

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Interactive Control of Multi-Agent Motion in

Virtual Environments

Joseph Henry
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Perception, Action and Behaviour

School of Informatics

University of Edinburgh

2016

Summary

With the increase in the power of computers, simulation of large crowds in films and

computer games has become much more prevalent. With this comes a need to control

various aspects of these crowds, including their collective movement and formation

and the interactions between the individual characters in the crowd and their environ-

ment. Controlling these factors helps an animator to convey a story, or a player to

complete tasks in a computer game.

Existing methods require a lot of time and user input, across multiple steps, to

define the different levels of behaviour in a crowd simulation. Such user control is

restricted by hardware devices that accept a limited amount of input information. This

often results in approaches using specific mouse clicks or touch screen gestures to pro-

duce only a selection of crowd behaviours. This results in a discrepancy between the

amount of input a user can provide and the number of characters they are controlling

in a crowd simulation. This mismatch means there is no direct link between the indi-

viduality or expressiveness in the user’s interaction, and the resulting crowd behaviour.

In this thesis we present two approaches to solve the problems outlined above.

In our first approach, users manipulate an intermediary shape on a touch screen that

defines the movement of the crowd over time. Our simulation adapts the user’s control

to fit with the virtual environment and moves the characters in the crowd to follow this

control as efficiently as possible. A user study shows that crowds can complete tasks

more efficiently when controlled with our scheme as compared with a mouse-based

control. We extend this approach to allow characters to interact with their environments

by negotiating obstacles. Our simulation accounts for how this interaction affects the

speed of the characters’ movement when providing them with instructions to follow

the user’s control.

In our second approach, we infer the crowd’s movement based on a user’s input

to a touch screen device instead of requiring the user to explicitly move a shape on

screen or perform a set of controls. We do this by considering the similarity of a new

user input to a set of example inputs, taken from real users, that each correspond to

a particular crowd movement. Given a set of similar user inputs from our database,

we can generate new crowd motion that reflects a user’s control by blending together

the crowd motion examples that the inputs are paired with. In this way, the generated

crowd motion is directly affected by variations in the user’s input, providing a user

with greater freedom to define the animation.

iii

Abstract

With the increased use of crowd simulation in animation, specification of crowd

motion can be very time consuming, requiring a lot of user input. To alleviate this

cost, we wish to allow a user to interactively manipulate the many degrees of free-

dom in a crowd, whilst accounting for the limitation of low-dimensional signals from

standard input devices. In this thesis we present two approaches for achieving this: 1)

Combining shape deformation methods with a multitouch input device, allowing a user

to control the motion of the crowd in dynamic environments, and 2) applying a data-

driven approach to learn the mapping between a crowd’s motion and the corresponding

user input to enable intuitive control of a crowd.

In our first approach, we represent the crowd as a deformable mesh, allowing a user

to manipulate it using a multitouch device. The user controls the shape and motion

of the crowd by altering the mesh, and the mesh in turn deforms according to the

environment. We handle congestion and perturbation by having agents dynamically

reassign their goals in the formation using a mass transport solver. Our method allows

control of a crowd in a single pass, improving on the time taken by previous, multi-

stage, approaches. We validate our method with a user study, comparing our control

algorithm against a common mouse-based controller. We develop a simplified version

of motion data patches to model character-environment interactions that are largely

ignored in previous crowd research. We design an environment-aware cost metric

for the mass transport solver that considers how these interactions affect a character’s

ability to track the user’s commands. Experimental results show that our system can

produce realistic crowd scenes with minimal, high-level, input signals from the user.

In our second approach, we propose that crowd simulation control algorithms in-

herently impose restrictions on how user input affects the motion of the crowd. To

bypass this, we investigate a data-driven approach for creating a direct mapping be-

tween low-dimensional user input and the resulting high-dimensional crowd motion.

Results show that the crowd motion can be inferred directly from variations in a user’s

input signals, providing a user with greater freedom to define the animation.

iv

Acknowledgements

I would like to begin by thanking my supervisor Taku Komura for giving me the op-

portunity to pursue research in an area I found both exciting and stimulating. I would

also like to thank Michael Herrmann, and my collaborators on the work in this thesis,

Hubert Shum and He Wang for their advice and support that has helped to keep me on

track. An extra thank you to Myung Geol Choi for providing some of the motion data

used in the experiments.

After many long years trying to get this thesis complete I have made a number

of friends who have supported me both in and out of my research life. I am very

thankful for all of my fellow PhD students and IPUBbers, especially Patrick, Adam,

Peter, Vlad, and Xi who not only were able to provide valuable advice but were also

great friends throughout. I also would like to give a big thanks to my family whose

continued support has enabled me to follow my chosen path. Hopefully now they can

see what I have been doing all these years.

Finally, I would like to thank my partner Kayleigh, who was great throughout but

without her I don’t think I would have been able to get through the final gruelling

months of writing up. I am convinced that without her support there would have been

times I would have just become a gibbering wreck. I definitely owe her more than one.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Joseph Henry)

vi

Table of Contents

1 Introduction 1

1.1 Demand for Interactive Crowd Control 2

1.2 Problem Definition . 4

1.2.1 Realtime Control of Crowd Formation and Movement 5

1.2.2 Control of Crowd Motion in Complex Environments 5

1.2.3 Direct, Intuitive User Control of Crowd motion 6

1.3 Thesis Outline . 7

1.4 Summary . 8

2 Related Work 11

2.1 Crowd Simulation . 12

2.1.1 Microscopic (Local) Approaches 12

2.1.2 Macroscopic (Global) Approaches 18

2.1.3 Hybrid Approaches . 20

2.1.4 Summary . 22

2.2 Crowd Motion Control . 23

2.2.1 Agent Pathing and Crowd Flow Control 23

2.2.2 Group Formation and Interaction Control 26

2.2.3 Summary . 32

2.3 Touch-based Gesture Recognition 32

3 Multitouch Formation Control 35

3.1 Contributions . 37

3.2 Method Overview . 37

3.3 Movement and Formation Control 38

3.3.1 Formation Representation and Control 38

3.3.2 Point, Line and Area Controls 41

vii

3.4 Environment-Guided Mesh Deformation 45

3.5 Character Mapping . 47

3.6 Experimental Results . 48

3.6.1 Environments with Static Obstacles 49

3.6.2 Environments with Dynamic Obstacles 49

3.6.3 Formation Manipulation . 50

3.6.4 Mass Transport Solver . 53

3.6.5 Computational Costs and 3D Rendering 54

3.7 Discussion . 54

3.7.1 Multitouch control . 55

3.7.2 Mass Transport Solver . 55

3.7.3 Scalability . 56

3.7.4 Formation Representation and Crowd Movement 57

3.7.5 Character-environment interaction 58

3.7.6 Formation tracking . 58

3.8 Summary . 59

4 User Evaluation of Multitouch Control 61
4.1 Contributions . 61

4.2 Method . 61

4.3 Results . 63

4.3.1 Task Completion . 63

4.3.2 Required User Input . 64

4.3.3 User Feedback . 65

4.3.4 Use of Multitouch . 67

4.4 Discussion . 68

4.4.1 User Compatibility . 68

4.4.2 Flexibility . 69

4.4.3 Other Crowd Simulation Control 69

5 Interaction with the Environment 71
5.1 Contributions . 73

5.2 Method Overview . 74

5.3 Improved Character to Formation Mapping 74

5.3.1 Environment-Aware Metric for Goal Assignment 75

5.3.2 Evaluating Cost to the Goal 76

viii

5.3.3 Representing Environment Interactions in the Cost Metric . . 78

5.3.4 Embedding Motion Data in the Environment 79

5.3.5 Coupling of User Input and Crowd Motion 81

5.4 Experimental Results . 83

5.4.1 Handling Motion Data Patches 83

5.4.2 Defining Crowd Trajectories 85

5.4.3 Choosing an Appropriate Path 85

5.4.4 Formation Tracking . 88

5.4.5 Computational Costs and 3D Rendering 88

5.5 Discussion . 90

5.5.1 Character-Environment Interactions 90

5.5.2 Scalability . 90

5.5.3 Environment-Aware Cost Metric 91

5.5.4 Motion Data Patches . 92

5.6 Summary . 92

6 Flexible Multi-agent Motion Control 93

6.1 Contributions . 95

6.2 Method Overview . 96

6.3 Data Collection . 97

6.4 Gesture space . 99

6.4.1 Creating a Gesture . 100

6.4.2 Gesture Features . 103

6.4.3 Forming Gesture Space . 105

6.5 Crowd Motion Space . 105

6.5.1 Generating Motion Models 107

6.5.2 Generating a New Crowd Motion Model 108

6.5.3 Applying the Generated Motion Model 109

6.6 Experimental Results . 110

6.6.1 User Input Analysis . 110

6.6.2 Classification . 115

6.6.3 Producing Crowd Motions 116

6.6.4 Computational Costs and 3D Rendering 120

6.7 Discussion . 121

6.7.1 Handling User Variations in Gestures 121

ix

6.7.2 Recognising User Gestures 123

6.7.3 Generating Crowd Motion 123

6.8 Summary . 125

7 Conclusion 127
7.1 Findings and Contributions . 127

7.2 Limitations and Future Research Directions 129

7.2.1 Combining Flexible Control with Environment Interactions . 129

7.2.2 Controlling Group Interactions 130

7.2.3 User Control Over Low-Level Character Interactions 130

7.2.4 Controlling Non-Planar Crowd Movement & Particle Systems 130

7.3 Publications and Acknowledgements: 131

Bibliography 133

x

List of Figures

3.1 An overview of the proposed multitouch based control system. 38

3.2 Application of user input signals to control of the formation mesh . . 40

3.3 The proposed line-based control scheme for manipulating the forma-

tion mesh . 43

3.4 The proposed area-based control scheme for manipulating the forma-

tion mesh . 43

3.5 A comparison of point-,line-,and area-based mesh control schemes . . 44

3.6 Simultaneous application of different mesh control schemes 45

3.7 Calculation of the velocity field for obstacle influence on the crowd

formation . 46

3.8 Controlling a crowd through various environments using a deformable

mesh . 50

3.9 Examples of crowd formations produced using a deformable mesh . . 51

3.10 Examples of high and low level control of crowd formation 52

3.11 Effect of using the mass transport solver to assign a character’s position

in the final formation . 53

4.1 The mouse control interface used in the user study 62

4.2 The initial setup for environments used in the user study 62

4.3 Box-whisker plot of item collection task completion time for multi-

touch and mouse-based controllers in different environments 64

4.4 Comparison of the number of control inputs for task completion using

mouse and multitouch devices . 65

4.5 Average scores and their standard deviations for multitouch and mouse-

based controllers given in response to user study questions 66

4.6 The questions presented to each user after completion of the tasks us-

ing either the mouse or the multitouch controller. 66

xi

4.7 Histogram for the number of fingers used in users’ gestures for con-

trolling the crowd . 67

5.1 Limitations of an Euclidean distance metric for assigning a character’s

goal position . 75

5.2 Example of a crowd’s choice to move through different types of envi-

ronment . 76

5.3 An example potential field produced using the environment aware cost

metric . 78

5.4 A crowd passing through multiple environments filled with static and

dynamic motion data patches . 84

5.5 A crowd adapting their paths based on user instruction and the type of

environment . 86

5.6 The effect of motion data patches on path choice 87

5.7 The benefits of including a feedback signal based on current crowd and

formation state . 89

6.1 Examples of basic crowd motion shown to users to collect their control

gestures . 97

6.2 Examples of hybrid crowd motion shown to users to collect their con-

trol gestures . 99

6.3 User’s inputs provided for controlling various crowd motions 111

6.4 Centroid feature for different user gesture classes 112

6.5 Distance to Centroid Feature for different user gesture classes 112

6.6 Average total rotation of user’s inputs for different user gesture classes 113

6.7 Combined minimum oriented bounding box feature (2D) for different

user gesture classes . 114

6.8 Change in dimensions over time for the minimum oriented bounding

box feature for different user gesture classes 115

6.9 Confusion matrix for classification of basic user input gestures 116

6.10 Examples of “converge” and “contract” motions produced from basic

user input gestures . 117

6.11 Examples of “split” and “expand” motions produced from basic user

input gestures . 117

6.12 Examples of “straight” and “twist” motions produced from basic user

input gestures . 118

xii

6.13 Examples of motions produced from user input gestures for hybrid

crowd motions . 119

6.14 Examples of animated character motions produced from various user

input gestures . 120

xiii

Chapter 1

Introduction

Crowd control research has become increasingly popular due to its potential applica-

tions in computer games and animation. In modern films, crowd animation is used in

large-scale scenes to make the scene more active and interesting. Crowd animation

can be employed in the background of a scene to depict, for example, a busy town

centre in which the protagonists are situated. Alternatively, the scene may focus on

the crowd itself, for example when depicting a battlefield scene. In both cases it is

important that the crowd motion be appropriate to the scenario so that the audience is

not distracted by unusual movement of the characters. Additionally, during creation of

the animation the collective crowd and individual character motion should be control-

lable, allowing the animator to govern how the crowd moves through the environment

in order to convey the storyline and atmosphere of the scene. In interactive applica-

tions, such as computer games, appropriate control of a crowd of characters can help

to immerse a user in the game, increasing overall enjoyability and enabling the user to

perform appropriate tasks effectively. This is evident in real-time strategy games such

as StarCraft 2 and Age of Empires Online, where controlling military units to attack

the opponents is a key criterion for success in the game.

Despite the popularity of crowd animation in the film and game industry, specifica-

tion of detailed crowd movement often requires large amounts of input and time. Al-

though recent research proposes methods for alleviating some of this burden, multiple

stages are still required to achieve the desired output. This can mean that production

of a scene is costly and time-consuming. On top of this, existing approaches use input

devices to indirectly alter the crowd’s movement by specifying constraints on the sim-

ulation, rather than using the device as a means to express the motion of the crowd. As

a result, a user’s experience when creating an animation or playing a computer game

1

2 Chapter 1. Introduction

is diminished due to the lack of direct interactivity.

In this chapter, a brief overview is given of techniques used to produce crowd

movement, particularly with regards to control of group formation and motion and its

application in interactive systems such as video games. We provide reasons for why

effective, realtime control is difficult to achieve, and why this is important for use in

current applications. A description of the problem is provided along with an outline of

the research contained in this thesis that offers solutions to these issues.

1.1 Demand for Interactive Crowd Control

The main issue with controlling a crowd in animation and interactive applications

comes from its high degrees of freedom, in the case where each character is able to

move around freely in the environment. There is a discrepancy between this high-

dimensional movement of a crowd and the low-dimensional signals from user input

devices. To cope with this, a common approach for controlling crowds is to use high-

level commands to specify goals to a group of characters as opposed to goals for in-

dividual characters. While this is effective for producing general crowd movement, in

most cases a user is unable to specify low-level subtleties in the crowd movement as

the crowd is in motion, such as making changes to the crowd shape whilst it is moving

or specifying the routes individuals should take through the scene. These changes in

formation and character pathing are useful for conveying individuality to the crowd

motion or allowing a user to achieve certain objectives in applications such as com-

puter games. Often, specification of such details occurs in a secondary process, where

additional constraints are defined in order to manipulate the original simulation of the

crowd.

To produce fine details in crowd motion, some crowd animation approaches allow

a user to manipulate the individual trajectories or behaviours of every character in the

crowd. Crowd simulation software like Massive requires the animators to carefully

design the behaviour of the characters, such as programming their synthetic sensors

and effectors, in order to control the formation of a crowd [Kanyuk (2009)]. For small

groups of characters this can be effective, however, for increasing sizes of crowds this

process becomes cumbersome. Moreover, the macroscopic behaviour of the crowd can

be unpredictable as it is not always clear how the individual behaviours of the char-

acters will cause them to interact in larger crowds. This can lead to greater workload

during animation production. Furthermore, this kind of approach can adversely affect a

1.1. Demand for Interactive Crowd Control 3

user’s experience in interactive applications. For example, in real-time strategy games,

players have to control individual units using mouse gestures, which consist of multi-

ple clicks and drags, to be able to specify complex motion and formations of a group

of characters. In such applications, these extra steps can hinder a user’s enjoyment due

to the long time it takes to create the desired crowd movement.

In crowd animation techniques, users manipulate the movement of the crowd in-

directly by defining keyframed formations or applying constraints to existing crowd

movement. These algorithms require multiple steps for designing the crowd move-

ments, especially when environmental obstacles are involved. Other approaches adopt

a “point and click” style, where agents in a crowd are first selected and then a goal po-

sition is specified. As a result, the user has little influence over how the crowd moves to

their target unless they specify a large number of waypoints to define the intermediate

movement of the crowd. In interactive applications, this extra requirement to provide

multiple instructions to move the crowd can mean that it is harder for a user to react

quickly to new events. In many instances it would be desirable for a user to be able

to specify the formation and motion of the crowd directly, influencing its shape and

behaviour throughout the course of the crowd’s movement. This is particularly helpful

if a user wants to control a crowd to perform different movements simultaneously to

achieve a certain task. For example, in order to improve the level of coverage of a

given environment the user might want to control the crowd to move and to spread out

at the same time. It is also useful if a user needs to adapt the crowd’s formation quickly

in response to a change in their surroundings or, for example, to gain the upper hand

against an opposition team in virtual sports or war games.

