability tells if a

joint is tracked, inferred or not tracked when it is completely occluded. More details

about the calculation of the reliability of each joint can be found in [85]. As a result,

the reliability rate of each joint is a value between 0.0 and 1.0 (inclusive). We embed

the reliability of each joint into the optimization framework and come up with the

following reliability term:

𝐸𝑅 = ||𝑅𝑌𝑡||2𝐹 (5.5)

|| · ||𝐹 is the Frobenius norm. The entry of 𝑅 is the reliability of each joint, which

ensures the reconstructed posture does not deviate from the input pose from Kinect.

Intuitively, while minimizing the objective function, the value of 𝑦𝑖𝑡 tends to be small

when its reliability value is large. One example is shown in Figure 5.4, the joints in

the yellow circle are with higher reliability, and our system tends to preserve these

joints as much as possible. The joint joints in the red circle are with lower reliability,

and our system tends to reconstruct these joints.
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(a)

Figure 5.4: The left avatar is the result from Kinect and the right avatar is from our
approach. The yellow circle represents joints with high reliability and the red circle
represents joints with low reliability.

5.2.4 Energy Minimization Function

Equipped with the terms defined in the above sections, the posture reconstruction

problem is formulated as the following optimization function:

𝐸 = arg min
𝑌𝑡

{𝑤𝑆𝐸𝑆 + 𝑤𝑇𝐸𝑇 + 𝑤𝑅𝐸𝑅} (5.6)

where 𝑤𝑆, 𝑤𝑇 , and 𝑤𝑅 are the weights of the energy terms. In our implementation,

they are empirically set to be 0.6, 0.2, and 0.2, respectively. Our posture reconstruc-

tion system is a frame-based framework. The initial posture for optimization at each

frame is defined as previous reconstructed posture, which makes the system has more

chance to find the optimized posture. The optimization procedure stops when an

optimal solution is found or the number of iterations reaches a predefined threshold.
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There are some principles to tune the values of the weights. The weight of the

spatial prediction term should be set the largest, since this term drags the recon-

structed posture to the corrected pose as closely as possible. Second, the temporal

prediction term ensures the temporal stability of the pose sequences. The details of

the movements will be smoothed out as the term is based on a second order tem-

poral prediction, which explicitly constrains the speed variation between consecutive

frames. The reliability term makes sure the reconstructed posture is as similar as

the Kinect posture, since the primary purpose of the system is to reconstruct Kinec-

t postures. We will evaluate how these terms affect the accuracy of the system in

Section 5.3.4.

In this section, we summarize the proposed method for posture reconstruction.

At offline stage, we learn a spatial prediction model using Gaussian Process with

pairwise Kinect data and marker-based motion capture data. It ensures the recon-

structed posture as accurate as MOCAP data. At online stage, the system obtains

an optimized posture with live captured data from Kinect, which ensures the recon-

structed posture resembles the input pose from Kinect while maintaining the temporal

smoothness between previous frames. Although we use pose data from Kinect, the

overall framework is applicable to other system with different design of equations.

5.3 Experimental Results

In this section, we will show the experimental results and present the comparisons

between alternative approaches such as the postures estimated by Kinect SDK [88]
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Figure 5.5: Postures from Kinect and their corresponding reconstructed poses. The
top two pictures are the depth and RGB image, in which the blue skeleton is the
tracked results from Kinect. The left avatar in front represents the posture data
from Kinect, and the right avatar corresponding to the postures reconstructed by our
method. a) Bending over; b) Crossing arms; c) Rolling hands forward and backward;
d) Rolling hands up and down; e) Clapping hands; f) Bending leg; g) Golf swinging;
h) Waving right hand; i) Taichi motion.

and the work proposed by [87]. We first show results of posture reconstruction by

our approach, where the postures are with severe self-occlusions. Qualitative and

quantitative analysis are conducted to evaluate the accuracy between the proposed

method and other alternatives.
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The experimental results were conducted on a desktop computer with Intel Core