When using interactive applications a key aspect of the enjoyment for the user,

particularly in computer games, comes from the feeling of being able to directly con-

trol the movement of characters or manipulate objects in the game. This can be seen

through the popularity of Nintendo’s Wii console and Microsoft’s Kinect device. This

sense of being able to influence virtual characters and environments in realtime helps

the user to immerse themselves in the application and improves the overall enjoyment

for the user. Direct control is also important for allowing the movement of the crowd

to correspond well to a user’s input. This is prevalent given that a user’s experience

can be diminished when there is a disconnect between their input and the generated

crowd motion that is seen on the screen. Furthermore, direct, intuitive control methods

make an application easier to use. Providing this kind of interaction for applications

enables users to quickly learn to generate crowd movement as well as to more easily

4 Chapter 1. Introduction

convey their desired crowd behaviour. Both of these aspects have a positive influence

on a user’s experience.

As games become more advanced due to increases in computational power, virtual

environments are populated with greater numbers of obstacles and characters are ex-

pected to perform more interesting motions that involve interacting with surrounding

objects. In this sense, the complexity of crowd simulation is a key feature in its vi-

sual and interactive appeal. Previous group control approaches often do not consider

the existence of the rest of the environment. For those that do, the obstacles avoid-

ance and environment interaction is either performed in an offline, iterative manner or

the algorithm is abstracted to a group-wide level. To produce more realistic looking

scenes a crowd should be able to interact directly with their surrounding environment.

Such interactions can include how the shape of a crowd will be affected when encoun-

tering an obstacle as well as how individual characters interact with environmental

obstacles that can alter their movement, including objects to crawl under or jump over.

To allow the application to remain interactive, this character-environment interaction

must be handled in real-time. Previous research can simulate the interaction of charac-

ters with environmental objects however, because this simulation requires a number of

constraints, these approaches do not allow a user to directly influence the characters’

interactions or to provide interactive control over their movement. An algorithm is

required that incorporates character-environment interactions whilst still respecting a

user’s instructions for the movement of the crowd. To do this, a crowd control scheme

should account for the effect of obstacles on the movement of characters when fol-

lowing a user’s control signal. This is especially important for real-time games where

unforeseen perturbations could cause characters to become stuck if they are unable to

adapt their motion.

1.2 Problem Definition

The goal of this thesis is to provide a method for realtime control of the motion of

a crowd in interactive applications. Throughout this thesis the words “character” and

“agent” will be used interchangeably to mean an individual, intelligent entity in the

crowd and the words “user” and “animator” to mean the individual controlling the

motion of the crowd. We define an interactive application to mean a piece of software

to which a user can apply a control and expect to see an update to the application

almost immediately. In this section we define the main issues highlighted in section

1.2. Problem Definition 5

1.1 and provide an overview of how the work in this thesis provides solutions to these

problems.

1.2.1 Realtime Control of Crowd Formation and Movement

Although previous research has addressed the control of crowd motion and formation

specification, these methods still require a number of stages in order to produce the

final crowd movement. This prevents interactive control over crowd motion and can

increase the time required for specification of crowd movement. An algorithm is re-

quired that allows a user to define the shape and motion of a crowd simultaneously so

that the appropriate crowd motion can be generated in a single step. This will benefit

users in interactive applications by speeding up the process of producing crowd move-

ment. As a result, users will be able to control crowds more effectively to achieve a

desired formation and guide the crowd to carry out tasks in dynamic virtual environ-

ments.

This thesis tackles the problem of providing a realtime control scheme for crowd

motion by harnessing the capabilities of multitouch devices. A multitouch device lets

a user provide several inputs simultaneously, thus allowing them to supply control for

both the movement of the crowd and its shape at the same time. We define a crowd’s

target formation using a two-dimensional mesh that can be directly manipulated by a

user’s touch inputs in order for a user to be able to specify the crowd’s movement and

shape. This mesh is also affected by the surrounding environment so as to prevent char-

acters in the crowd from colliding with obstacles. The combination of these two signals

means that the target formation for the crowd is defined by the user whilst respecting

the constraints of the scene. The characters’ final positions in the user-defined mesh

are reassigned each frame based on minimising the travel time for the whole crowd to

reach the target formation. In doing this, our approach can create crowd motion that

follows the user’s input well in a variety of static and dynamic environments. Our al-

gorithm lets a user focus on the high-level crowd behaviour by handling the low-level

interactions between the environment and the crowd’s formation. More details can be

found in chapter 3.

1.2.2 Control of Crowd Motion in Complex Environments

In animation and computer games, crowds are often required to move in detailed en-

vironments in order to convey a certain storyline or to provide interesting scenarios

6 Chapter 1. Introduction

for users to interact with. Simulating the interactions between characters in the crowd

and their environment, such as climbing over or crawling under obstacles, helps to im-

prove the quality of the animation or gaming experience. However, incorporating such

interactions whilst still allowing a user to interactively control a crowd is an unsolved

problem. Beyond simple collision avoidance, no scheme exists for considering the

effect of environment interactions on a character’s ability to follow the control input

provided by a user.

This thesis proposes a method for incorporating a variety of character-environment

interactions into the planning and motion of a user-controlled crowd. The method pro-

posed in chapter 5 replaces the basic Euclidean distance metric used to assign positions

in the user-defined formation in chapter 3 with an environment-aware cost metric that

accounts for a variety of different objects in the scene. This metric considers the effect

of both traditional impassable obstacles that a character cannot pass through at all, and

traversable obstacles that a character can travel through but, in doing so their move-

ment speed is affected. Examples of traversable obstacles include walls that a character

can climb over or a low net that a character must crawl under. The algorithm in chap-

ter 5 uses values from motion capture data of a character’s interaction with these types

of environmental obstacle. This information is embedded into the scene using data

“patches” that define the area in which an obstacle will affect a character’s movement.

The values from motion capture data are used as part of the environment-aware cost

metric to evaluate characters’ positions in the user-defined formation. Experimental

results show that a crowd is able to incorporate these character-environment interac-

tions in their motion whilst still being able to follow the user’s input control. More

details can be found in chapter 5.

1.2.3 Direct, Intuitive User Control of Crowd motion

The ease with which a user can interact with an application has a significant impact

on their productivity and enjoyment. Current crowd control techniques use indirect

methods for describing a crowd’s behaviour through the application of constraints on

existing motion or drawing of target formations. A control scheme for defining crowd

motion should be simple to use and should enable a user to express the movement of

the crowd in a straightforward manner so as to improve their efficiency at completing

tasks using minimal input. There should be few restrictions implied by the control

scheme on how a user can provide their input so that it can be performed in a way that

1.3. Thesis Outline 7

is natural and intuitive.

This thesis presents results from a user study showing that the approach outlined

in chapter 3 enables users to perform simple tasks involving crowd motion more effi-

ciently when compared to using a traditional mouse-based control scheme. This study

also shows positive responses from users for the use of the multitouch-based control

scheme, including their ability to perform the desired task, how well they felt the crowd

followed their commands, and how easy the control scheme was to use. More details

on this study can be found in chapter 4. This thesis also describes an approach for

generation of crowd motion based directly on the properties exhibited in a user’s input

control. This is different to the work in chapters 3 & 5 because it does not restrict the

user to providing control via manipulation of a mesh, instead it lets the user provide

their control signal in a way that is intuitive to them. The algorithm presented in chap-

ter 6 employs a data-driven approach to convert a new user input into a corresponding

crowd motion. In this method, a new input gesture is matched to similar gestures col-

lected from users that describe the control for eliciting various crowd motions. This

matching is achieved using a set of features that are invariant to common discrepancies

between user’s input gestures, such as the number of fingers used to perform the ges-

ture. The correspondence between the set of collected gestures and the example crowd

motion data provides an implicit mapping from the new gesture to its associated crowd

motion based on its similarity to the gestures in the data set. Given this mapping, our

method is able to produce a new crowd motion that corresponds to the user’s input. In

order for our method to combine various types of crowd motion data and to be able to

produce motion for crowds of any size we create models based on principal component

analysis of the crowd motion examples instead of using the raw data. More details can

be found in chapter 6.

1.3 Thesis Outline

This thesis is structured as follows. First, we provide a review of work related to crowd

simulation and control of crowd formation and movement in chapter 2. We describe

how there is a lack of approaches for direct, interactive manipulation of a crowd’s mo-

tion and shape that is important for realtime control in games and for more efficient

creation of animated scenes. Since the algorithms that we propose use a multitouch

device for user interaction, chapter 2 includes an overview of research in the area of

touch input recognition that is relevant to the work in this thesis. We then explain

8 Chapter 1. Introduction

our approach for simultaneous control of a crowd’s formation and movement using a

multitouch device in chapter 3. We show how this method enables a user to control a

crowd, using a single gesture, to move in environments containing static and dynamic

obstacles whilst maintaining a desired formation. The results of this work are pub-

lished in Henry et al. (2012). In chapter 4 we assess the usability and appeal of this

multitouch-based control scheme through a user study. In Chapter 5 we also describe

an extension to the method in chapter 3 that adds direct interactions between characters

and obstacles in the environment. This work is published in Henry et al. (2014). The

proposed method in chapters 3 & 5 places restrictions on how a user can provide their

control and on the kind of crowd motion that can be produced. In chapter 6 we explore

an alternative data-driven approach to producing crowd motion using a multitouch de-

vice. This approach uses gesture examples and corresponding crowd motion data to

generate movement of a crowd based directly on a user’s input. Finally, we summarise

the findings and contributions of the work in the thesis and provide suggestions for

future directions in chapter 7.

1.4 Summary

Crowd simulation is important for conveying storylines in animation and providing

interesting, interactive experiences in games. However, previous research methods

require a number of steps to produce crowd motion and to control their formation

and do not provide a way for a user to directly express the movement of the crowd.

There is also a lack of methods for controlling crowds in environments that require

character’s to interact with obstacles. We have identified three areas for improvement

in previous research. First, it is desirable for a user to control a crowd using a single

step, enabling them to adapt the crowd’s behaviour in realtime to suit the needs of

interactive applications such as computer games. Second, a control scheme should be

intuitive and expressive, allowing a user to quickly learn how to control a crowd and

to directly influence the crowd’s motion through their input. This is important in the

user’s immersion and enjoyment of the application. Finally, to allow a crowd to be

controllable in complex scenes we need a method to handle characters’ interactions

with the environment whilst still following a user’s input.

The approaches presented in this thesis are primarily designed for use in interactive

applications, where a user is concerned with a high level of control over the movement

of the crowd in order to achieve a certain objective. Often this movement can look

1.4. Summary 9

relatively artificial when compared to real-life crowd scenes. While the system pre-

sented could be used for prototyping of basic animated scenes it does not provide the

requisite realism for full animation production and as such it is not targeted at such an

application.

Chapter 2

Related Work

In the past twenty years a large number of approaches have been proposed for simulat-

ing the movement and interaction of individuals, groups, and crowds of characters in

virtual applications. This chapter discusses previous research in the areas most relevant

to the work presented in this thesis, i.e. user control of the motion and formation of a

group of virtual characters. The concept of multi-agent control is not exclusive to the

fields of animation and computer graphics (for example, there exists extensive research

on group coordination in robotics) however, this thesis focuses specifically on control

of multiple virtual characters in interactive applications. As such, this review mainly

discusses work in animation and computer graphics with some reference to work in

other fields where appropriate.

In order to provide an appropriate background, Section 2.1 outlines work on crowd

simulation as a whole, with a focus on how local and global approaches have been

used to produce emergent crowd behaviours and realistic crowd motion. For an ex-

tensive review of crowd simulation, readers are referred to the work by Thalmann &

Musse (2013) and Pelechano et al. (2008). Section 2.2 highlights work on user control

over crowd simulations. Generally speaking, these approaches either provide tools for

pre-specifying the motion of the crowd or for manipulation of existing simulations.

Finally, a key component of the work in chapter 6 is a method for identifying gestures

performed on a touch device therefore we present a brief review of related work in

gesture recognition in Section 2.3.

11

12 Chapter 2. Related Work

2.1 Crowd Simulation

Broadly speaking, crowd simulation research can be categorised into either micro-

scopic (local) or macroscopic (global) approaches. Microscopic approaches (Sec-

tion 2.1.1) consider individuals within a crowd, concentrating on how they interact with

other characters and planning behaviour locally. These can be considered as so-called

agent-based approaches. On the other hand, macroscopic methods (Section 2.1.2) con-

sider the crowd as a whole, using global information to govern the simulation and

putting less emphasis on the individuality of the characters. This type of research is

much more concerned with producing appropriate flow-like behaviour in the crowd.

Despite this distinction, microscopic and macroscopic methods do not always appear

in isolation. Hybrid methods often perform navigation for the crowd on a global scale

and have the agent use a local controller in order to follow their assigned path (Sec-

tion 2.1.3). A common approach in microscopic, macroscopic, and hybrid methods

is to set a velocity for each agent in the scene in order to control their movement in

the simulation. This velocity is produced as a result of various parameters that differ

depending on the chosen approach.

2.1.1 Microscopic (Local) Approaches

As the more prevalent approach for crowd simulation, microscopic methods treat each

character in the crowd as an individual entity, acting independently of others. Each

member of the crowd has its own goals and characteristics, planning each of its move-

ments using local information and acting accordingly. The idea is that realistic, crowd-

like behaviour will emerge as a result of these local interactions between individuals.

This approach was introduced in the seminal work by Reynolds (1987) where agents

or “boids” followed simple local rules that defined their behaviour. These rules served

for the agent to avoid collisions with other members of the crowd whilst remaining

close to and aligning themselves with the rest of the flock. This work showed how a

small set of rules can effectively produce the sort of flocking exhibited by birds and

schools of fishes. This was later extended to incorporate additional steering behaviour

in autonomous agents [Reynolds (1999)]. A variety of crowd scenarios can be pro-

duced with microscopic approaches by manipulating the types of rules that govern an

individual’s behaviour and the importance of those rules. The level of control that

a method can instil, and its predictability, is dependent on the number of parameters

available and how obviously they interact with one another.

2.1. Crowd Simulation 13

Reynolds’ rule-based method has inspired several other similar approaches that

are outlined in Section 2.1.1.1. Similarly, the influential work by Helbing et al. [Hel-

bing & Molnar (1995); Helbing et al. (2005)] in civil and traffic engineering has led

to force-based approaches for multi-agent simulation (Section 2.1.1.2). More recently,

data-driven approaches have introduced techniques for controlling individuals in sim-

ulations based on example data from real crowds (Section 2.1.1.3). In contrast to

these approaches, geometric methods (Section 2.1.1.4) focus on guaranteeing collision

avoidance as opposed to reproducing specific crowd behaviours.

2.1.1.1 Rule-based Approaches

Rule-based methods have been used throughout animation and computer graphics to

mimic complex, lifelike behaviours for individuals and can often result in realistic

crowd behaviours. Sophisiticated models are capable of creating autonomous agents

with various characteristics and specific goals [Musse & Thalmann (2001)]. Sakuma

et al. (2005) introduced a two stage framework using personal space and virtual mem-

ory rules based on findings in the field of social psychology. This model improved the

realism of the simulation at both local and global levels. Similarly, Pelechano et al.

(2007) incorporated psychological and geometrical rules with physical forces (akin to

force-based methods, see Section 2.1.1.2) to control individual agents in high density

crowds. This framework modelled a number of crowd behaviours including lane for-

mation and fast propagation of panic in crowd scenarios. Counterflows and overtaking

behaviours can be elicited by incorporating parameters such as distance to and relative

velocity of obstacles as well as surrounding crowd density. Binary parameters such as

whether or not an individual is in a state of panic can be used to override or influence

other parameters including an individual’s maximum walking speed. In turn, control-

ling an individual’s tendency to panic will affect how they will behave in a variety of

ways.

Cognitive models have been used to simulate sophisticated agents that are able to

learn from their environment [Funge et al. (1999)]. These models are extensible and

have been successfully combined with behavioural, perceptual, and motor components

[Shao & Terzopoulos (2007)]. In Shao & Terzopoulos (2007), a decision network is

used to allow agents to decide on higher level behaviours, such as moving to a specific

location within a virtual scene. Yu & Terzopoulos (2007) introduced an extension to

this decision network framework that faithfully approximated real human behaviour by

enabling the agents to handle uncertainties in their surroundings. Since this approach is

14 Chapter 2. Related Work

modular, these networks can be easily augmented with nodes representing new aspects

of a decision process. However, the high computational cost of the framework when

handling complex decisions represented by large decision networks limits its use to

small crowds. Finite state machines (FSM) have also been implemented to represent

different behaviours for an agent in a crowd [Sung et al. (2004)]. The probability of

transitioning to each state in the FSM depends on the current internal state of the agent

and can also be affected by user-defined areas of the environment. FSMs can be easily

grown by adding new states, allowing for characters in the simulation with varying

complexity of behaviour. Often in such simulations the individual’s movement can be

controlled by specifying goal positions. The approach used will attempt to reach this

desired position whilst accounting for other factors in the model.

“Composite agents” were introduced in Yeh et al. (2008) as a proxy-based method

for simulating crowd behaviours including social priority, authority, aggression, etc.

with little computational overhead. This approach associated with each agent various

proxy agents that represented an individual behaviour for that agent in the simulation.

For example, an aggressive proxy was placed ahead of the agent in the direction it was

wishing to move, causing other agents to move aside to get out of the way. In addition

to these approaches, rule-based methods have been developed to simulate sociological

grouping [Musse & Thalmann (1997)], visual stimuli and motor response laws [Ondřej

et al. (2010)], minimisation of energy expenditure through the principle of least effort

[Guy et al. (2010)], and following behaviours [Lemercier et al. (2012)]. In the case

of Ondřej et al. (2010) individual character behaviours can be adjusted by altering

the safe distance the individual will keep from obstacles, their anticipation time for

potential future collisions, and how strongly they will react to an impending collision.

Variation in these parameters on a per-agent basis can lead to a variety of different

crowd behaviours. Commercially, simple rules and fuzzy logic have been employed to

great effect in the Massive software used for simulation of large crowd scenes in The

Lord of the Rings movie trilogy.