2 Duo 3.17 GHZ processor. The input data of our system are the postures estimated

from Kinect. We obtain the 3D position of each joint through the latest official

SDK (i.e. v1.8) provided by Microsoft [88]. An optical motion capture system with

7 cameras was used to capture MOCAP data in our own laboratory. The infrared

emitters from the optical motion capture system will interfere with the Kinect. Here,

we consider the Kinect device as one additional reflective marker of the optical motion

capture system to eliminate the interference between Kinect and the optical motion

capture system. The setup environment of Kinect and optical motion capture system

is shown in Figure 5.2. On average, the system can reconstruct postures at 22 frame

per second which is enough for realtime interactive applications.

5.3.1 Posture Reconstruction

The proposed approach works for users with different body sizes and proportions,

because we use the normalized postures from Kinect as the input of the prediction

model, where the rotation along the vertical axis and global 3D translation of each

posture has been removed. We evaluate our system on a wide range of human motions,

including sports activity such as Tai Chi, bending, golf swinging, and daily actions

such as crossing arms, waving right hand, clapping hands, rolling hands up and down

(rolling hands UD), rolling hands forward and backward (rolling hands FB). The size

of each type of motion is reported in Table 5.1.

On average, the length of training data is around 15 seconds and around 450

frames for each type of motion, which is quite small compared with [85]. We choose
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Table 5.1: The number of frames for each type of motion.

Motions Tai Chi Bending
Golf
Swinging

Crossing
Arms

Waving
Right Hand

Clapping
Hands

Rolling
Hands UD

Rolling
Hands FB

Bending
Leg

Frames 650 320 460 380 350 420 480 475 385

these motions because all these motions contain severe self-occlusions, which are

not well tracked by the Kinect system. However, the proposed method can well

reconstruct these inaccurate poses even if a number of joints cannot be tracked by

the Kinect sensor. For example, for the crossing hands motion, the joints of the body

are occluded by the hands and the joints of the hands are occluded by each other.

For a bending motion, the upper body joints are occluded by the arms. Figure 5.5

showed several frames of our results, the right avatar in front represents the postures

reconstructed by our method and the left avatar corresponds to the estimated posture

by Kinect SDK [88]. The top two pictures are the RGB image and depth image

respectively. We can observe that certain parts of the postures from Kinect SDK are

twisted when there exist occlusions whereas our method can reconstruct the postures

very well. The readers are referred to the accompanying video for better visualization

of the posture reconstruction results.

5.3.2 Qualitative Analysis

In this section, we evaluate the perceptual accuracy of the postures reconstructed

by our method, postures from Kinect, postures by the method proposed by [87] and

postures captured by an optical motion capture system. We use the Kinect SDK

to obtain the 3D position of each joint as the Kinect data. [87] proposed to correct

postures from Kinect with a random forest regression based approach without con-
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sidering the reliability of each tracked joint from Kinect. The skeleton structure in

the optical motion capture system and Kinect are different, and we need to carefully

select these joints so that they are with the same skeleton structure definition. Here,

we use the skeleton definition of Kinect as a reference skeleton structure. We mea-

sure the perceptual correctness for the postures of each method with a survey based

evaluation [108], and it is also used in [85].

A total of 15 participants were invited to conduct this experiment. All of them

had little or no experience about motion capture and 3D animation. The purpose

of this experiment is to assess the relative correctness of the obtained postures from

these four methods. We create a set of posture sequences with these four methods

together with the RGB video so that the participants know what the actual actions

are. Participants were asked to give a score for each motion based on its correctness

without knowing the displayed motion come from which method. The score ranges

from 1 to 10 (inclusive), where 1 means the most incorrect, and 10 means the most

correct.

The score distribution for Kinect SDK [88], [87], our method and MOCAP is

shown in Figure 5.6. The overall average scores of these four methods are 5.20, 6.42,

7.51, and 9.16 respectively, and the standard deviations are 0.84, 0.73, 0.71, and 0.57.