A major issue with rule-based approaches is in the time-consuming design of the

rules used to govern individuals. Furthermore, there is no guarantee of these rules

consistently generating the desired behaviour at a crowd level. This is particularly the

case when the environment is very dynamic and complex and often these approaches

require a large amount of parameter tuning to achieve desired results.

2.1. Crowd Simulation 15

2.1.1.2 Force-based Approaches

In their novel work, Helbing et al. developed the influential agent-based social force

model [Helbing & Molnar (1995); Helbing et al. (2005)]. In this approach, the forces

themselves are derived from the social tendencies of the agent to avoid collisions with

other agents and the environment and to move in a specific direction at a desired speed.

The social force model, and its derivatives, have since been used to simulate empiri-

cally observed emergent crowd behaviours including, but not limited to, arching and

congestion at narrow exits, vortices arising from crossing pedestrian flows and lane for-

mation from flows in opposing directions [Helbing et al. (2005, 2001); Hoogendoorn

& Daamen (2005)]. These approaches model interactions between characters (and ob-

stacles) as repulsive and tangential forces based on their relative positions. Force-based

approaches also incorporate principles from social and psychological fields to generate

these interaction forces. Helbing and colleagues have used the social force model to

replicate observations from a series of controlled experiments [Moussaı̈d et al. (2009)].

Other extensions have been made to simulate pedestrians in normal and emergency

panic situations [Teknomo (2006); Helbing et al. (2000)] as well as to simulate the

formation of groups in a crowd using additional attractive forces [Braun et al. (2003)].

Closely associated to the force-based models are particle-based approaches. These

approaches recreate human crowd phenomena by accounting for motion dynamics of

characters [Brogan & Hodgins (1997)], and modelling collective crowd movement us-

ing a mass-spring damper system [Bouvier & Guilloteau (1996); Heigeas et al. (2003)].

Force-based approaches lack anticipation and prediction; the virtual characters

only interact with other agents when they are sufficiently close. As a result, these

methods fail to produce the correct microscopic behaviour. Additionally, force-based

methods suffer from the same consistency and tuning issues as those found in rule-

based techniques. This issue with designing and tuning laws is known as the steering

problem. Various strategies have been proposed to solve this issue including use of

synthetic vision [Ondřej et al. (2010)], principle of least effort [Guy et al. (2010)],

and reproduction of experimental observations [Paris et al. (2007)]. These approaches

represent the steering behaviour of a single character in a crowd using heuristics based

on analysis of crowd and multi-agent motion examples. As discussed in Section 2.2.1,

approaches exist for allowing an animator to adjust these behaviours via user-friendly

interfaces. Alternatively, these parameters can be set for the crowd to display particular

social grouping behaviours (see Section 2.2.2.1).

16 Chapter 2. Related Work

2.1.1.3 Data-driven Approaches

Data-driven approaches use example behaviours from video or motion capture data to

govern the behaviour of individual characters in the crowd. In Lerner et al. (2007)

a database of trajectories and associated spatio-temporal scenarios was created from

video recordings of real crowds. At runtime each agent selects a trajectory from the

database as a reaction to the current environment configuration. In a similar way, Lee

et al. (2007) employ a regression-based learning algorithm to associate a person’s per-

ceived state with their resulting behaviour and Pettré et al. (2009) learn behaviours

from experimental interactions data involving multiple characters in crossing scenar-

ios. In this case it was seen that avoidance during crossing behavior is not purely

reactive and involves an observation phase when one person registers the presence of

people nearby. Ju et al. (2010) introduce a method for reconstructing crowds of ar-

bitrary size and shape using spatio-temporal behaviours sampled from captured and

simulated crowd data. Alternatively Lai et al. (2005) develop a group behaviour model

in the form of a motion graph that captures the motion of the agent group as a whole,

including the configuration of the group. This model is learnt using examples simu-

lated using Reynolds’ flocking model and not real crowd motion data. These Group

Motion Graphs are only suitable when a group moves through an environment as a co-

hesive unit due to its high computational cost. Such data-driven approaches extend to

use of individual character-character and character-environment interactions based on

full-body motion capture data that can be concatenated to form larger crowd scenes. As

with other data-driven approaches the types of motion produced by these approaches

can be controlled by careful selection of the data provided to the system and the use

of goal positions as constraints for the movement of characters. Furthermore, larger

crowd scenes can be produced by animator control over the concatenation of these

motion patches (see Section 2.2.1).

Compared to rule-based and force-based approaches that typically only reproduce a

small set of predefined behaviours or predefined situations, data-driven approaches can

reproduce complex and subtle behaviours in simulation that are present in real crowds.

These approaches make no assumptions on the behaviour of the agents, however, the

type of motion that is produced using these methods is limited by the scope of the input

data which is often very expensive to capture. Furthermore, the processing and analysis

of the data, and in a number of cases the synthesis of the crowd motion, must occur

offline as it is too computationally expensive for real-time interactive applications.

2.1. Crowd Simulation 17

The size, storage and access of the data is also an issue should the technique rely on

referencing this data at runtime.

2.1.1.4 Geometric approaches

Instead of mimicking social or behavioural forces in crowds, geometric approaches

consider the local area of an agent and select a future velocity that will produce col-

lision free motion. This kind of approach is well used in robotics, generally working

with incomplete or noisy information with regards to the robot’s local surroundings.

Fiorini & Shiller (1998) proposed the use of Velocity Obstacles (VO) for collision

avoidance between multiple robots. A VO is defined in the velocity space of a given

agent, representing the set of velocities that would cause a collision at some moment

in time with another agent moving at a given velocity. The union of VOs from any

number of obstacles constitutes the set of unsafe velocities for an agent. Choosing a

velocity outside of this set will lead to collision free motion.

van den Berg et al. (2008b) extended the concept of VOs for use in both robotics

and animation. Their introduction of Reciprocal Velocity Obstacles (RVO) assigned

half of the effort of avoiding pairwise collisions to each agent. This meant that agents

only move as much as is needed to prevent collision, ruling out large oscillatory

behaviours. To select an appropriate velocity for the agents, the velocity space is

randomly sampled and a heuristic search is performed to determine a collision and

oscillation-free velocity that is as close as possible to the agent’s desired velocity. The

selection of an agent’s velocity in this manner is quite inefficient. Guy et al. (2009)

introduced faster RVO-like behaviour by guaranteeing collision free velocities on a

discrete time interval and employing a discrete optimisation approach for selecting the

final velocity. Similarly, fast, optimal selection of the agent velocity was achieved by

solving a low-dimensional linear program in van den Berg et al. (2009). Further vari-

ations of the RVO framework have been introduced in robotics [Snape et al. (2009);

Wilkie et al. (2009)] and animation [Kim et al. (2013)]. In Kim et al. (2013), the au-

thors simulated physical interactions between characters and obstacles by introducing

them as additional constraints in the Optimal Reciprocal Collision Avoidance (ORCA)

framework from van den Berg et al. (2009). Geometric approaches can be used to con-

trol the movement of crowd in rigid formations based on desired goal positions relative

to other members of the crowd (see Section 2.2.2.2).

Geometric approaches are able to produce locally smooth and efficient trajectories

for agents in large crowds. However, as with other microscopic approaches, geometric

18 Chapter 2. Related Work

approaches do not consider global factors in their solution. This can often lead to

congestion when in complex environments or dense crowd scenarios. Additionally, the

computation is performed on a per-agent basis and as such this can become prohibitive

with very large crowds.

2.1.2 Macroscopic (Global) Approaches

Macroscopic approaches focus on the production of appropriate global motion of the

crowd and are typically best employed as methods for simulating large, dense crowds.

Unlike microscopic methods, these approaches place an emphasis on simulating emer-

gent crowd phenomena, ignoring the individual characteristics of agents. The homoge-

neous approach of macroscopic methods makes them more appropriate for generation

of large-scale crowd scenes, where the general visual flow of the crowd is more im-

portant than the behaviour of each character. Macroscopic simulations are generally

controlled using crowd-level properties such as the vorticity and density of the crowd

and are less concerned with characteristics of individual agents.

Macroscopic approaches have been used extensively in civil and traffic engineering

to produce regression [Milazzo et al. (1998)], queueing [Løvås (1994)], and route

choice models [Hoogendoorn & Bovy (2004)]. The approaches are used to assess the

quality of pedestrian infrastructure designs in terms of comfort levels, walking times,

safety and the management of pedestrian flows. Despite this wide variety of features,

these models are unable to produce self-organisation phenomena seen in crowds.

The concept of fluid dynamics for representing the flow of crowds in simulation

was introduced by Henderson (1974), who suggested that the motion of the crowd

should be governed by a set of partial differential equations that specify the motion

of gases and fluids. This idea was confirmed empirically by Helbing et al. (2005,

2001) who showed that at low density, crowds moved in a way similar to molecules

in a gas. At increasing densities, crowds exhibited motion more and more similar

to fluids, eventually mimicking granular flows at very high density. Helbing (1992)

created a gas-kinetic model for crowds as an extension to the work by Henderson

(1974). This model accounted for avoidance and deceleration behaviours that occur as

a result of pedestrian interactions, however, the numerical solution to the gas-kinetic

equations was difficult to obtain. To overcome this, Hoogendoorn & Bovy (2000)

devised a discrete gas-kinetic model for pedestrian flows that used a novel, particle

representation for the agents in the crowd.

2.1. Crowd Simulation 19

In the work by Hughes (2002, 2003), a human crowd was interpreted as a flow of

“thinking fluids”; a continuous density field whose behaviour is affected by its situ-

ation. This continuum dynamics approach uses a pair of non-linear, time-dependent,

partial differential equations to produce a goal-dependent field that guides the pedes-

trians towards their target whilst avoiding collisions. Using video data, Hongwan et al.

(2003) confirmed the relationship between pedestrian velocity and pedestrian acceler-

ation described in Hughes (2002, 2003) and later, this approach was successfully used

for medieval battle analysis [Clements & Hughes (2004)]. Hughes’ work was adapted

by Treuille et al. (2006) to recreate various macroscopic behaviours of crowds for com-

puter graphics and animation. Treuille et al. (2006) used a particle representation and

an eikonal (non-linear differential) equation that described the motion dynamics of the

crowd. By solving the eikonal equation on a grid representing the environment, the

method dynamically constructed a density-dependent velocity field that was smooth

and goal-directed. This velocity field defined a mapping between a point in the envi-

ronment and a direction vector that an agent should follow when they find themselves

at that point. The overall quality of the simulation is dependent on the resolution of

the grid used to approximate the equation. Since the solution of the eikonal equation

is computationally expensive, real-time simulation using the method in Treuille et al.

(2006) requires an appropriate trade-off between the resolution of the grid and the qual-

ity of the simulation. This issue was somewhat alleviated in Jiang et al. (2010) who

combined the continuum representation with an adaptive grid size method based on

the complexity of the environment. In addition to the grid resolution issue, the expense

of computation in Treuille et al. (2006) required that large crowds had to consist of a

small number of homogeneous groups with common goals and behaviours, limiting the

variation in the simulation. Narain et al. (2009) achieved near-interactive simulation

of very large, dense crowds using a hybrid continuum-based method. Their approach

considered the crowd as a “unilaterally incompressible” fluid; a fluid that is neither

purely compressible nor purely incompressible, and imposed a volume constraint lim-

iting the maximum volume of the crowd. In the method, each agent’s desired direction

of movement contributes to the “flow” through a given grid square. The resulting av-

eraged flow is then combined with neighbouring flows and adjusted according to the

unilateral incompressibility of fluids, producing a flow field that handles inter-agent

collisions on a macroscopic level.

Velocity field methods are an intuitive way to guide a set of agents in a crowd sim-

ulation. In general, the vector field is either computed automatically or it can be man-

20 Chapter 2. Related Work

ually defined to produce certain behaviour. In Courty & Corpetti (2007) the authors

extract a time series of velocity fields from videos of real crowds. This set of velocity

fields is then used to advect agents in the scene to produce new crowd motion. Sim-

ilarly, Musse et al. (2007) combined Helbing’s social force model with vector fields

obtained from video sequences to synthesise movement of virtual agents. Chenney

(2004) designed divergence-free velocity fields that remove the need for explicit col-

lision avoidance but, due to the static nature of the grid tiles, the fields are unable to

handle any interaction between agents. Design of velocity fields for crowd simulation

has also been employed in Jin et al. (2008) and Patil et al. (2011), the latter allow-

ing creation of several macroscopic crowd behaviours and overcoming the issue of Jin

et al. (2008) by guaranteeing smooth, goal-directed Navigation fields, free from local

minima.

Macroscopic approaches, especially methods based on continuum dynamics, are

particularly effective at simulating thousands of agents in real-time because the move-

ment of the crowd can be modelled at a coarse level using flow velocity and agent

density. Large crowd scenes are typically viewed at a distance and so, in this case,

the individual behaviour of the agents is less important than the overall motion of the

crowd. The control of macroscopic approaches focuses on the manipulation of the ve-

locity field that governs the movement of the agents. This can either be through directly

altering the velocity field or adjusting the parameters used to generate the continuous

potential field on which the velocities are based (see Section 2.2.1).

2.1.3 Hybrid Approaches

In contrast to the single framework approaches to crowd simulation discussed in Sec-

tion 2.1.2 [Hughes (2003); Treuille et al. (2006)], hybrid approaches combine global

path planning with local methods (Section 2.1.1) to navigate agents in crowd simula-

tions. These two-level approaches use a roadmap or a graph of the environment to gov-

ern the global motion of each agent in the simulation, allowing a local planner to han-

dle collision avoidance with other nearby agents and obstacles. For example, Bayazit

et al. (2003) combined Reynolds’ flocking model with probabilistic roadmaps to pro-

duce motion of cohesive groups through a virtual environment. van den Berg et al.

(2008a) showed how the RVO framework can be used with pre-computed roadmaps to

produce effective multi-agent navigation in crowded environments.

A number of hybrid approaches have focused on appropriate decomposition of the

2.1. Crowd Simulation 21

environment in order to improve the global motion of agents. Sud et al. (2008) com-

puted Multi-Agent Navigation Graphs using first and second order Voronoi diagrams

of all obstacles and agents in the environment. Though this provided maximal clear-

ance between agents, its computational cost limits its use to small crowds of only a

few hundred characters. Other approaches handle global navigation by assessing the

open space of the environment. Lamarche & Donikian (2004) represented walkable

areas with a set of convex cells produced using a constrained Delaunay triangulation

of the environment while Pettré et al. (2005) decomposed the navigable space into a set

of interconnected cylinders centred on the Voronoi diagram. Variations on the paths

can be produced by iteratively adjusting the edges of this Navigation Graph [Pettré

et al. (2006)]. Geraerts & Overmars (2007) created a Corridor Map using the medial

axis of the virtual environment and information on the minimum clearance from an

obstacle. A path is generated using the medial axis to direct the global motion of the

character and a potential force-field approach is used to control the local motion of

the character to remain within the collision-free corridor. The use of the force-field

produces smooth paths whilst allowing the character to locally deviate from it’s path if

it encounters dynamic obstacles or other characters.

As an alternative to the two-layer approach in the previous methods, Golas et al.

(2013) proposed a hybrid method for long range-collision avoidance that dynamically

blended between solutions from local, discrete planners and continuum-based plan-

ners depending on the density of the crowd. The key idea behind their algorithm was

to extrapolate the crowd motion a set number of discrete timesteps into the future and

perform collision avoidance with increasing uncertainty. This provided greater antic-

ipation of collisions at a relatively small additional computational overhead. Despite

this, the method does not consider global path planning for the agents and in some

cases the motion is quite unnatural.

Hybrid methods are able to produce global movement of agents in a crowd whilst

still simulating heterogeneous characteristics through use of local methods. Unfortu-

nately, the separation of global planning from local planning in some hybrid methods

means that they are still susceptible to local minima when determining paths. This can

lead to congestion situations in highly dynamic and dense environments that can only

be resolved by unnatural motion of the characters. To overcome this, many methods

have been introduced both in robotics and animation to prevent congestion and col-

lisions by performing global planning for multiple agents rather than on a per-agent

basis. In general, decoupled planners plan for each agent individually and then try to

22 Chapter 2. Related Work

coordinate the resulting motion [Peng & Akella (2005); Simeon et al. (2002)], whilst

centralised planners compute the motion of all the agents simultaneously in a com-

posite configuration space [Li & Chou (2003); Schwartz & Sharir (1983)]. Due to

this combined planning space, the computational cost of such planners grows expo-

nentially with the number of agents. In the case of congestion, a common method

is to simply have the agents replan their trajectories using information from previous

planning episodes [Koenig & Likhachev (2002)]. Unfortunately, this is often insuf-

ficient for producing a feasible trajectory and can be quite impractical when dealing

with large numbers of agents. Another approach is to plan using a space-time graph

of the environment and agents’ movement. This allows the planner to coordinate the

arrival and departure of agents at nodes in the graph using local [Singh et al. (2011)] or

global [Karamouzas et al. (2013)] information. Alternatively, a priority can be deter-

mined and each agent then plans their route in turn [Lau & Kuffner (2006); Sung et al.

(2005); van den Berg & Overmars (2005)]. Each successive agent treats the previous

agents’ plans as dynamic obstacles. The growing complexity of the planning space

limits the number of agents that can be simulated with this method. Finally, the mo-

tion of the agents can be considered as a dynamic flow problem [van den Akker et al.

(2010); Karamouzas et al. (2013)]. In this case, a capacity is associated with each arc

of a graph (and node in the case of Karamouzas et al. (2013)) representing the free

space in an environment. This capacity indicates the maximum number of agents that

can exist on that part of the graph per unit time. Given this information, the planner

finds paths that minimise the average travel time for all agents to reach their goal by

iteratively updating paths only when they reduce the cost for the agents.

2.1.4 Summary

There exist many techniques for producing multi-agent motion both in robotics and

computer animation. These can generally be classified into microscopic (local), macro-

scopic (global), and hybrid approaches. Local approaches are capable of producing

heterogeneous agent characteristics using simple rules based on collision avoidance,

behavioural factors, and example-based local decision making. However, these meth-

ods require a lot of tuning to achieve desirable collective behaviour of the agents and

there is no guarantee that the correct global behaviours will occur in simulation. Fur-

thermore, because computation is on a per-agent basis, the cost of such approaches

grows with the size of the crowd. Global methods provide a way to elicit macroscopic

2.2. Crowd Motion Control 23

behaviour in crowds consisting of thousands of agents but they produce homogeneous

crowds that lack individualism in the characteristics of the agents. Hybrid methods

provide a good middle ground between these two approaches, combining global nav-

igation with local collision avoidance. Methods have been introduced in the literature

that account for multi-agent planning issues that arise from basic hybrid techniques

such as congestion and local minima.

2.2 Crowd Motion Control

The techniques listed in Section 2.1 are capable of producing realistic multi-agent mo-

tion for use in animation and computer games. However, to do so, these methods

often require a lot of parameter tuning to achieve desired motion and they do not pro-

vide precise control over the behaviour of an individual agent. This can mean that to

achieve an appropriate animation the simulation must be run several times with vary-

ing parameters, requiring excessive time and effort. To alleviate this issue, interactive

editing approaches have been proposed that enable an animator to have direct control

over animated crowd behaviours. Control of multi-agent motion is an extensive topic

and there have been many approaches covered in the literature. In computer graphics

and animation, methods tend to cover two main areas: 1) agent pathing and crowd flow

control (Section 2.2.1), and 2) group formation and interaction control (Section 2.2.2).

In each of these areas, the user is able to specify constraints on the behaviour of the

crowd using example data, sketch-based interfaces, and manipulation of velocity fields

amongst other techniques. These constraints can either be applied before or during the

simulation in order to guide the agents’ movement or they are used to edit pre-existing

crowd motion.

2.2.1 Agent Pathing and Crowd Flow Control

For general crowd scenes, it is important for an animator to be able to define the goal-

directed movement of agents. For example, an animator may wish to define the entry

and exit point and locations that agents visit in the scene, and to describe the “flow”

of the crowd (the global behaviour elicited by the collective motion of the agents).

One of the first techniques for authoring crowd scenes was introduced by Ulicny et al.

(2004). Their Crowdbrush system allowed animators to draw characters in a scene

using a brush-style interface. The animator could not only create characters within the

24 Chapter 2. Related Work

scene but also control the characters’ paths and activation of simple behaviours using

variations on the brush tool. Although the interface enabled production of large scenes

in only a few minutes, it is still necessary for a user to adjust the brush parameters

to specify details such as the portion of the crowd that they were manipulating or the

operator (creation, behaviour, colouring etc.) that would be applied to the selected area

of the crowd scene.

Since the work by Ulicny et al. (2004), methods for controlling crowds have fo-

cused on manipulating characters’ trajectories by assuming that an agent’s movement

is governed by a local, agent-based steering strategy with a global velocity (flow or

navigation) field. The general concept has been to manipulate the velocity fields in

order to create new motion or alter existing crowd movement. As examples, alteration

of the crowd motion can be achieved by specifying constraints on the velocity field

using example data or using sketch-based interfaces. Chenney (2004) enabled a user

to design divergence-free velocity fields, however, these cannot be controlled interac-

tively and are unable to provide goal-directed navigation of the agents. As a way of

letting a user define the velocity field directly, two sketch-based approaches have been

defined. The first, Jin et al. (2008), allows a user to sketch the desired velocities at

certain anchor points in the environment. These velocities are then interpolated using

a radial basis function approach to compute a continuous vector field for controlling

the agents. There is, however, no guarantee that navigation using these fields will not

end up in local minima. In contrast to this, Patil et al. (2011) guarantee singularity-

free guidance fields generated from user-drawn paths or flow fields extracted from real

crowd footage. Their method produces smooth, goal-directed fields and allows a user

to define a wide range of macroscopic behaviours and resolve issues of congestion

using their authoring interface. Alternatively, Park (2010), inspired by the work of

Goldenstein et al. (2001) who used harmonic functions to prevent agents from ending

up in local minima, used keyframed control particles and harmonic functions to de-

fine the flow of a crowd in environments containing obstacles. The adjoint method has

been popular for computation of simulation forces used for keyframe control of fluids

[McNamara et al. (2004)], and later, particle systems including flocking [Wojtan et al.

(2006)], and directing crowd models [Allain et al. (2014)]. In Allain et al. (2014) the

adjoint procedure is adapted depending on the underlying method for crowd motion

control, and the type of user input control being provided (i.e. whether the control is

given at the individual agent level or with higher level representations such as density,

vorticity, and velocity). Their method requires that the underlying crowd model must

2.2. Crowd Motion Control 25

be differentiable by the state that it controls. The adjoint method provides a speed

gain for optimising control parameters by solving the much simpler dual formulation

of a linear system. It does however still use complex optimisation requiring carefully-

designed objective functions.

The use of gradient-based methods can provide smooth trajectories for agents,

however, due to the discrete nature of agents, some issues can arise with handling

of collisions between individuals. Furthermore, the methods presented only adjust the

velocity field itself and do not allow direct specification of an individual’s goals. In

many cases, manipulation of the flow field is specific to one area of the environment

and not to the crowd. This is effective in cases where an animator wishes to define how

a crowd moves around a scene but not for heterogeneous control of agents or groups

of agents in the crowd. Wolinski et al. (2014) present an alternative sketch-based ap-

proach to allow a user to specify a rough idea of the motion of the crowd based on a

given metric such as distance between agents. Their framework automatically com-

putes the best underlying crowd simulation algorithm (from boids, social forces, and

RVO-based approaches) along with an appropriate set of parameters in order to achieve

the user specified motion.

As an alternative to velocity field control, a number of methods exist for creating

crowd scenes by populating the environment with existing motion data through the

use of patches. These patches are generally precomputed and used to represent short

segments of motion in small areas that can be copied and concatenated at run time to

produce larger scenes. Lee et al. (2006) proposed motion patches that represent in-

teractions in a small rectangular area between a character and objects in an office or

playground. These can be combined during runtime to create a large scene with char-

acters interacting with many different objects. A similar approach is used by Yersin

et al. (2009) however, their Crowd Patches are created by precomputing the behaviours

shown by multiple walking characters when they are avoiding each other. While this

approach relied on generating trajectories inside a patch, given a starting time and en-

try/exit point for an individual, Li et al. (2012) concentrated on extracting patches of

data showing periodicity and the issue of connecting these patches to others showing

a similar pattern of motion. Jordao et al. (2014) extended the work of Yersin et al.

(2009) and introduced manipulation of the patches through local deformation. This al-

lowed the authors to provide space-time editing of crowd motion patches in the form of

stretching, bending, cutting and merging gestures. Instead of altering crowd simulation

parameters, their method allows an animator to directly manipulate the coverage and

26 Chapter 2. Related Work

shape of a crowd motion which are more direct ways of specifying the final simulation.

Further patch-based methods have been used to simulate dense interactions between

characters such as fighting, cooperative carrying of objects and coordinated collective

motions [Shum et al. (2008); Hyun et al. (2013)]. All of these methods require appro-

priate constraint fulfillment in order to successfully combine multiple motion patches.

Rigid, uniform patches can be concatenated easily but at a cost in the variety of scenes

they can produce. More flexible patches can create more interesting scenes, however,

as a result the correct tiling of these patches becomes more computationally costly. In

either case, the exact trajectories displayed by the characters is limited by the patch’s

motion data.

2.2.2 Group Formation and Interaction Control

Sometimes in computer animation or interactive applications a user would like to con-

trol a group of characters to configure themselves in a certain shape or to obey a set of

formation constraints whilst in motion. There can be several reasons for this that can

largely be summarised with the following: the user wishes the group of agents to per-

form a certain task and, by adopting a particular group configuration or obeying certain

constraints on their formation, the group can complete this task more efficiently. Such

tasks can include searching environments and collecting objects, where certain forma-

tions provide better coverage for speeding up the execution of the task and reducing

the chance of failure. In battle scenarios or in team sports, certain formations can give

a group of characters a competitive edge over their opponent making all the difference

in the result. Equally, coordination of multi-agent motion can help in cooperative tasks

such as moving of obstacles or passing efficiently through areas of an environment.

Finally, by adopting set configurations, groups of characters can be used for stylisation

in large displays such as marching band performances, or for storytelling, for example,

when a school of fish is used to mimic the Sydney opera house in the “Finding Nemo”

movie by Disney Pixar. Group formation control research is well studied in both the

robotics and computer animation fields and can be broadly classified into behaviour-

based (Section 2.2.2.1) and geometric approaches (Section 2.2.2.2).

2.2.2.1 Behaviour-based Formation Control

A number of behaviour-based techniques derived from the microscopic approaches of

Reynolds (1987) and Helbing (1992) (Section 2.1.1) have been utilised for grouping in

multi-agent systems both in robotics [Mataric (1992, 1993)], and animation [Musse &

2.2. Crowd Motion Control 27

Thalmann (1997); Brogan & Hodgins (1997); Braun et al. (2003)]. In these methods,

simple motion primitives are designed and combined to generate complex patterns as

a result of the interaction of several agents. The agents are able to form collective

groups by acting independently and without need for explicit communication. Often

these methods are used to perform cooperative tasks [Arkin (1992)], or to replicate the

sorts of grouping and formations observed from real data. Qiu & Hu (2010) employed

a behavioural approach similar to Reynolds’ flocking model to simulate different group

structures in pedestrian crowds. Their method used intra-group and inter-group matri-

ces that defined the influence agents (and groups) had over one another’s aggregation

and following behaviours. Further methods have been proposed that can handle the

navigation of groups of agents including Bayazit et al. (2003) who combined flocking

methods with probabilistic roadmaps, Kamphuis & Overmars (2004) who performed

path planning in “corridors” of the environment to maintain group cohesion, and Li &

Chou (2003) who used a centralised planner to compute the simultaneous motion of

multiple agents. However, with multi-agent motion it is frequently desirable that the

group forms a particular shape or spatial configuration either during or at the end of

their motion, and none of these methods provide such control.

Often the requirement in crowd formation control is for agents to move in a similar

direction to other agents while maintaining an overall formation. The work by Ju

et al. (2010) is capable of forming arbitrary group formations, however, the method

is too computationally expensive for interactive applications and is unable to handle

challenging path planning problems. A special case of behaviour-based formation

control, leader-follower approaches have been used to simplify group motion planning

to a single leader agent and have the rest of the group follow their reference motion.

This technique has been successfully used for crowd simulation [Loscos et al. (2003);

Qingge & Can (2007)] and for maintaining group formations in robotics [Wang (1989);

Desai et al. (2001); Poonawala et al. (2013)] where the followers attempt to maintain a

particular state relative to the leader. This state is often defined as a vector offset from

the leader’s position [Wang (1989)] but it can, for example, be defined as a combination

of distance and angle from the reference motion [Desai et al. (2001)].

A reference motion does not always have to be defined in terms of the group’s

leader. In Balch & Arkin (1998), groups of two to four robots were shown to arrange

themselves into diamond, line, column, and wedge formations using a schema-based

approach. The robots achieved their formation by moving towards attachment sites

that were positioned relative to a reference point in the formation (either the average

28 Chapter 2. Related Work

position of the group, the position of a leader robot, or the position of a neighbouring

robot). This approach was extended to handle larger groups with arbitrary geometric

formations [Balch & Hybinette (2000)]. The authors also prevented crossing of the

robots when changing formations by having them choose their final position in the for-

mation as the nearest point in a list of candidate attachment sites.

Many behavioural approaches look to replicate the multi-agent formations seen in

nature [Klotsman & Tal (2012)], and in real crowds, where it has been observed that

a large portion of the crowd forms small groups of up to four pedestrians that display

distinct formations based on their social interaction [Peters & Ennis (2009); Moussaı̈d

et al. (2009)]. These configurations include “Line-abreast” (individuals walking side

by side), “V-like” (two individuals walking slightly ahead of another), and “River-like”

(individuals walking one behind the other). In Peters & Ennis (2009), the authors were

able to create visually plausible crowd scenes by creating formation templates based

on these observations. Each group of agents was assigned a state machine containing

various templated formations that they would switch between based on their surround-

ing environment. Alternatively, Moussaı̈d et al. (2010) added an additional interaction

term to Helbing’s social force model to account for social interactions within a group

and replicate the small group formations. The interaction term included a force for

maintaining gaze direction towards the rest of the group as well as attraction and re-

pulsion forces for agents to keep a certain distance from the group without overlapping

one another. Karamouzas & Overmars (2010) unified these observed configurations

into a single objective function requiring less tuning to achieve a good simulation.

This function minimises deviation from the desired velocity of the group, collisions,

and the cost of selecting a candidate formation given that the “Line-abreast” formation

is the most desirable, and “River-like” is the least.

Behaviour-based methods provide a way to define multi-agent motion both as an

arbitrary group and as a rigid geometric formation. Furthermore, these techniques have

been shown to replicate the behaviour of groups from real crowd observations. On the

other hand, these approaches can require a lot of tuning to achieve good results and

they do not allow for easy manipulation of the formations during the course of the

group’s motion. Should an animator wish to adjust the group’s configuration, these

methods do not consider the smoothness of any formation transition.

2.2. Crowd Motion Control 29

2.2.2.2 Geometric Formation Control

In geometric formation control the focus is on the shape and interconnectivity of the

crowd. As such, approaches frequently employ geometric constraints to define the

configuration of the group. In contrast to the leader-follower methods described in

Section 2.2.2.1, that define follower positions as offsets from a leader, geometric ap-

proaches impose a structure on the group as a whole and each agent’s target position is

defined relative to this. This makes these approaches well suited for user control of the

group configuration as they allow a user to manipulate the group’s structure directly.

The agent’s can then update their target positions within the altered formation. Before

continuing with the discussion of these geometric approaches, it is worth mentioning

another, very similar formation control approach based on generalised coordinates. In

Spry & Hedrick (2004), the authors use generalised coordinates to represent the lo-

cation, orientation, and shape of a formation allowing the specification of piecewise

trajectories for each of these terms. These trajectories define the movement of the for-

mation as a single unit and allow for shape-safe motion by considering constraints on

the parameterisation of the formation shape.

A common approach for geometric formation control, particularly in robotics, is

the use of a virtual structure. Introduced by Lewis & Tan (1997), a virtual structure

constitutes a rigid body defined by a system of point masses that are stationary with

respect to a frame of reference. The structure describes the enforcement of geometric

relationships not by a physical system of constraints, but by a human-made control

system (hence virtual). Typically, the movement of a formation is achieved by first

aligning the virtual structure with the current positions of the agents, moving the virtual

structure using a virtual force field, calculating the trajectories and moving the agents

to the desired points on the virtual structure and then repeating. This approach is gen-

erally used in robotics to control formations of Automated Guided Vehicles (AGVs),

Unmanned Air Vehicles (UAVs), and Autonomous Underwater Vehicles (AUVs). Li

& Liu (2008) used a virtual structure to define the relative positioning of UAVs flying

in formation. Mehrjerdi et al. (2011) combined the Lyapunov technique, for trajectory

following, with graph theory, for the coordination of multiple robots, and used these

inside a virtual structure to achieve group motion whilst maintaining formation. To

follow curved trajectories, Low & San Ng (2011) extended the flexibility for virtual

structures, allowing formations to be able to turn continuously and smoothly whilst

moving along a path.

30 Chapter 2. Related Work

Geometric approaches also constitute shape-constrained methods, largely preva-

lent in computer games and animation. Approaches have been proposed for constrain-

ing the motion of flocking agents according to a user-defined shape [Anderson et al.

(2003); Xu et al. (2008)]. The method in Anderson et al. (2003) requires a lengthy

sampling process but allows specification of position and timing constraints for indi-

viduals, group centroids, and group outlines. Xu et al. (2008) used spherical projection

to establish correspondences between flock members and points sampled in the forma-

tion shape to guide agents, however, their method requires the use of fuzzy logic to fine

tune the flocking parameters. Chang & Li (2007) consider formation path planning in

terms of a shape template whose centre must move through the free space in an envi-

ronment but its boundary can still overlap with obstacles. This template represents the

desired group formation. The agents use fuzzy logic to move within a set of grid cells

that best fit the current position of the template whilst only occupying open space.

By defining an agent’s position in a formation as a vector offset and relative angle

from a predefined path, Ho et al. (2010) are able to perform global navigation of a flock

that adapts its formation acccording to the curvature of the path. Their approach also

handles obstacle avoidance by disengaging formation following and later regrouping a

crowd so that it can pass around objects in the environment and through narrow spaces.

This method was presented as part of the Flocking Animation Modeling Environment

(FAME) system [Ho et al. (2012)] that also used uniform sampling and a one-to-one

mapping process to move agents between discrete formation shapes. As a full resam-

pling of the target shape would be computationally costly with smaller, continuous

changes in formation the FAME system used barycentric coordinates to define agents’

positions relative to adjustable control points. The agents’ target positions were then

updated using these coordinates when a user altered the position of one of the con-

trol points. To allow smoother transitions between formations the system also enabled

swapping of target positions in the formation based on a pairwise minimisation of the

agents’ distance to their goals.