It is expected that MOCAP data achieve the best scores. However, we can observe

from the results that our method greatly outperforms Kinect and [87], which verifies

our approach can improve the correctness of the postures output from Kinect sensor.

We can see that for these motions with more occlusions, our method performs much

better than Kinect and [87] such as bending and rolling hands. The reason is that we
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Figure 5.6: The score distribution based on the correctness of the postures from
Kinect, Shen et al., proposed method and an optical motion capture system.

embed the reliability term into our optimization framework, which implicitly ensures

the system tends to recover these joints more than other joints with higher reliability.

5.3.3 Quantitative Analysis

In this section, we quantitatively analyze the correctness of the proposed method. We

can capture the postures with both Kinect and the optical motion capture system

at the same time. We assume the data from optical motion capture system is the

ground truth data. To evaluate the accuracy of the reconstructed postures, we define

an error function to measure the distance between reconstructed postures and ground

truth postures:

𝐸(𝐹1, 𝐹2) =
1

𝐽

𝐽∑︁
𝑗=1

𝐸𝑗(𝐹1, 𝐹2) (5.7)
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where 𝐹1 and 𝐹2 are the two sets of postures, 𝐽 is the total number of joints. 𝐸𝑗 is

the reconstruction error of joint 𝑗 between two set of postures, which is defined as:

𝐸𝑗(𝐹1, 𝐹2) =
𝑇∑︁
𝑡=1

𝐷(𝐹 𝑗
1𝑡, 𝐹

𝑗
2𝑡) (5.8)

where 𝑇 is the total number of postures and 𝐹 𝑗
1𝑡 is the 𝑗-th joint of the posture at

time 𝑡 from 𝐹1 . D is the Euclidean distance between two joints of two postures:

𝐷(𝑃 𝑗
1 , 𝑃

𝑗
2 ) =

√︁
(𝑃 𝑗

1𝑥 − 𝑃 𝑗
2𝑥)

2
+ (𝑃 𝑗

1𝑦 − 𝑃 𝑗
2𝑦)

2
+ (𝑃 𝑗

1𝑧 − 𝑃 𝑗
2𝑧)

2
(5.9)

With the error function defined in Equation 5.7, we compare the Kinect raw

data, postures reconstructed by [87], and postures reconstructed by our method with

MOCAP data (unit: cm). Here we choose 5 types of motion for evaluation: clapping

hands, crossing arms, bending, Tai Chi, and waving right hand. The results are

shown in Table 5.2.

Table 5.2: Reconstruction errors of Kinect, Shen et al. and the proposed method.

Name
Number of
Frames

Kinect (cm) Shen et al. (cm)
Proposed
Method (cm)

Crossing Arms 2052 12.5 9.8 7.2
Bending 1835 13.7 9.5 8.4
Tai Chi 2885 14.5 10.2 7.5
Waving Right Hand 1568 12.5 8.8 6.5

As expected, the errors from Kinect were large in general. Our method outper-

forms [87] as we take into account the reliability of each joint as the inaccurately

tracked joint will guide the system to incorrectly infer the postures. For all class-

es of motions, our method consistently outperforms the other two, which verify the
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(a) (b)

Figure 5.7: Examples of the reconstruction error of one joint across frames. The blue
curve corresponding to our method, red curve is the reconstruction error of Shen et
al. and the green curve is the reconstruction error of Kinect. a) Bending over motion;
b) Bending leg motion.

effectiveness of the proposed method in terms of reconstruction accuracy.

To better observe the relationship between reconstruction error and reconstructed

postures. We use the error function defined in Equation 5.9 for each joint and plot

the reconstruction error across frames. Figure 5.7 shows the joint errors of two

example motions. We can observe that both [87] and our method can achieve lower

reconstruction errors compared with Kinect SDK. Another observation is that the

trend of the error curves of [87] and our work tend to be similar, because both of

these two works tried to reconstruct postures output from Kinect.