A sketch-based interface for defining target crowd formations is presented in Gu

& Deng (2011b). The authors prioritised sampling of agents’ positions in the forma-

tion at the boundary and used a flood-fill algorithm to fill the rest of the user-defined

shape. To maintain adjacency relationships, formation coordinates, a local coordinate

system similar to polar coordinates, were proposed as a way to define an agent’s equiv-

alent position in the source and target formations. The transitions between formation

shapes however were not optimal i.e. agents did not always fill in the target formation

2.2. Crowd Motion Control 31

smoothly. This was handled by allowing a user to define the preferred direction of

agents during formation transitions using extra strokes [Gu & Deng (2013)].

Alonso-Mora et al. (2011) presented a method for generating smooth and oscillation-

free trajectories for formation tracking in open environments with a multi-robot sys-

tem. A Centroidal Voronoi Tesselation (CVT) was used to compute the final distribu-

tion of the robots in a target shape. Each robot was assigned a goal using the Hungar-

ian algorithm to minimise the movement for all of the agents and their path planning

was handled by the ORCA framework. Zheng et al. (2014) used shape morphing to

interpolate a series of keyframed formations. Like Alonso-Mora et al. (2011), the au-

thors employed the CVT and Hungarian algorithm for optimal positioning and assign-

ment of agent positions in the target formation however, their focus was on producing

smooth transformations between group formations. Agent paths followed the centroids

of the Voronoi cells generated for each intermediate shape, guaranteeing smooth, well

distributed, and collision free trajectories that maintained correspondence during the

group movement. With a similar focus on formation transformation, Xu et al. (2012)

also used the Hungarian algorithm to compute correspondences between Delaunay tri-

angulations of source and target configurations. In this work however, the cost metric

considered the “disorder” of agents’ speed and local structure variations to achieve a

smooth transition. A later extension maintained local relationships in the crowd by

considering subgroup structure and employing mutual-information feedback at run-

time [Xu et al. (2014)].

The concept of spatial relationships and group structure is well used in forma-

tion control and group motion editing. Takahashi et al. (2009) presented a method

for interpolating between spectral-based structures of keyframed formations. Spec-

tral decomposition was performed on the Laplacian matrix of the group’s adjacency

graph (based on a Delaunay triangluation of the agent positions). This yielded a set of

eigenvectors and eigenvalues that described the structure of the group’s formation and

allowed reconstruction of intermediate group configurations. An as-rigid-as-possible

mesh editing scheme [Igarashi et al. (2005)] has been applied for deforming and con-

catenating existing crowd formations to synthesise larger scale animations [Kwon et al.

(2008)] and to apply constraints on the interaction and movement of crowds of char-

acters [Kim et al. (2009)]. More recently, a similar, cage-based deformation has been

used to interactively alter spatio-temporal properties of large-scale crowd motion [Kim

et al. (2014)].

32 Chapter 2. Related Work

2.2.3 Summary

Due to the high degrees of freedom and sometimes unpredictable nature of multi-

agent simulations, methods have been created to offer animator control of such motion

to achieve a desired outcome. These approaches broadly cover control of the overall

motion of a crowd (Section 2.2.1) or more explicit control over group formation and

interactions (Section 2.2.2). Control schemes allow definition of crowd flows by ap-

plying constraints to an ambient velocity field that guides the motion of the crowd. A

user can alter these fields using various interfaces, however, these approaches do not

allow discrete control over an individuals behaviour. Furthermore, such velocity field

manipulation only alters the crowd motion at certain areas in the scene, rather than

on an agent or group basis. Group-level motion can be produced through use of be-

havioural laws specifying social interactions or by maintaining relative positioning to a

reference point in a formation. As well as this, user’s are able to specify group config-

urations based on spatial relationships and shape templates. These formations can be

pre-specified or created/adjusted at runtime using sketch-based interfaces, keyframes,

or mesh manipulation. Often though, these techniques require a large amount of user

input to specify these constraints and/or they do not allow a user to alter the shape or

pathing of the group whilst it is in motion.

2.3 Touch-based Gesture Recognition

A number of tools have been proposed for allowing a developer to create control ges-

tures for touch devices easily, including generating gestures based on demonstration

[Rubine (1991); Lü & Li (2013)] or use of regular expressions [Kin et al. (2012)].

However, these techniques do not account for the variability in control style shown

by users in [Micire et al. (2009)], when performing the same task on a touch device,

including differing numbers of fingers or whether they use one or two hands. Instead

these properties either have to be predefined by the author of the gestures, or gestures

are limited in the number of simultaneous inputs that can be handled [Rubine (1991)].

The $-family of gesture recognisers constitute a set of simple techniques that show

good performance on gesture recognition for single stroke (unistroke) gestures using

the $1 approach [Wobbrock et al. (2007)], and gestures involving multiple sequential

strokes (multistroke) [Anthony & Wobbrock (2010)]. Although used for multistroke

recognition, the latter, $N, method involves forming a number of candidate unistrokes

2.3. Touch-based Gesture Recognition 33

by concatenating the individual elements of a multistroke in all possible orders and di-

rections before using the $1 recogniser to find the closest match. Each of these methods

is designed for recognition of gestures involving inputs occuring one at a time but it

has been shown that users often prefer to provide gestures using many fingers at once

[Rekik et al. (2013)].

Work has also been done to perform recognition on multi-touch gestures involving

multiple, simultaneous strokes. The $P method performs matching of point clouds

generated from the individual touch points in a user’s input [Vatavu et al. (2012)].

While effective, this approach does not maintain any concept of a stroke i.e. ordering

of the touch inputs. Consequently any information on the evolution of the gesture over

time is lost. Jiang et al. (2012) showed effective recognition with the $1 recogniser on a

key stroke extracted from multi-touch gestures. However, by performing the key stroke

extraction the expressibility of multi-touch input is ultimately compromised. Rekik

et al. (2014) proposed a method for clustering user inputs into multiple strokes instead

of a single key stroke. The authors showed how recognition of multi-touch gestures

is markedly improved by performing this Match-up step before $P recognition on the

resulting strokes. Although this method maintains the multiple simultaneous inputs

in the candidate gesture, the recognition step ignores the ordering of the touch input

signals as a result of using the $P recogniser.

Chapter 3

Multitouch Formation Control

The major difficulty of crowd control lies in its high degree of freedom. Each charac-

ter in the crowd is an entity and should be able to move independently under different

circumstances. One problem that arises when directly applying previous methods for

real-time crowd control is the difficulty in specifying low level details when the crowd

interacts with the environment. For example, when a crowd walks through an environ-

ment that diverts into multiple smaller pathways, they should split into smaller groups

and pass through each of the available routes. For a user to successfully specify this

behaviour a lot of input is required and is generally achieved using a multi-pass algo-

rithm. This typically involves the user stopping the animation and drawing multiple

strokes offline to specify the individual paths for different groups of characters. This

can be tedious to specify the movement of a large number of characters, as well as re-

quiring a large amount of animator time. A possible solution is to define a vector field

and move each subgroup along its gradient [Kato et al. (2009)]. However, there can be

cases that the flow is opposite to the direction that the characters are supposed to move.

We prefer to use a more interactive process allowing the users to easily intervene and

adjust the trajectories on-the-fly. We observe that most of the movement in such a sit-

uation is affected by passive interactions between the crowd and the environment. In

the above situation, the crowd will split so that each person walks into the street that is

closest to him/her, while avoiding crossing the path of the other agents. We believe that

these kind of passive interactions can be computed automatically without a significant

loss in simulation quality.

When moving through an environment it is often desirable for the crowd to main-

tain a specific formation to pass through the environment easily or to achieve a certain

task. To achieve this, previous approaches require a user to define the agents’ paths

35

36 Chapter 3. Multitouch Formation Control

using a significant amount of input [Kwon et al. (2008)]. The problem with previous

methods of formation control is that the characters are strongly bound to a specific

location in the formation, [Kwon et al. (2008); Gu & Deng (2011b, 2013)]; once their

locations are defined in the formation, the characters are required to maintain their re-

spective positions even if in doing so they prevent other characters from reaching their

assigned location. This can happen when characters placed on the border of the for-

mation prevent other characters from reaching the centre because they are very close

together. In real situations, people in the border will simply shift toward the centre of

the formation to produce space for the people on the outside. This behaviour allows

the crowd as a whole to achieve the target formation.

In this chapter, we propose a new method to reduce the dimensionality of crowd

control by making use of the passive dynamics between the individual agents, as well

as those between the agents and the environment. In order to achieve this goal, we pro-

pose a new mesh-based crowd control scheme that makes use of a multitouch device’s

simultaneous input capability. We enable a user to specify the movement and shape

of a crowd at the same time by using the touch device to manipulate the configuration

of a two-dimensional mesh representing the crowd formation. In the current work,

the update of the deformable mesh to avoid environmental obstacles and to track the

user’s formation control is combined into a single control signal. As a result, the mesh

deforms automatically based on the influence of the environment, while keeping the

overall formation specified by the user. Our method is a single-pass approach in which

the user can manipulate the crowd and see the updates to its formation in real-time.

We allow characters to switch target positions between frames by performing a Mass

Transport Solver (MTS) similar to that widely used to compute the Earth Mover’s Dis-

tance [Rubner et al. (1998)]. This essentially minimizes the overall movement of all

characters and reduces the chance of potential blocking among them during formation

transitions, hence producing more realistic animations.

Experimental results show that our system can produce realistic scenes of a crowd

controlled through minimal, intuitive and high-level input signals from the user. We

create scenes in which the crowd has to pass through complex environments such as a

town with several diverging/converging routes, a street where multiple cars are driving,

and constrained environments such as narrow pathways. Our system is best applied to

real-time crowd control applications such as strategic games. It can also be used effi-

ciently to create scenes such as city-scale crowd flow for computer animations.

3.1. Contributions 37

3.1 Contributions

• A new real-time scheme to manipulate a crowd’s formation and movement in

constrained environments using a multitouch device. This scheme makes use of

the passive dynamics of the interactions between the user-defined crowd shape

and the environment allowing the user to focus on the design of high level move-

ments, while leaving the fine details to the system.

• A method for handling perturbations to character movement caused by the envi-

ronment that allows characters to track the user’s control well. This is achieved

by combining the deformable mesh representation of a crowd with a mass trans-

port solver. The characters are not constrained to specific locations inside the

deformable mesh, but cooperate together to occupy locations on the mesh based

on the solution to the mass transport problem.

• A set of simple multi-touch gestures for effective manipulation of a 2D triangle

mesh that defines a crowd’s formation. These gestures enable a user to easily

perform different styles of control over a 2D triangle mesh based on the number

of active touch inputs. In turn this allows a user to control the formation of a

crowd with varying levels of detail.

3.2 Method Overview

An outline of the system presented in this chapter can be seen in Figure 3.1. The

system is composed of three layers:

1. User input - User input is received from the multi-touch device. This input spec-

ifies the overall movement and formation of the crowd desired by the user. This

layer is responsible for converting the user input into control signals to manipu-

late a 2D triangle mesh that defines the crowd’s formation (see Section 3.3.2).

2. Mesh Deformation and Environment Interaction - A 2D triangle mesh, rep-

resenting the crowd’s formation, is deformed according to constraints applied by

the control signals from the user input layer (Section 3.3.1). This user-defined

mesh configuration is further adjusted to account for interaction with the envi-

ronment (Section 3.4), resulting in a mesh that defines the goal formation for the

38 Chapter 3. Multitouch Formation Control

Figure 3.1: An overview of the proposed multitouch based control system.

crowd. In this way, the mesh acts as an intermediary to convert a user’s high-

level control into low-level control signals for the agents in the scene. It does

this whilst considering the applicability of a user’s desired formation within the

current environment.

3. Goal Assignment and Individual Character Movement - Each agent’s goal

position in the final crowd formation is assigned using the solution to the mass

transport problem (see Section 3.5). This layer also handles planning of an

agent’s route once their goal has been assigned.

3.3 Movement and Formation Control

In this section, we explain how we create a mesh to represent a crowd, and control the

crowd with the user’s input signals from the multi-touch device. We first describe the

mesh representation and its deformation model (Section 3.3.1). Then, we explain our

deformation scheme based on the input from the multi-touch device (Section 3.3.2).

3.3.1 Formation Representation and Control

For crowd motion control via a multi-touch interface, we adopt the deformable mesh

representation, [Kwon et al. (2008); Sorkine et al. (2004); Takahashi et al. (2009)],

as this allows complex shapes to be manipulated by low dimensional control signals.

In this representation, a mesh, F, consists of a set of vertices, V, and the correspond-

ing information on their connectivity, typically in the form of triangles, T, such that

(V,T) ∈ F. To specify the current target formation for the crowd at time t we define

a 2D triangle mesh, Fc (t) (Figure 3.2, Top). For clarity in our experiments we use a

rectangular shape mesh composed of a uniform triangle strip. The vertices of the mesh

3.3. Movement and Formation Control 39

represent the goal positions for the agents in the crowd. The current scheme can be

easily enhanced to handle arbitrary shapes by applying uniform sampling and Delau-

nay triangulation to generate the mesh based on a desired initial crowd configuration.

Furthermore, it would be possible to handle any number of goal positions defined any-

where on the mesh through the use of barycentric coordinates, in a similar fashion to

Ho et al. (2012). For simplicity, when discussing a goal position in the formation we

refer to and use the notation for a vertex of the formation mesh, v ∈ F, but this can also

represent any position on the user-defined shape.

The user interacts with the mesh by applying constraints using a multi-touch device

(Figure 3.2, Middle). Let us define this constraint as a two-dimensional position with

respect to time, ci (t) ∈ C, where i is the index of this control point, and C denotes

the set of all control points. When the user touches the multi-touch device at time t0,

the new control point, ci (t0), is set to the position of the nearest vertex on the mesh.

The user drags their fingers across the multi-touch device to define a set of continuous

spatio-temporal trajectories, P, for the control points. Each of the trajectories, pi ∈ P
specify where the corresponding control points must pass in the future frames. We

represent each trajectory as a set of two-dimensional waypoints by dividing the trajec-

tory into segments of a pre-defined length. For each timestep, the target location of

each control point pi, j is defined based on the jth waypoint in the corresponding user

drawn trajectory pi. To govern the speed at which a control point can move we add a

parameter, s, yielding the following update function:

ci (t +∆t) =
pi, j− ci (t)
‖pi, j− ci (t)‖

s∆t. (3.1)

We pass the current location of each control point ci (t) and the set of vertices from the

previous formation mesh Fc (t−∆t) into an as-rigid-as-possible (ARAP) transforma-

tion solver [Igarashi et al. (2005)] to generate a user-defined deformed mesh, Fu (t),

for that timestep. The ARAP deformation scheme is used as it is a well established

algorithm for mesh manipulation and has been used successfully for crowd formation

control [Kwon et al. (2008)]. The ARAP approach also permits global control over

the mesh with only a few constraints. This helps to keep the number of required user

inputs at a minimum, reducing the complexity of the control scheme. The combina-

tion of the moving control points and the ARAP solver causes the mesh to follow the

user-defined trajectory and as such the crowd moves (Figure 3.2, Bottom). To allow

the agents in the crowd to follow the mesh well, the speed of the control point, s, is set

40 Chapter 3. Multitouch Formation Control

Figure 3.2: Application of the user input signals to control of the formation mesh. The

formation of the crowd is represented by a 2D triangle mesh (Top). The user uses

a multi-touch device to define trajectories of constraints applied to the mesh vertices

(Middle). An as-rigid-as-possible (ARAP) solver [Igarashi et al. (2005)] is used to deform

the mesh at each timestep according to the current position of the user’s constraints

(Bottom).

3.3. Movement and Formation Control 41

equal to the speed of the agents.

As soon as a control point is defined it immediately proceeds along the correspond-

ing trajectory specified by the user. Since the movement of the control points deforms

the formation mesh and causes it to move, the mesh, and subsequently the crowd, starts

to move once a control signal is received. Whilst the user is providing input to the mul-

titouch device the set of trajectories is updated but the control points do not track the

current position of the user’s touch inputs. Instead, the control points follow the history

of the user’s input signal (represented by the blue trajectories in Figure 3.2) at a speed

determined by our system. In this way, the user does not always have to be interacting

with the multitouch device in order to move the crowd; the user can define the trajecto-

ries for the mesh control points, remove their fingers from the multitouch device, and

the crowd will continue to perform the specified movement as long as there are still

trajectories to follow. By having the user provide input in this way, we can prevent

unnatural fast movement of the crowd that would result if the formation followed the

user’s input directly and, for example, the user swiped their fingers across the multi-

touch device. Furthermore, if the target formation mesh were set to follow the current

user’s touch inputs, instead of using the current approach, any intermediate control,

such as quickly expanding and then contracting the crowd, would not be maintained.

At this point, Fu (t), known as the user formation mesh, represents the user’s desired

crowd formation at the current timestep; the formation’s interaction with the environ-

ment is not considered. Fu (t) is subjected to deformation based on the environment in

a later stage (Section 3.4).

3.3.2 Point, Line and Area Controls

Although a multi-touch device enables the use of several simultaneous user inputs there

is a limit on how many of these inputs can be handled at any one time. This constraint

comes either from the hardware (the majority of devices cannot handle more than four

simultaneous touch inputs) or the limited number or dexterity of a user’s fingers. As a

result, not all of the vertices on our deformable mesh can be controlled explicitly with

a user’s touch inputs. In this section we propose different control schemes to overcome

the limitation of multi-touch systems and produce a wider variety of control signals for

manipulating the deformable mesh.

In our method a user applies their touch inputs directly onto the vertices of the

deformable mesh. As a result, the resolution of the mesh affects the level of detail

42 Chapter 3. Multitouch Formation Control

to which a user can specify the crowd’s formation. It is straightforward to specify a

shape on a low resolution mesh however the user is limited in the kinds of shapes that

can be produced. Alternatively, a high resolution mesh provides flexibility for defin-

ing the crowd formation, but the number of touch points a user can manipulate with a

multi-touch device is limited. As a result, the user can only directly control a subset of

vertices on the mesh. Using the traditional point-based control system [Igarashi et al.