5.3.4 Performance Analysis

In this section, we analyze the reconstruction accuracy by examining the effectiveness

of different terms in the objective function of Equation 5.6, respectively. The tempo-
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ral prior term 𝐸𝑇 ensures the temporal consistency between successive frames, which

ensures the temporal smoothness between frames. The reliability term 𝐸𝑅 encodes

the reliability of each joint, which implicitly ensures the reconstructed posture resem-

bles the Kinect observation as closely as possible. We computed the reconstruction

error by dropping off the temporal term 𝐸𝑇 and the reliability term 𝐸𝑅 respectively.

We used Tai Chi motion, bending over and crossing arms for evaluation because of

their complicated movement features. The results are reported in Table 5.3. We

Table 5.3: Reconstruction error of the proposed framework with different constraint
terms.

Setup Terms Used Reconstruction Error (cm)
(a) 𝐸𝑇 15.8
(b) 𝐸𝑅 13.4
(c) 𝐸𝑆 11.7
(d) 𝐸𝑅, 𝐸𝑇 12.8
(e) 𝐸𝑆, 𝐸𝑇 10.2
(f) 𝐸𝑆, 𝐸𝑅 9.4
(g) 𝐸𝑆, 𝐸𝑇 , 𝐸𝑅 7.7

found that both the temporal prior term and the reliability term improve the re-

construction accuracy, especially for the movements with severe self-occlusions. The

result from setup (b) is better than setup (a), because 𝐸𝑇 alone tends to generate

motions with the minimum speed variations and the postures will deviate from the

actual movements. Setup (c) is better than setup (a), setup (b) and setup (d) as

use marker-based motion capture data as the spatial prior. It ensures the recon-

structed posture close to mocap data much as possible. Although setup (f) achieves

better results than setup (e), the obtained movements are jerky as setup (f) predicts

postures independently without considering relationship between consecutive frames.

The combination of these three terms can reconstruct postures with the least recon-
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struction errors. Therefore, it is necessary to take into account the reliability of each

joint and the temporal constraint during posture reconstruction.

5.4 Summary

In this chapter, we present a probabilistic framework to reconstruct live captured

postures by Kinect. The Gaussian Process (GP) model is learned as a spatial prior

to leverage position data obtained from Kinect and posture data from an optical

motion capture system. GP is advantageous here, in that makes our system work

even with small training data sets. We introduce a temporal consistency term into

the optimization framework to minimize the discrepancy between current pose and

previous poses. In addition, the reliability of each tracked joint is used to constrain

the residual offset between pose from Kinect and true postures which ensures the

reconstructed pose resembles the input pose from Kinect. The experimental results

demonstrate that our system can achieve high quality poses even under severe self-

occlusion situations and obtain higher accuracy compared with other alternatives.



Chapter 6

Conclusions and Future Directions

In this final chapter, the contributions made in the preceding chapters are summarized

and some potential future research directions are presented.

The aim of all the works presented in this thesis is to reuse motion capture data

by analyzing and synthesizing human motions, which may help animators to generate

animations in a more efficient way and broaden interactive applications. An effective

retrieval mechanism is essential for animators to search for a query motion from a

large collection of motion capture database. In this thesis, we propose a framework

for human motion retrieval based on a novel temporal sparse representation (TSR).

Unlike previous methods, TSR takes into account the temporal information within

each motion. To facilitate efficient comparison between TSRs, we propose a spatial

temporal pyramid matching kernel in a coarse-to-fine manner, which has been verified

to be effective in terms of retrieval accuracy. With the retrieved similar motions, we

propose to reuse these similar motions for variation synthesis. Animators usually

need to generate human motions manually for scenarios that require hundreds of
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similar motions (i.e. crowd simulation). It is thereby appealing to develop a method

that automatically synthesizes human motion variations. In this thesis, we develop a

probabilistic framework for human motion variation synthesis based on a multivariate

Gaussian Processes model, namely Semiparametric Latent Factor Model (SLFM).

Our proposed method can synthesize human motions with more obvious variations

compared other methods. In addition, it can learn from a small set of training data.

Besides retrieving from motion capture database or synthesizing motions, another

direction to obtain human motions for intended applications is to capture motions

with low cost devices. In this thesis, we propose an optimization framework for

posture reconstruction with Kinect. The proposed system generates postures for

a wide variety of movements even for motions with severe self-occlusions, which is

beneficial for real-time posture based applications such as motion-based gaming and

sport training.

Here, we summarize the contributions of this thesis:

◇ Human motion retrieval with temporal sparse representation

We propose a novel temporal sparse representation (TSR) for human motion

retrieval. Compared with existing methods that adopt sparse representation,

the proposed TSR encodes the temporal information within motions and thus

generates a more compact and discriminative representation. In addition, a

spatial temporal pyramid matching (STPM) kernel is designed based on T-

SR, which can be used for logical comparison between motions. Moreover, our

STPM kernel improves the effectiveness of motion retrieval in terms of retrieval
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accuracy. Through our experimental evaluations, we demonstrate that our pro-

posed human motion retrieval system has better performance and allows the

user to retrieve desired motions from motion capture database. Finally, we im-

plement a touch-less human motion retrieval system with Kinect. The proposed

retrieval system allows the user to specify the query motion by performing it

directly. Furthermore, the user interacts with the retrieval system using ges-

tures so no controller is needed and the system delivers a more natural user

interface. (Chapter 3)

◇ Human motion variation synthesis

We propose a novel generative probabilistic model to synthesize variations

of human motion. The key idea is to model the conditional distribution of each

joint via a multivariate Gaussian Process model, namely Semiparametric Latent

Factor Model (SLFM). SLFM can effectively model the correlations between

degrees of freedom (DOFs) of joints rather than dealing each DOF separately

as implemented in existing methods. Detailed evaluations have been conducted

to show that our proposed approach can effectively synthesize variations of

different types of motions. Motions generated by our method showed a richer

variations compared with existing methods. Finally, our user study show that

the synthesized motions has similar level of naturalness as motion capture data.

Our method therefore has great potentials to be applied in computer games

and animations to enhance animation quality by introducing motion variations.

(Chapter 4)
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◇ Human Posture Reconstruction

We present a probabilistic framework to reconstruct live captured postures

from Kinect. To overcome the incorrectly tracked and missing joints by Kinect,

we adopt Gaussian Process (GP) model as a spatial prior to leverage position

data obtained from Kinect and an optical motion capture system. Specifically,

we model the residual offset between postures obtained from Kinect and mocap

system instead of pairwise posture relationship. The residual offset modeling

enables the system to cover more of the motion space. GP is advantageous here,

in that makes our system work even with small training data sets. We introduce

a temporal consistency term into the optimization framework by minimizing the

discrepancy between current posture and previous postures. The reliability of

the tracked joints from Kinect is different due to self-occlusions. To guide the

optimized posture towards the input posture from Kinect, we incorporate the

reliability of each tracked joint to constrain the residual offset between posture

from Kinect and MOCAP data. Intuitively, the system tends to preserve the

joint position value from Kinect as much as possible when the reliability of

this joint is high. The experimental results demonstrate that our system can

achieve high quality poses even under severe self-occlusion situations and obtain

higher accuracy compared with other alternatives. Especially, the system can

handle cases even when the motions involve a large number of occluded joints.

(Chapter 5)

Although the works presented in this thesis have achieved fruitful results on
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human motion analysis and synthesis, there are several possible directions for works

presented in this thesis to be further studied.

◇ Human motion retrieval

For motion retrieval system that is based on temporal sparse representa-

tion, the parameters 𝜎 and 𝑙 are determined experimentally and set to be fixed

values for all types of motions. One future direction would be determining

these parameters based on the motion types so that they can reflect the salient

property of each particular motion type. The proposed temporal sparse rep-

resentation (TSR) can be considered as a tensor representation, and tensor

decomposition [109] will be another alternative for the matching between two

TSRs. It is possible to scale up our method as the matching between motions

is quite fast. However, it needs an index structure to store the motion data

such as KD-tree. It will also be interesting to partition the body skeleton into

spatial segments and combine with sparse representation as the importance of

each partition varies between motions. For example, the upper body partition

is more important for a boxing movement, whereas the lower partition is more

important for a kicking movement. Hence, it will be interesting to propose

a human motion retrieval system that allows the user to retrieve motions by

partial matching based on the partition structure. In this thesis, we focus on

single character motions. However, our framework can be extended for motions

of multiple character. For single character motion, temporal sparse representa-

tion is calculated by the outer product of two frames within one motion. For
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multiple character motion, the relationship between motions can be encoded