(2005)], it is difficult for the user to control the rigidity when deforming the mesh. That

is, when dragging a control point on a mesh, the system does not know how much the

neighbour vertices should follow such a control point. Igarashi et al. (2005) solve the

problem by allowing the user to predefine the rigidity of the mesh manually, however,

this is not a plausible option for use in real-time control. We therefore present a set of

controls, namely line and area controls, in addition to the point-based control scheme.

These controls provide the user with the ability to manipulate the mesh with varying

levels of rigidity.

The line-based control system (Figure 3.3) constrains the vertices of the control

mesh that lie between two points specified by the user. When two control points c0 and

c1 are defined, the vertices between them are sampled as supplementary control points.

In our ARAP solver, these additional control points are applied as soft constraints as

they are allowed to be affected by the environment in a similar way to the rest of the

uncontrolled vertices on the mesh (see Section 3.4). When c0 and c1 are moved, the

target location of the supplementary control points are computed by linearly interpo-

lating the updated positions of c0 and c1. Defining multiple line constraints on the

mesh allows the user to manipulate different sections of the mesh in different ways

simultaneously.

We also propose an area-based control (Figure 3.4) that provides rigidity to a two-

dimensional portion of the mesh. The section on which this control is applied is deter-

mined by the convex hull of three or more user-defined control points. When the area

control is created, supplementary control points are sampled along the edges and inside

its convex hull. They act as soft constraints on the mesh in the same way as in the line

control. The mean value coordinates [Floater (2003)] of these supplementary control

points are computed and are subsequently used to update their positions throughout

the lifetime of the area control. In this way, the user can use only a few control points

to manipulate varying proportions of the mesh.

3.3. Movement and Formation Control 43

Figure 3.3: The proposed line-based control scheme for manipulating the formation

mesh. The motion from the user’s input constraints (large coloured arrows) is interpo-

lated across a line in the mesh defined by the touch input positions.

Figure 3.4: The proposed area-based control scheme for manipulating the formation

mesh. The motion from the user’s input constraints (large coloured arrows) is interpo-

lated across the area of the mesh defined by the touch input positions.

The effects of using the three different control schemes; point, line, and area control,

can be seen in Figure 3.5. Given the same control signal (Figure 3.5(a)) but different

44 Chapter 3. Multitouch Formation Control

control schemes, the final formation is different (Figure 3.5(b) - (d)). The different

forms of control confer varying levels of rigidity to the mesh, giving the user greater

flexibility in the kinds of formations they can create with a small number of user inputs.

In order to identify the type of control that a user wants to apply, the timing that

the fingers are placed on the multi-touch screen is examined. A single touch input

gives basic point-based control, two simultaneous touch points indicates a line control,

whilst three or more simultaneous touch points creates an area control. This scheme

allows for different kinds of control to be applied simultaneously to different parts of

the mesh. In Figure 3.6(a), we show an example where the user applies a line control

at the left of a square and an area control on its right. The result when the user drags

these areas is shown in Figure 3.6(b). It can be observed that the left half of the shape

is deformed while the right part is kept rigid thanks to the two types of control used.

(a) (b)

(c) (d)

Figure 3.5: (a) Given the same movement of the user’s touch inputs , a rectangular

mesh will deform differently when using (b) point-based control, (c) line-based control,

and (d) area-based control on the four corners.

3.4. Environment-Guided Mesh Deformation 45

(a) (b)

Figure 3.6: A user can apply different styles of control to the mesh simultaneously.

(a) The user applies a line control and an area control onto the same mesh. (b) The

resultant deformation.

3.4 Environment-Guided Mesh Deformation
In this section, we explain how we deform the control mesh of the crowd according to

its interaction with the environment. This scheme is especially important for achieving

effective obstacle avoidance in scenes where there are multiple obstacles, such as city

scenes with several streets that are diverging and merging. The deformation of the con-

trol mesh is guided by a velocity field generated by the environment. By letting these

low-level interactions be controlled by our system, we allow the user to concentrate on

the higher level control of the crowd.

The environment is modelled with a set of objects, O. Each object, o ∈ O, gener-

ates a velocity field, ωo, that will affect near-by vertices of the control mesh. Referring

to Figure 3.7, the direction of the vector in the velocity field at point x is the unit vector

from the centre of the object, co, to the point x. The magnitude of the vector in the

velocity field is computed based on the distance, d, between the object’s centre and the

sample point:

f (d) =

1− d
ro
(0 < d < ro)

0 (ro ≤ d),
(3.2)

where ro is a predefined range of influence for the object o. We divide the floor into grid

46 Chapter 3. Multitouch Formation Control

cells of equal size, and compute the vector at each cell for the velocity field produced

by all the objects in the environment:

Ω(x) = ∑
o∈O

ωo (x) = ∑
o∈O

f (‖x−po‖)
x− co

‖x− co‖
(3.3)

where x is the position at the centre of the cell, po is the closest point to x on the

surface of obstacle o and ωo (x) is the velocity field value for object o at x. We use this

approach because simply using the distance field can cause vertices to move slowly

when there are long edges on the obstacle. The direction vector pointing away from

the obstacle centre increases the tangent element of the vector field in such cases.

Figure 3.7: Calculating the velocity field produced by environment obstacles. The field

produced by the obstacle at point x is dependent on the distance (d) of x from the

obstacle’s closest point (p) relative to the range parameter (r), as well as x’s relative

direction, u, from the obstacle centre (c).

Given a user formation mesh from the previous stage, Fu (t), we examine the cur-

rent position of each vertex of the control mesh, vi (t)∈ Fu (t) and sum the contribution

of each velocity field produced by all the obstacles at that position. We also monitor

the collisions between the vertices and the obstacles, and push them out to the nearest

point on the surface if they penetrate through the obstacle. The edges of the control

mesh are allowed to pass through the environment. The vertex positions of Fu (t) are

updated based on the field and the final formation mesh Fc (t) is then computed:

Fc (t) = Fu (t)+Ω(t) = vi (t)+Ω(vi (t)) ∀vi∈Fu, (3.4)

where Ω(t) is the state of Ω at time t as it updates according to the current state of the

3.5. Character Mapping 47

objects in the environment. In order to prevent the control mesh getting stuck in the

environment, we limit the obstacles shapes to convex hulls, as well as the minimum

distance between two obstacles.

3.5 Character Mapping

Once the configuration Fc (t) for the formation control mesh is decided we next have to

determine which point on the mesh each agent will move to. To minimise obstructions

between agents in the crowd during transition to the new formation it is necessary to

assign an agent a target position based on their current configuration.

In order to assign each agent’s goal position in the user-defined formation we use

a formulation for solving the transportation problem, which is used to compute the

Earth Mover’s Distance [Rubner et al. (1998)]. The transportation problem is solved

by minimising the amount of work to move objects from a set of source locations I to a

set of target locations J. The solution to the problem consists of finding the amounts of

the objects to be transported across all routes, henceforth referred to as “flows” (fi, j),

that minimises the overall cost of transportation between the two point sets. A set of

flows can be evaluated using:

∑
i∈I

∑
j∈J

ci, j fi, j, (3.5)

subject to the following constraints:

fi, j ≥ 0 i ∈ I, j ∈ J (3.6)

∑
i∈I

fi j = yi j ∈ J (3.7)

∑
j∈J

fi j ≤ xi i ∈ I, (3.8)

where ci, j is the cost of travelling from point i ∈ I to point j ∈ J, xi is the total supply

of source point i (the supplier) and y j is the total capacity of target point j (the con-

sumer). This cost is assessed for the full connectivity of the two point-sets. Readers

are referred to Rubner et al. (1998) for further details. In this work, the source points

correspond to the locations of the agents and the target points are the vertices of the

48 Chapter 3. Multitouch Formation Control

formation mesh Fc (t) at the current simulation step. Each point i ∈ I and j ∈ J can

be weighted to allow user-defined partial/full matching between the two point-sets.

These weights act as the supply and demand signals from the source and goal points

respectively. The flows that minimise Equation (3.5) satisfy these signals. For exam-

ple, for the purposes of mass transport, low supply weight from a point i ∈ I and high

demand weights on points in J can produce solutions with many source points feeding

to a single goal point. This is effective for controlling several agents in groups with

fewer target locations in the formation, particularly if multiple agents can use the same

cost-to-goal information that is computed once per target location (Section 5.3.1). In

the current work it is desirable for each agent to be assigned to only one goal point

and vice-versa. To achieve this we assign a weight of 1 to all source and target points

to allow full mapping from current agent positions to candidate locations in the mesh.

The Euclidean distance between an agent and a formation location on the mesh is used

for the cost of travel, and the solution to the transportation problem provides a set of

point-to-point correspondences between the agents and the target formation, which is

recalculated at every time step.

Once a point in the mesh is assigned to an agent their route to the location is com-

puted using grid-based A∗ search on a binary occupancy grid with similar resolution

to the velocity field grid. Each character considers other characters as obstacles and

computes the optimal path. The characters then move to their corresponding target

locations with a simple PD controller. A maximum speed is defined to avoid unnatural

fast movement.

3.6 Experimental Results

In order to highlight the benefits of our approach, we have produced scenes showing a

group of characters passing through different static environments including a gateway,

corridors, woodlands, a city area, and a dynamic environment where cars are moving

around. The formation of the characters is manipulated in some of the examples such

that they can pass through narrow pathways or produce visual effects. We also show an

experiment that presents the advantage of using the mass transport solver for mapping

each character to a vertex of the control mesh. All the examples were produced starting

from a uniform rectangular formation with 36 characters, except the city example,

which consists of 100 characters.

3.6. Experimental Results 49

3.6.1 Environments with Static Obstacles

We first show an example in which the characters pass through an environment pro-

duced by three long, rectangular obstacles. Three different ways to pass the crowd

through the environment are produced: (1) fully expanding them such that they pass

between the obstacles as well as outside them, (2) unevenly split them to make two

groups pass through the two corridors produced by the obstacles, and (3) squeezing

them into a single corridor by stretching the formation parallel to the obstacles. Some

of the snapshots are shown in Figure 3.8(a) and (b). Notice that the movement of in-

dividual characters is not defined explicitly by the user. Instead, the user must only

specify high-level properties of the simulation such as the general width and direction

of the crowd’s formation. Given the user’s commands the system handles the low-

level interaction of both the formation and the characters with the environment. As

such, based on the formation defined, the characters fit into the appropriate pathways

automatically. Experiments show how a general flow of the crowd can be achieved

through a simple scene using only a single gesture (Figure 3.8(a)). Alternatively, the

user can specify a more precise movement of the crowd in the scene by directing the

formation mesh through a single corridor in the environment (Figure 3.8(b)). We also

produce another example where a larger scale of crowd passes through an urban area

with many buildings, cars and trees (see Figure 3.8(c)). Even in such a complex con-

dition, the characters have no difficulty moving through the area.

3.6.2 Environments with Dynamic Obstacles

In this example, the characters are controlled to pass through an environment in which

there are multiple dynamic obstacles (cars). In the open environment the formation

mesh is defined as a result of the user’s input signals and so the characters track the

formation specified by the user. When the cars approach the formation mesh, the mesh

deforms automatically according to the velocity field produced by the cars in order

to avoid collisions (see Figure 3.8(d)). As such, the characters follow the deformed

vertices and subsequently are able to move easily past the dynamic obstacles. We can

tune the strength of the velocity field to adjust the distance at which a character starts

to avoid the obstacles depending on the application. Even when the mesh is being

deformed by the obstacles, there still exists a signal for the mesh to follow the user’s

controls thanks to the addition of the as-rigid-as-possible deformation scheme. This

results in movement of the mesh that satisfies a user’s direction as best as possible

whilst still accounting for objects in the environment.

50 Chapter 3. Multitouch Formation Control

(a) (b)

(c) (d)

Figure 3.8: A crowd moving through (a) several corridors by spreading out, (b) a single

corridor by squeezing into one row, (c) a city area, and (d) a crowd avoiding cars.

3.6.3 Formation Manipulation

Here we show examples of the different levels of formation manipulation in our system

that can be used to produce different visual effects. We first describe how a user can

use the current framework to define various formation shapes interactively. Examples

are given showing the system’s ability to interpolate between these different high-level

crowd formations quickly and accurately. We then show how a user can control vari-

ous aspects of these formations to carry out certain tasks. We synthesized formations

including shapes of “Pacman”, an arrow, a letter “L” and a star (Figure 3.9). To create

these shapes interactively the controls presented in Section 3.3.2 are used. By employ-

ing two separate line controls on one side of the same mesh a rectangular formation

can be bent into the mouth of the “Pacman” (Figure 3.9(a)). Area controls can be used

to expand and shear the formation, as well as to maintain the rigidity of certain por-

tions of the mesh whilst manipulating other areas. This can be seen with the “L” shape

formation (Figure 3.9(b)). In this example, a line control is used to extend the lower

3.6. Experimental Results 51

portion of the formation whilst an area control keeps the rest of the formation rigid.

Similarly, an arrow shape (Figure 3.9(c)) can be produced by using an area control for

keeping the arrow head rigid while manipulating the tail with point and line controls.

Point controls can be used to further refine certain parts of the formation. This can

be seen in the star formation example (Figure 3.9(d)) where the points of the star are

coarsely defined by initially squeezing certain parts of the formation using line con-

trols. The formation is further refined using point controls to achieve the desired final

shape.

(a) (b)

(c) (d)

Figure 3.9: A crowd deformed into the shape of (a) “Pacman”, (b) a letter “L”, (c) an

arrow and (d) a star.

As well as defining the crowd’s formation on the fly, a set of mesh shapes can be

registered to define formations that the crowd can switch between. Some examples of

these formations can be seen in Figure 3.10. The user is able to specify the trajectory

of the crowd using the multi-touch device and the crowd’s formation can be switched

depending on the environment. In the current demo, the formation is switched when

the crowd passes over pre-defined checkpoints embedded in the environment, however,

it would be reasonable to allow the user to handle this switching either through a basic

52 Chapter 3. Multitouch Formation Control

button interface or a set of multi-touch gestures. Figure 3.10(a) shows the crowd in

an arrow formation which is effective for passing through a narrow corridor. This

formation can be directly switched to from the original square formation. The sides of

the arrow deform temporarily when the formation is inside the corridor to ensure that

the characters pass through without trouble (Figure 3.10(b)). Once through the corridor

the crowd can switch back to their original formation or to another formation entirely,

depending on the user’s requirements (Figure 3.10(c)). By using the mass transport

solver to assign character’s goal positions, transitions between different formations

occur quickly and with minimal congestion.

(a) (b)

(c) (d)

Figure 3.10: Examples of high and low level control of crowd formation. A crowd can

be seen adapting it’s formation based on user signals and the environment: (a) An

arrow formation is used to pass easily through the corridor, (b) The crowd formation

is affected by the surrounding environment, (c) The crowd can easily transition to a

variety of formations. (d) The current crowd formation can be easily manipulated to

achieve certain tasks.

3.6. Experimental Results 53

Not only does our system provide methods for defining high-level formation shapes,

but a user is also able to manipulate individual formations directly in order to provide

more detailed and intricate crowd motion. We show an example where the crowd for-

mation resembles a ”pacman” character (Figure 3.10(d)). A set of simple gestures can

provide interactive control over multiple aspects of the formation. In this case the user

is able to translate the formation whilst simultaneously manipulating the ”pacman”

character’s mouth. This helps to create visual effects as well as perform certain tasks,

such as collecting items in the environment.

(a) (b)

(c) (d)

Figure 3.11: Effect of using the mass transport solver: (a) the crowd is controlled to-

wards an obstacle, (b) characters collide with the obstacle during their motion, (c) the

final state when the locations for the characters are fixed in the formation, and (d) final

state when using the mass transport solver to compute the optimal final locations.

3.6.4 Mass Transport Solver

In the last experiment, we show examples that clarify the advantage of using the mass

transport solver for guiding the characters (Figure 3.11). In the example, the charac-

54 Chapter 3. Multitouch Formation Control

ters in a square formation are supposed to pass around an obstacle and merge again

(Figure 3.11(a)). Because some of the characters are prevented from moving by the

surrounding characters and the obstacle for a while (see Figure 3.11(b)), they are late

to arrive to the group once they have passed the obstacle. This sort of situation is quite

common in interactive applications where a user wishes to move a crowd quite coarsely

through an environment containing several obstacles. This increases the likelihood of

collisions with obstacles or other characters that can perturb the relative configuration

of the formation. In the case where the characters are required to return to their origi-

nal position in the formation, they are blocked by the characters that filled in the row

in advance (Figure 3.11(c)). This problem is particularly challenging in dense crowds

where there is not enough space for the characters to pass through. In contrast, with

our interpolation scheme based on the mass transport solver, the blocking character

simply shifts into the formation to make room for the late arriver (see Figure 3.11(d)).

Notice that the mapping of the characters to the mesh vertex in the final formation is

different from the initial formation.

3.6.5 Computational Costs and 3D Rendering

The experiments are run on one core of a Core i7 2.67GHz CPU with 1GB of memory.

For the multi-touch input we used an MTMini device [Sandler (2010)] along with the

associated open-source Community Core Vision software [Sandler (2008)] for tracking

touch points. The computation of the 2D trajectories that includes the deforming of the

control mesh, reshaping it through its interaction with the environment, computing of

the character destination by the mass transport solver, and updating their positions

are all done in real-time at a rate of 60 frames per second. The final 3D scene involves

computing the movements of each character. We created a simple locomotion database

with running motions. Based on the planned movement trajectory, the characters select

the optimal motions with a precomputed search tree [Lau & Kuffner (2005)]. We allow

minor adjustments in the original motion to better fit the movement trajectory, and

apply inverse kinematics to fix the supporting foot on the floor. The motion planning

process is in real-time, but the rendering process is done offline due to the large number

of characters and the lack of rendering optimization such as level-of-detail.

3.7 Discussion

In this research we present a novel method for effective user-guided control of crowd

formation and motion in virtual environments. Currently, formation controls in in-

3.7. Discussion 55

teractive applications, especially computer games, are rather basic. In most cases, a

group of characters is moved from one location to another by simple mouse control.

As the dimensionality of the user control is limited, the only solution is to let low level

character-character or character-environment interactions be handled by the system.

The current work utilises this idea to allow more refined control over a crowd’s forma-

tion whilst still keeping the necessary control signals relatively simple. Our method

provides a more enriching user experience in real-time applications such as games.

The method is particularly well suited to applications where group cohesiveness is

important e.g. real-time strategy games or social group motion in crowds.

3.7.1 Multitouch control

Section 2.2 discussed how previous approaches to crowd control interfaces require a

user to sequentially define multiple paths for a crowd to follow. In the work presented

in this chapter, such trajectories are replaced by the trajectories of the user’s fingers

on the multi-touch device for real-time control. The subtle control signals from the

fingers are used to deform the mesh and alter the way it interacts with obstacles and the

environment. Our method combines formation tracking and obstacle avoidance into a

single control signal. This is in contrast to Ho et al. (2010) who handle the impact of

the environment by allowing agents to disengage formation tracking whilst avoiding

obstacles. By providing a combined control signal we enable a crowd to continue to

track the user’s specified formation whilst avoiding obstacles in the environment. We

have shown that the user can control the characters in various ways to move through the

environment by subtly changing the way they control the formation via a multi-touch

device.

3.7.2 Mass Transport Solver

Various methods exist for handling congestion in multi-agent path planning includ-

ing, but not limited to, replanning [Koenig & Likhachev (2002)], space-time plan-

ning [Singh et al. (2011); Karamouzas et al. (2013)] and prioritised planning [Lau &

Kuffner (2006); Sung et al. (2005); van den Berg & Overmars (2005)]. In each of these

cases, goals are assigned sequentially making it possible that they are not assigned op-

timally. Centralised planners [Li & Chou (2003); Schwartz & Sharir (1983)] compute

multi-agent motion simultaneously in order to find a good solution for all agents how-

ever, full plans must be computed for each agent, making these approaches costly. By

56 Chapter 3. Multitouch Formation Control

using the MTS we can assign agent goals before any planning occurs, all that is needed

is a distance from each agent to the target locations.

By using the MTS, our method enables a crowd to dynamically assign goal po-

sitions in the final formation leading to better tracking of the user-defined formation

under perturbations. A similar approach is adopted in Alonso-Mora et al. (2011) how-

ever, there are a few key differences. Firstly, the authors use the Hungarian algorithm

to solve the assignment problem. In this problem, the objective is to assign one agent

to one and only one task. In this research, we solve the transportation problem, where

multiple agents can be assigned to one task (or vice versa) by adjusting their weighting

during optimisation. A one-to-one mapping can still be achieved by defining appro-

priate weights but the framework can also handle discrepancies between the number

of agents and the number of goals, all in a single optimisation process. Secondly, we

demonstrate the use of goal reassignment with larger numbers of agents and in the

presence of static and dynamic obstacles, where perturbations are much greater. We

show how this approach is effective for resolving congestion and enabling the crowd to

follow the user-defined formation well. This kind of behaviour is simulated in Ho et al.

(2012) however, the authors perform goal swapping by minimising travel distance in

a locally pairwise fashion. This can mean that the final target positions for the agents

are not optimal with regards to the group, causing oscillations or conflict between the

movement of the agents. Finally, in later work we implement an environment-aware

cost metric into our optimisation to account for the effect of complex environments on

goal assignment (Section 5.3).

3.7.3 Scalability

With the current framework, the computational cost of the MTS imposes a bottleneck

on the size of the crowd that can be controlled interactively. The time required to carry

out the MTS is dependent on the number of characters in the simulation and subse-

quently the number of goals associated with these characters. Currently, the resolution

of the mesh defines the number of characters that can be controlled by the system

since each vertex of the mesh represents a goal position for a character. It is desirable

to keep a relatively high resolution mesh to allow for interesting formation shapes to be

defined, however, if this becomes too high the mesh can become uncontrollable and the

computational cost of the as-rigid-as-possible solver can become prohibitive. Instead,

it is appropriate to keep the resolution of the mesh fixed at a desired level for control-

3.7. Discussion 57

lability and to define the character’s goal positions in the formation parametrically by

using, for example, barycentric coordinates. Additional speed up could be achieved

by assigning the goal position for groups of characters as opposed to individuals in the

formation. A hierarchical system could be used to assign varying sized groups to their

appropriate positions in the formation, enabling simulation of much larger crowds.

3.7.4 Formation Representation and Crowd Movement

For this work we chose to represent the formation of the crowd using a two-dimensional

mesh. This choice imposes certain limits on the type of crowd movement that can be

produced using our system. Firstly, the rigid shape of the mesh makes it very easy for

a user to generate structured crowd movement, where characters move as a cohesive

unit and maintain the spatial layout of the crowd formation. In a lot of real crowds

this kind of motion would seem a little unnatural. A lot of realistic scenarios involve

more heterogeneous motion, where people would move around by themselves, some-

times clustering into groups but generally intermingling and displaying individuality

in their behaviour. Our system does not focus on producing this kind of motion but

is more suited for use when ordered crowd movement is preferable. This is often the

case in video games, where a user is more concerned with the crowd following their

instructions in order to achieve a certain task than with the crowd showing anisotropic

movement. This is shown by our user study in Chapter 4, where control of agents in

a more structured way is useful when guiding a team to achieve a goal, such as cov-

erage and collection of objects in an environment. Furthermore, good control over the

formation of a crowd of agents allows a user to create shapes that can be useful for

storytelling and performances.

A further advantage of using a mesh to represent the crowd’s formation is that

there exist a number of approaches for mesh deformation [Igarashi et al. (2005); Weng

et al. (2006); Wang et al. (2008); Yang et al. (2012)]. These methods permit a user to

manipulate the shape of a mesh without significantly altering the underlying mesh con-

figuration. This allows the spatial relationships specified in the formation to be well

maintained. The mesh vertices also represent well-defined points of interaction for

the user’s touch input as well as the line and area gestures presented in Section 3.3.2.

Conceivably, any mesh manipulation approach that permitted multiple simultaneous

constraints could be applied in our algorithm. As noted by the authors in [Weng et al.

(2006)], the number of iterations to solve in their approach can vary significantly de-

58 Chapter 3. Multitouch Formation Control

pending on factors such as the shape and the amount of deformation to the mesh. This

therefore could have a negative impact on interactive manipulation of the crowd shape.

Similarly in Wang et al. (2008), an iterative solver is used for rigid shape matching

for squares, akin to Igarashi et al. (2005)’s work for triangles. Yang et al. (2012)’s

work is concerned with multi-element 2D meshes where shapes overlap one another

so is not intended for the simpler meshes used in this work. Alternative shape manip-

ulation techniques such as Green coordinates [Lipman et al. (2008)] and Mean Value

coordinates [Floater (2003)] could be used though these are most effective when there

is a well defined cage for containing the positions to be manipulated. As mentioned

in Section 3.3.1, the as-rigid-as-possible scheme was chosen because of its effective

use in previous research for group shape control [Kwon et al. (2008)] and in terms

of computation it has the benefit of being based on an efficient linear system formu-

lation. Furthermore, the approach is fairly straightforward to implement, with a C++

implementation readily available [Schmidt (2009)].

3.7.5 Character-environment interaction

Even though we have only presented actions such as running and avoiding in our exam-

ples, it is possible to add more complex interactions such as characters crawling under

obstacles, side stepping along a narrow space, jumping over ditches and climbing up

ladders. Such effects will be easier to produce by embedding the specific movements in

the environment using patch-based approaches [Yersin et al. (2009); Lee et al. (2006)].

A patch-based approach would also enable us to simulate scenes of character-character

interactions, such as two armies fighting [Shum et al. (2008)]. We present an approach

to incorporating motion data into a crowd’s motion planning and formation tracking

using a simplified patch-based approach in Chapter 5.

3.7.6 Formation tracking

For the user to have good control over the behaviour of the crowd it is important that

the characters are able to track the formation specified by the user throughout the sim-

ulation. In the current work, characters are able to maintain a close proximity to their

goal position in simple environments. With increasing numbers of obstacles there

arise cases in which the distance between a character and its assigned formation posi-

tion becomes quite large. This can happen due to the character being unable to travel

through the environment quickly enough to keep up with the formation, for example,

3.8. Summary 59

the character may become temporarily stuck whilst passing by an obstacle or conges-

tion may occur if several characters are attempting to pass through the same narrow

area. One improvement to the current approach would be providing a feedback signal

to the movement of the control mesh. This signal could be based on how well the

agents are tracking the mesh or even the state of the mesh vertices, that is, whether

they are interacting with an obstacle or not. This would help when a vertex or agent

takes particularly long to negotiate an obstacle or large deformation of the mesh oc-

curs as a result of the user forcing the mesh to collide with large obstacles. The system

could handle these situations by adjusting the movement of the mesh accordingly. In

Chapter 5 we explore a method for introducing a simple feedback loop between the

formation mesh and the characters that enables better tracking of the formation, par-

ticularly in complex environments.

Additionally, the current method does not account for the future motion of dynamic

obstacles when planning the mesh movement. This choice was made to give greater

control of the mesh to the user. Having the mesh follow an optimal path rather than

that specified by the user may make the user feel less in control of the crowd and thus

degrade their experience. That being said, rather than using our simplified potential

field for avoiding obstacles, an RVO-like obstacle avoidance mechanism [van den Berg

et al. (2008a)] would provide greater intelligence to the mesh motion, for example pre-

venting it from passing in front of moving cars, and consequently produce smoother

motion. Replacing our simple A∗ path planner for characters in static environments

with one that can account for dynamic obstacles would also mean that characters them-

selves can avoid unrealistic movements when tracking the mesh. This would also help

to minimise any discrepancies between the formation mesh and the characters’ current

positions.

3.8 Summary

Real-time crowd control has become an important research topic due to the recent ad-

vancement in console game quality and hardware processing capability. The degrees of

freedom of a crowd is much higher than that provided by a standard user input device.

As a result most crowd control systems require the user to design the crowd movements

through multiple passes, such as first specifying the crowd’s start and goal points, then

providing the agent trajectories with intermediate waypoints or paths. Such a multi-

pass control would spoil the responsiveness and excitement of real-time games. In

60 Chapter 3. Multitouch Formation Control

this chapter, we proposed a new, single-pass algorithm to control crowds using a de-

formable mesh. When controlling crowds, we observe that most of the low level details

are related to passive interactions between the crowd and the environment, such as ob-

stacle avoidance and diverging/merging at cross points. Therefore, we simplify the

crowd control problem by representing the crowd with a deformable mesh that pas-

sively reacts to the environment. As a result, the user can focus on high level control

that is more important for context delivery. Our algorithm provides an efficient crowd

control framework while maintaining the quality of the simulation, which is useful for

real-time applications such as strategy games. We evaluate the effectiveness of our

multitouch approach for user control in Chapter 4.

Chapter 4

User Evaluation of Multitouch Control

In this chapter we present an in-depth user study to appropriately evaluate the system

described in Chapter 3. We analyze the capability of our user interface for interactively

moving and defining crowd shape for task completion, and provide a comparison to

traditional mouse-based controllers. Results show that our multitouch-based crowd

controller enables a user to complete a basic item-collection task in a shorter amount

of time and with fewer unique inputs as compared to the mouse-based controller. In

the rest of this chapter we present the methodology used for the study (Section 4.2)

followed by an analysis of the participants’ ability to complete an item collection task

(Section 4.3.1), and the general usage and feedback with regards to our multitouch

controller and a common mouse-based controller (Section 4.3.3).

4.1 Contributions

• An evaluation of the usability of the previously proposed multi-touch crowd-

control framework (Chapter 3) as compared to traditional mouse-based control

methods. We provide a comparison of each scheme’s ability to control and ma-

nipulate a crowd’s motion and formation in an interactive application.

4.2 Method

In the study we had a total of 15 participants, consisting largely of postgraduate stu-

dents all aged between 20 and 35. To compare our system to other user-control ap-

proaches we implemented a mouse controller based on those found in current real-time

strategy games. This controller included a basic mouse control interface (Figure 4.1)

61

62 Chapter 4. User Evaluation of Multitouch Control

and the movement of the characters was determined using the approach in Treuille

et al. (2006).

(a) (b)

Figure 4.1: The mouse control interface used in the user study. (a) The user could

select the characters by right-clicking and dragging across them in the scene. (b) The

characters could then be given a goal point by left-clicking in any open space.

(a) Single Block (b) Corridor

(c) Multiple Paths (d) Four Blocks

Figure 4.2: The initial setup for environments used in the user study. The positions of

the items to collect (small orange blocks) were randomised for each trial.

Participants were given some practice time to get comfortable with using the mouse

scheme and our proposed multitouch control scheme. In general, participants spent 1-2

4.3. Results 63

minutes practicing with each control scheme. Once happy with each scheme, partici-

pants were asked to carry out a number of tasks to test them. In each task users were

presented with one of 4 different environments (Figure 4.2). Each of the environments

contained a set of obstacles as well as a number of collectible items. Users were in-

structed to guide a set of characters to collect the items in the environment in as little

time as possible. The position of the collectible items in the scene was randomised

at the start of each task to prevent any experimenter bias from their placement. Each

environment was presented twice to the user: once for each control scheme, and the

order in which users tested the control schemes was switched to prevent any bias from

task experience.

4.3 Results

4.3.1 Task Completion

In most scenarios, the multitouch controller enables more efficient collection of items

by allowing a user to move the crowd and manipulate its shape simultaneously. A

comparison of the times taken to complete each task with the different controllers is

shown in Figure 4.3. It can be seen that the time for task completion is reduced in

three of the four scenes when using our multitouch controller. In fact, for the “Single

Block”, “Corridor”, and “Multiple Paths” environments (Figure 4.2(a)-(c)) the multi-

touch controller shows a 35%, 16%, and 20% decrease in the median completion time

respectively, compared to the mouse controller.

P-value

Data Single Block Corridor Multiple Paths Four Blocks

Completion Time 0.0016 0.1571 0.1696 0.0015

Number of Inputs 0.0001 0.0016 0.0103 0.0126

Question Scores 0.6839 0.1777 0.4288 0.7275

Table 4.1: P-values from a two-tailed paired t-test for significance between results col-

lected using the mouse and multitouch control schemes. P-values are shown to 4 dec-

imal places. For all significantly different data (p < 0.05) the “Four Blocks” completion

time is the only one in favour of the mouse control scheme.

64 Chapter 4. User Evaluation of Multitouch Control

Figure 4.3: Box-whisker plot of item collection task completion time for multitouch and

mouse-based controllers in the four different environments shown in Figure 4.2. An

asterisk indicates that the data is significantly different (p < 0.05 in paired two-tailed

t-test).

We performed a paired two-tailed t-test to check for differences between the mul-

titouch and mouse controllers. The generated p-values can be seen in table 4.1. The

task completion times for both the “Single Block” and “Four Blocks” scenario are

shown to be significantly different (p < 0.05) with the former favouring the multitouch

controller and the latter the mouse controller.

4.3.2 Required User Input

Figure 4.4 shows a box-whisker plot for the counts of inputs provided by a user in

completion of the box collection tasks. For the mouse-based controller, a single input

constitutes all events received from the mouse between a button-down and correspond-

ing button-up event (i.e. one input is either a right-click and drag to select characters

or a left-click to set the selected agents’ goal). In terms of our multitouch controller a

single input is regarded as the events received from the moment the first touch-down

signal is registered until the last finger is removed from the multitouch device (this

therefore represents a single interaction period between the user and the screen).

From Figure 4.4 we can see that the multitouch controller requires far fewer unique

inputs for completion of all of the tasks as compared to the use of the mouse-based con-

4.3. Results 65

troller. There are still some cases in which the multitouch controller required a larger

number of inputs such as in the “Multiple Paths” scenario but overall the multitouch

showed a 64%, 57%, 53%, and 54% decrease in the average number of required inputs

for the “Single Block”, “Corridor”, “Multiple Paths”, and “Four Blocks” environments

respectively. With a paired two-tailed t-test the p-values indicate that in all scenarios

this reduction in number of inputs is significant (p < 0.05, see table 4.1 for the values).

Figure 4.4: Box-whisker plot of the number of control inputs provided by the user for

completion of an item collection task in four different environments using the multitouch

and mouse-based controllers. An asterisk indicates that the data is significantly differ-

ent (p < 0.05 in paired two-tailed t-test).

4.3.3 User Feedback

In addition to completing the above tasks, participants were also asked a set of ques-

tions with regards to their experience of each control mechanism. Figure 4.5 shows the

average scores given by participants for each of the questions outlined in Figure 4.6.

In all cases both the mouse and the multitouch control scheme averaged a score of

between 3 and 4, with the multitouch control showing a better score in the question

concerning participants’ overall view of the control scheme. The slightly better score

for the mouse control scheme in questions 1-3 may in part be due to the familiarity of

the participants with using a mouse device. A number of the participants commented

that their experience of using a mouse device in real-time strategy as well as other

66 Chapter 4. User Evaluation of Multitouch Control

games may have meant that they favoured this device implicitly, through what may

be referred to as a “mouse prior”. The multitouch device, despite being comparably

less common than the mouse, still showed strong scores in response to the questions

and the differences between the scores for the multitouch and mouse controllers was

not shown to be significant (p-values > 0.05, see table 4.1). This suggests that such

devices are appealing as a method for interactive crowd control.