by the outer product of two frames from two or multiple motions, in which

the chosen frames are from different motions. Similar idea has been adopted

by Tang et al. [110], where they used the inter distance between characters to

capture the relationship between motions. The proposed retrieval system al-

lows the user to input a query motion with Kinect. The relationship between

the retrieval accuracy and the noise of the query motion is also one interesting

direction to be worked on.

◇ Human motion variation synthesis

For human motion variation synthesis framework, it will be interesting to

encode the contact information as a new feature into our model as described

in Min et al. did [98]. SLFM allows different length scales for each input

feature, which automatically determines the importance of each input feature

to achieve feature selection. Meanwhile, generating variations in the semantic

level is another possible future direction, which allows the user to control the

degree of variation for the synthesized human motions. The proposed system

needs a small set of training example motions. In the future, we will extend the

proposed system to be a type-independent approach so that the framework can

be used for different kinds of motions. Moreover, it will be interesting to extend

the proposed framework for multiple characters. Chan et al. [28] proposed to

synthesize two-character interactions by merging captured interaction samples

with their spacetime relationships. It is possible to combine their approach
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with our method so that we can synthesize variations for interactions between

multiple characters.

◇ Human posture reconstruction

For the posture reconstruction framework, the assigned weights for the terms

in the objective function are empirically set to be fixed in the proposed system.

However, the weighs can be different for different types of motion to obtain

optimal reconstructed postures. One possible solution would be to formulate

the weight as a function of the residual offset, which is used to measure the

importance of each term. Therefore, the weights can be adaptively determined

according to the type of motion. The performance of our system will be affected

by the speed of the movement since the tracking accuracy of Kinect will be af-

fected by the speed. In the future, we will investigate the relationship between

the temporal prediction term and the speed of the motions. The incorpora-

tion of physical constraints into the proposed framework is another interesting

direction as the reconstructed postures in this work are not physically plausi-

ble. One possible way would be modeling the physical attributes (i.e. force

field) between the Kinect data and mocap data as a prior distribution, and em-

bed it into the optimization framework to generate physically valid postures.

Capturing interactions between multiple characters is also one possible future

direction. Liu et al. [111] proposed to capture motions of multiple characters

using multi-view image segmentation, similarly, we can use multiple Kinects for

posture reconstruction based on our method. Last but not least, integrating
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our system with other simple yet stable devices such as motion sensor would be

an interesting topic, because Kinect can only detect limited range of movements

while motion sensor can be used as a complement, e.g. the user’s back side.
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[11] M. Müller and T. Röder, “Motion templates for automatic classification and

retrieval of motion capture data,” in Proceedings of the 2006 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, ser. SCA ’06, Vi-

enna, Austria, Sep. 2006, pp. 137–146.



Bibliography 111

[12] M. Kapadia, I.-k. Chiang, T. Thomas, N. I. Badler, and J. T. Kider, Jr., “Ef-

ficient motion retrieval in large motion databases,” in Proceedings of the 2013

Symposium on Interactive 3D Graphics and Games, ser. I3D ’13, 2013, pp.

19–28.

[13] J. K. T. Tang, H. Leung, T. Komura, and H. P. H. Shum, “Emulating human

perception of motion similarity,” Computer Animation and Virtual Worlds,

vol. 19, no. 3-4, 2008.

[14] Y. Li, C. Fermuller, Y. Aloimonos, and H. Ji, “Learning shift-invariant sparse

representation of actions,” in Proceedings of the 2010 IEEE Conference on Com-

puter Vision and Pattern Recognition, ser. CVPR ’10, 2010, pp. 2630–2637.

[15] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching

using sparse coding for image classification,” in Proceedings of the 2009 IEEE

Conference on Computer Vision and Pattern Recognition, ser. CVPR ’09, 2009,

pp. 1794–1801.

[16] M. Elad and M. Aharon, “Image denoising via sparse and redundant represen-

tations over learned dictionaries,” Image Processing, IEEE Transactions on,

vol. 15, no. 12, pp. 3736–3745, 2006.

[17] Z. Lu and H. H. Ip, “Spatial markov kernels for image categorization and an-

notation,” Trans. Sys. Man Cyber. Part B, vol. 41, no. 4, pp. 976–989, Aug.

2011.



Bibliography 112

[18] N. Numaguchi, A. Nakazawa, T. Shiratori, and J. K. Hodgins, “A puppet

interface for retrieval of motion capture data,” in Proceedings of the 2011 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, ser. SCA ’11,

2011, pp. 157–166.

[19] T.-C. Feng, P. Gunawardane, J. Davis, and B. Jiang, “Motion capture data
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[106] J. Quiñonero Candela and C. E. Rasmussen, “A unifying view of sparse approx-

imate gaussian process regression,” J. Mach. Learn. Res., vol. 6, pp. 1939–1959,

Dec. 2005.

[107] H. Sidenbladh and M. Black, “Learning image statistics for bayesian tracking,”

in Proceedings of the 2001 International Conference on Computer Vision, ser.

ICCV ’01, vol. 2, 2001, pp. 709–716 vol.2.



Bibliography 125

[108] L. Hoyet, R. McDonnell, and C. O’Sullivan, “Push it real: Perceiving causality

in virtual interactions,” ACM Trans. Graph., vol. 31, no. 4, pp. 90:1–90:9, Jul.

2012.

[109] Z. Wang and B. Vemuri, “An affine invariant tensor dissimilarity measure

and its applications to tensor-valued image segmentation,” in Proceedings of

the 2004 IEEE Conference on Computer Vision and Pattern Recognition, ser.

CVPR ’04, vol. 1, June 2004, pp. I–228–I–233 Vol.1.

[110] J. K. Tang, J. C. Chan, H. Leung, and T. Komura, “Interaction retrieval by

spacetime proximity graphs,” Computer Graphics Forum, vol. 31, no. 2pt2, pp.

745–754, May 2012.

[111] Y. Liu, J. Gall, C. Stoll, Q. Dai, H.-P. Seidel, and C. Theobalt, “Markerless mo-

tion capture of multiple characters using multiview image segmentation,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 11, pp.

2720–2735, Nov 2013.



Appendices



Appendix A

TRC MOCAP Data Format
An example of Motion Analysis TRC (.trc) format of motion capture data:

Frame# Time Head Top LHead RHead
X1 Y1 Z1 X2 Y2 Z2 X3 Y3 Z3

1 0 42.61 1722.16 2063.19 -36.59 1645.28 2154.8 116 1656.21 2159.52
2 0.017 42.59 1722.11 2063.39 -36.61 1645.33 2155.02 115.85 1656.18 2159.8
3 0.033 42.56 1722.08 2063.51 -36.68 1645.4 2154.95 115.59 1656.01 2160.04
4 0.05 42.45 1722.05 2063.64 -37.03 1645.35 2155.05 115.31 1655.95 2160.29
5 0.067 42.29 1722.04 2063.73 -37.25 1645.4 2154.87 114.97 1655.93 2160.52
6 0.083 42.08 1722.03 2063.76 -37.88 1645.23 2154.74 114.29 1656.06 2160.83
7 0.1 41.79 1722.02 2063.81 -38.28 1645.3 2154.77 113.89 1656.09 2160.99
8 0.117 41.44 1722.01 2063.8 -38.64 1645.23 2154.67 113.75 1656.05 2160.9
9 0.133 41.08 1721.95 2063.74 -39.02 1645.22 2154.63 113.37 1656.19 2160.91
10 0.15 40.63 1721.96 2063.67 -39.35 1645.21 2154.64 112.97 1656.33 2160.96
11 0.167 40.14 1721.92 2063.57 -39.77 1645.19 2154.57 112.56 1656.51 2160.96
12 0.183 39.75 1721.91 2063.52 -40.09 1645.18 2154.61 112.17 1656.66 2161
13 0.2 39.32 1721.88 2063.53 -40.41 1645.15 2154.67 111.81 1656.77 2161.09
14 0.217 39 1721.87 2063.53 -40.71 1645.11 2154.71 111.49 1656.86 2161.17
15 0.233 38.72 1721.83 2063.65 -40.99 1645.03 2154.8 111.18 1656.85 2161.34
16 0.25 38.49 1721.77 2063.83 -41.36 1644.99 2154.92 110.92 1656.84 2161.59
17 0.267 38.33 1721.75 2064.06 -41.64 1644.96 2155.06 110.44 1656.96 2162.03
18 0.283 38.19 1721.74 2064.43 -41.83 1644.9 2155.32 110.24 1656.89 2162.42
19 0.3 38.04 1721.67 2064.89 -42.02 1644.79 2155.65 110.02 1656.82 2162.86
20 0.317 37.87 1721.68 2065.43 -42.23 1644.63 2156.06 110.13 1656.64 2163.21
21 0.333 37.65 1721.7 2066.1 -42.37 1644.43 2156.56 109.97 1656.53 2163.81
22 0.35 37.54 1721.7 2066.75 -42.45 1644.25 2157.08 109.88 1656.39 2164.36
23 0.367 37.52 1721.66 2067.51 -42.44 1644.15 2157.81 109.81 1656.22 2165.03
24 0.383 37.55 1721.66 2068.37 -42.43 1643.97 2158.47 109.82 1656 2165.71
25 0.4 37.62 1721.65 2069.17 -42.35 1643.8 2159.14 109.9 1655.76 2166.34
26 0.417 37.72 1721.62 2070.01 -42.26 1643.62 2159.85 110.02 1655.52 2167.02
27 0.433 37.86 1721.6 2070.9 -42.18 1643.52 2160.66 110.19 1655.3 2167.71
28 0.45 37.99 1721.62 2071.75 -42.06 1643.37 2161.34 110.33 1655.08 2168.38
29 0.467 38.15 1721.61 2072.57 -41.94 1643.24 2162.05 110.19 1654.97 2169.2
30 0.483 38.37 1721.62 2073.38 -41.81 1643.17 2162.7 110.38 1654.75 2169.83
31 0.5 38.57 1721.64 2074.06 -41.67 1643.14 2163.29 110.56 1654.57 2170.48
32 0.517 38.72 1721.66 2074.76 -41.56 1643.13 2163.91 110.97 1654.32 2170.95
33 0.533 38.85 1721.72 2075.36 -41.4 1643.06 2164.44 111.09 1654.19 2171.43
34 0.55 38.94 1721.79 2075.96 -41.33 1643.03 2164.9 111.18 1654.1 2171.9
35 0.567 38.98 1721.83 2076.49 -41.27 1643.14 2165.56 111.22 1654.04 2172.33



Appendix B

BVH MOCAP Data Format
An example of Biovision Hierarchy (.bvh) format of motion capture data:

HIERARCHY
ROOT Hips
{
OFFSET 0 102.614 0
CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation
JOINT RightUpLeg
{
OFFSET -8.94581 -8.66708 0.101652
CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation
JOINT RightLeg
{
OFFSET 0 -44.4228 1.3727
CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation
JOINT RightFoot
{
.
.
.
.
.
.
}
JOINT LeftToes
{
OFFSET -0.04 -4.41509 8.49911
CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation
End Site
{
OFFSET 0.0800001 -0.0474481 9.7798
}
}
}
MOTION
Frames
Frame Time
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