Figure 4.5: Average scores and their standard deviations for multitouch and mouse-

based controllers given in response to user study questions (see Figure 4.6 for the full

questions).

Question 1: Please rate how you found it to complete the tasks using this

control mechanism. (0 = Very Hard, 5 = Very Easy)

Question 2: Please rate how well you felt the characters followed your com-

mands. (0 = Not At All, 5 = Very Much So)

Question 3: Please rate how you found it to navigate your characters in the

various environments using this control mechanism. (0 = Very Hard, 5 = Very

Easy)

Question 4: Please rate your overall experience of this control mechanism.

(0 = Very Poor, 5 = Very Good)

Figure 4.6: The questions presented to each user after completion of the tasks using

either the mouse or the multitouch controller.

4.3. Results 67

4.3.4 Use of Multitouch

To assess the tendency for a user to employ multitouch control we took a count of the

occurrences of different numbers of touch signals used in an input. These can be seen

in Figure 4.7. The skew shown in the counts towards a single touch input may also be

indicative of the aforementioned “mouse prior”, where users are more inclined to use

a single finger for interaction as this is what they are used to. Despite this, Figure 4.7

shows that users did incorporate multitouch inputs, including some using as many as

6 touch signals. The greater propensity for 2-touch gestures suggests that users were

more comfortable using fewer fingers and it is likely that they used the line control

gesture presented in Section 3.3.2. Equally, an increase in the frequency of 4-touch

inputs compared to others indicates that users made use of the area control gesture for

expanding or contracting the formation whilst moving the crowd around the scene.

The greater amount of open space in the “Single Block” environment allowed users

to take advantage of the multitouch controller’s simultaneous movement and shape

control capability. In a number of cases the users were able to expand and contract

the group formation whilst guiding the agents around the scene resulting in a large im-

provement in task completion time. In the “Multiple Paths” scene, participants utilised

the mesh interaction with the environment to divide the crowd into several pathways at

once. This allowed the user to cover much of the environment with minimal gestures

and complete the task more efficiently when compared to using the mouse.

Figure 4.7: Count of the number of fingers used in users’ control signals for manipulat-

ing the deformable mesh.

68 Chapter 4. User Evaluation of Multitouch Control

4.4 Discussion

The results of our user study highlight the benefits of using a multitouch device for

controlling crowd motion. In particular, users are able to use our control scheme to

guide a crowd of virtual agents to complete a task in a shorter time and using fewer

inputs as compared to a standard mouse-based controller. On top of this, participants

answered positively when questioned on the usability, intuitive nature, and general

experience of the multitouch controller, providing similar scores to those given for the

mouse-based controller. Some users highlighted the fact that the common usage of a

mouse device may have biased their answers in its favour, suggesting that a multitouch-

based controller is still a viable option for controlling crowd simulations.

4.4.1 User Compatibility

In Section 3.7.4 we highlighted that, because of the use of a two-dimensional mesh, the

current multitouch control scheme imposes certain limits on the type of crowd motion

that can be produced. The result of this is that the overall realism of the crowd is

reduced as the agent’s movement conforms to the rigid mesh shape. However, this

rigidity enables a user to control a crowd to perform certain tasks more effectively

than when using other control schemes. In the current chapter we have shown that

such a scheme can be used to significantly improve task completion times in certain

scenarios, whilst showing some improvement over the mouse controller in others. The

multitouch scheme conferred a particular advantage in environments where the user is

able to expand the crowd’s formation and control their shape to cover the environment

more effectively. Furthermore, in all scenarios the total input count given by the user to

complete the task is significantly lower for the multitouch controller. While the current

multitouch control scheme is unable to provide fully realistic crowd movement, the

results of our user study show that it is able to produce sufficient motion to complete

basic tasks and can be controlled to do so with significantly lower amount of user

input. As a result, our multitouch control scheme provides a method for faster, simpler

control of a group of agents at the cost of reduced realism in their movement.

Further inspection of the participants usage of the multitouch controller shows a

large bias towards single or two-touch control. This could be attributed to the greater

comfort level when performing these types of control, both in terms of what the par-

ticipants are already used to (a mouse and other devices are generally controlled by

a single finger) or in terms of the physical comfort of applying fingers to the touch

4.4. Discussion 69

screen. A reasonable number of 3 and 4-touch controls present in the data suggests

that the first instance is the more likely.

4.4.2 Flexibility

In the “Four Blocks” scene (Figure 4.2(d)) the mouse controller gives a lower aver-

age time for task completion. This highlights a limitation of the current approach: the

crowd must remain as a cohesive whole. With the central placement of the crowd in the

“Four Blocks” scene the best strategy to collect items is to split up the crowd and send

them to different corners of the environment simultaneously, something the mouse

controller is able to do more effectively than our multitouch controller. In this case,

the implicit group cohesion caused by the use of a deformable mesh in our method

limits the crowd’s ability to multi-task. A future development of this work would

consider approaches for splitting and merging of the crowd and user specification of

subgroups. Additionally, alternative methods for shape manipulation through the mul-

titouch device may provide fruitful avenues for such research. In Chapter 6 we present

preliminary work towards this goal. In this we consider the association between a

user’s touch input configuration and the formation of the crowd to generate new crowd

motion based on a novel user input, without the restrictions of mesh-based control.

4.4.3 Other Crowd Simulation Control

We observe that other formation control interfaces, for example sketching-based [Gu

& Deng (2011b, 2013)], utilise a control scheme similar to the mouse controller. Such

controllers have limited responsiveness due to requiring multiple passes to direct a

crowd. This suggests that the multitouch controller would produce lower task com-

pletion times compared to such interfaces, particularly given the advantages of the

multitouch’s single-pass control shown in the current study. This would be interesting

to perform as a follow-up to this study in future work. The user study presented in

this chapter shows the advantage of using our method for navigating a crowd through

a given environment and suggests that a multitouch device is a promising medium

through which to provide user control of virtual crowds.

Chapter 5

Interaction with the Environment

In scenes involving a crowd of characters, the interaction between the individual mem-

bers of a crowd and their environment is important in conveying realism and creating

interesting visual and interactive experiences in computer games and animation. A

simulation where characters alter their motion according to their surroundings, such as

crawling/crouching under or climbing over objects, is much more akin to real crowd

motion than when characters simply avoid or bump into an object with no effect. This

is particularly the case when simulating scenes of panic, when a character may wish to

traverse an obstacle rather than run around it as this would allow them to escape danger

more quickly. Previous crowd simulation systems largely focus on the use of simple

running and avoiding motion to guide a set of characters through a virtual environment.

In these cases, consideration of the environment manifests as collision avoidance, both

at an individual or group level. To enhance the simulation, we wish for agents to show a

wider variety of character motions and to be able to interact directly with objects in the

environment. In this chapter we present a method for incorporating such interactions

into crowd simulation and control.

Gu & Deng (2011a) looked at enhancing the diversity of agent motion in crowds.

However, motions that involve a character interacting with the environment around

them were not considered. Choi et al. (2011) achieved effective path planning involv-

ing climbing and crawling actions in cluttered environments for an individual agent

whilst Lee et al. (2006) generated scenes of multiple characters interacting with a vir-

tual environment. These last two techniques utilised a motion patch approach which is

able to incorporate real motion data into the scene. However, these approaches do not

provide a lot of flexibility in terms of user control and, although there are several char-

acters in the scene, the generated interactions involve only a single character at a time.

71

72 Chapter 5. Interaction with the Environment

Kim et al. (2013) incorporated heuristics-based “pushing” and “pulling”-style interac-

tions as constraints in the ORCA framework to recreate physically plausible behaviour

in crowd simulation. Their method was able to couple physical forces generated by

agents and the environment into a single system, allowing multiple characters to in-

fluence the movement of obstacles simultaneously. However, this approach does not

consider how agents may interact with the environment in other ways, such as traversal

of an object, and the effect this would have on their motion.

In this chapter we present an extension to the work in Chapter 3 to allow user

control of characters in complex scenes, where the agents’ motion is directly affected

by their interaction with the environment. In Chapter 3, the user-defined formation is

maintained under perturbations by assigning the agents’ goal positions via minimisa-

tion of their collective movement. Since many interesting scenarios consist of a rich

set of actions involving direct character-environment interaction, we wish to consider

the effect of such motions on a character’s path planning and therefore their ability

to reach a position in the final crowd formation. We suggest the use of patch-based

approaches in order to achieve this. Such patches can be used to represent the mo-

tion required to interact with a particular part of the environment. Previous work on

embedding motion data in virtual scenes involves either placement of specific patches

in a regular tiled grid [Yersin et al. (2009); Lee et al. (2006)], or stitching of irreg-

ular shaped patches in a highly constrained fashion [Hyun et al. (2013); Shum et al.

(2008)]. While these methods are effective for producing large scale crowd scenes the

relatively inflexible nature of the patches makes them difficult to apply directly to in-

teractive control of a crowd. We wish for the characters to be able to enter and exit

a given patch based largely on the directions given by the user. We therefore propose

a simplified version of motion data patches that permits flexibility in the simulation

whilst still conveying relevant information on character-environment interactions.

Compared to the approach in our previous work in Chapter 3, we have enhanced our

system such that the complexity of the environment is considered when assigning final

positions in the crowd formation. In particular, our system now takes into account areas

of the environment that require characters to conduct special actions such as crawling,

jumping, climbing and swimming. This is achieved by applying a modified version

of the distance metric based on the Eikonal function [Treuille et al. (2006)], instead

of using a simple Euclidean distance metric when solving for the characters’ goal po-

sitions (Section 5.3). By including information on the impact of the environment on

an agent’s path the system can produce realistic and efficient formation control even

5.1. Contributions 73

in very crowded and complex environments, which could have resulted in congestion

in our previous system. Furthermore, an additional feedback loop, based on the char-

acters’ distance from the user’s input formation, has been added to the system from

Chapter 3 (Section 5.4.4). The feedback loop is used to adjust the progress of the de-

formable mesh along the constraints defined by the user. This prevents the user-defined

formation from separating from the characters if they become heavily perturbed. As a

result, the characters remain closer to the mesh throughout the simulation and the final

crowd trajectories are more representative of the user-defined crowd motion. Exper-

imental results show scenes of crowds interacting with static and dynamic obstacles

whilst following formation and motion signals defined by a user’s input (Section 5.4).

Our system is best applied to real-time crowd control applications involving formation

changes and environment interactions such as real-time strategy games. Our approach

can also be used for interactive animation creation to generate scenes including city-

scale crowd flow.

5.1 Contributions

• An environment-aware metric for evaluating the cost of travel for an agent to

reach a given goal. The metric accounts for the effect various traversable objects

in the environment have on the cost of an agent’s path as well as the traditional

consideration of the cost to travel through open areas or impassable obstacles.

This enables effective path planning to be performed in a wider variety of virtual

environments and generates realistic biasing of an agent’s movement through

areas of more easily traversable terrain.

• An approach for incorporating motion capture data information into the pro-

posed environment-aware cost metric. As such, the cost for the execution of the

motion data is incorporated into an agent’s path planning.

• A feedback loop between the desired crowd state and an agent’s current state in

the simulation. The incorporation of this loop creates a better coupling between

the user’s commands and the actual movement of the crowd in the simulation.

This results in better formation tracking and a more appropriate final animation.

74 Chapter 5. Interaction with the Environment

5.2 Method Overview

Here we provide a general overview of the methods presented in this chapter. Since

the work in this chapter is used to extend the work in Chapter 3, the following outline

is given with respect to that provided in Section 3.2.

0. Preprocessing and Embedding of Motion Data Patches - Collect, clean up and

extract average speed data from motion clips of character-environment interac-

tions. Normalise the motion data patches and apply to scenes using polygon-

drawing interface (Section 5.3.4)

1. User input - Convert user input to signals for manipulating the crowd formation

(see Section 3.3.2).

2. Mesh Deformation and Environment Interaction - Deformation of the crowd

formation according to user constraints (Section 3.3.1). The motion of the cur-

rent user-defined crowd formation is adjusted using a feedback signal based on

the state of the crowd and the deformable mesh (Section 5.3.5). Further alter-

ation of the crowd formation mesh to account for interaction with the environ-

ment (Section 3.4).

3. Goal Assignment and Individual Character Movement - Assign agents’ goal

positions in the final crowd formation using an environment-aware cost metric

based on obstacles and embedded motion data patches (Section 5.3) and the

mass transport solver. Use the generated cost field to create the paths for agents

to reach their goals once they have been assigned.

5.3 Improved Character to Formation Mapping
Given the configuration Fc (t) for the control mesh, computed as described in Sec-

tion 3.3 and Section 3.4, we next have to determine the target point on the mesh for

each agent. To minimise obstructions between agents in the crowd during transition

to the new formation it is necessary to assign an agent a target position based on their

current configuration. In Section 3.5 we described how we determine the goal position

of each agent by employing a solution to the mass transportation problem with an Eu-

clidean distance metric. Here we discuss how we use a potential field construction to

incorporate an environment-aware metric in our mass transport solver (Section 5.3.1).

This metric not only accounts for obstacles and other agents in the environment (Sec-

tion 5.3.2) but also considers the motion data that will be used in the final render of the

5.3. Improved Character to Formation Mapping 75

scene (Section 5.3.3-Section 5.3.4). By doing this we are able to encode motion data

information implicitly in an agent’s planning. This results in better goal assignment

and subsequently more efficient movement of agents to satisfy a user’s input forma-

tion.

Figure 5.1: Limitations of an Euclidean distance metric for assigning a character’s goal

position. Assigning formation goal points based on Euclidean distance (blue arrow)

fails to consider the true length of the agent’s path in the presence of obstacles (green

arrow). It is more efficient to assign this goal point to an agent whose true distance

to travel is smaller (pink arrow). This can be achieved using a cost metric based on

geodesic distance (or equivalent) in the mass transport solver.

5.3.1 Environment-Aware Metric for Goal Assignment

Appropriate assignment of agents to the vertices of the formation mesh, Fc (t), is

achieved by employing a suitable cost metric, ci, j, in the mass transport solver. In

Chapter 3 a Euclidean distance metric was used to solve the transportation problem for

an agent’s target location. However, this is not optimal, particularly in environments

with large obstacles. Consider a situation where there is an obstacle between the crowd

and their target formation as in Figure 5.1. The best solution would have the agents

on the outside of the crowd move to locations in the middle of the target formation as

they travel a shorter distance and reach these points earlier (Figure 5.1, pink arrow).

By using the Euclidean distance metric (Figure 5.1, blue arrow) the cost provided to

the mass transport solver does not reflect the route the agent must take to reach the

formation (Figure 5.1, green arrow). The true shortest distance that takes into account

the obstacles must be used to obtain the best assignment of agent goal positions in the

formation. In addition to the actual distance an agent must travel, assignment must also

consider how long it may take for an agent to follow a given route. This can be done by

76 Chapter 5. Interaction with the Environment

taking into account the speed with which an agent can move through given parts of the

environment. For example, in Figure 5.2 it may take an agent a longer time to travel

across the obstacles which, while traversable, will slow them down. In the next section

we describe how we incorporate this information into the mass transport solver and in

Section 5.4.3 we show the effects this information has on the agents’ path planning.

Figure 5.2: Example of a crowd’s choice to move through different types of environ-

ment. A crowd encounters a set of passable obstacles in the environment. In this case

each agent in the crowd must choose which route is quicker: passing through the cen-

tral pathway or climbing over the obstacles either side of it. When the central pathway

is too congested the outer paths over the obstacles become preferable.

5.3.2 Evaluating Cost to the Goal

In continuum-based crowd simulation [Treuille et al. (2006)] the cost for an agent to

travel to its goal is given by an approximation of the Eikonal equation. This approxi-

mation uses a cost metric that accounts for the environment as well as other agents. We

construct a potential field to determine the cost to travel to the vertices of the formation

mesh, Fc (t), for a given point in the environment. In Treuille et al. (2006) the overall

cost for an agent to travel to its destination is provided by a combination of the length

of the path to the goal, the time taken, and a discomfort field based on obstacles and

other agents in the environment:

α

∫
P

1ds︸ ︷︷ ︸
Path Length

+β

∫
P

1dt︸ ︷︷ ︸
Time

+ γ

∫
P

gdt︸ ︷︷ ︸
Discomfort

, (5.1)

where α,β, and γ are weights; g is the value of discomfort at a given point in the

environment; and dt and ds indicate that the integral is taken with respect to time or

5.3. Improved Character to Formation Mapping 77

path length respectively. Readers are referred to Treuille et al. (2006) for more details

on how the individual values for path length and discomfort in Equation (5.1) are cal-

culated. Using the equality ds = f dt where f is the speed of an agent, Equation (5.1)

can be rewritten and simplified to∫
P

Cds, where C ≡ α f +β+ γg
f

. (5.2)

By applying Equation (5.2) to a two-dimensional grid of the environment we can com-

pute a unit cost field for a given scene. In the current work, this unit cost field repre-

sents the evaluation of Equation (5.5) for travelling across the edge of each grid square

termed the cost-to-go, i.e. the cost to move from the current grid cell to a neighbour-

ing grid cell. To produce the final potential field, φ, we employ the same approach as

Treuille et al. (2006) of using the fast marching method [Tsitsiklis (1995)] to approxi-

mate the Eikonal equation:

‖∇φ(x)‖=C, (5.3)

where φ(x) is the value of the field, φ, at a given point x in the environment. ‖∇φ(x)‖
represents the gradient of this field at point x which is equivalent to the cost, C, to travel

through this point. The fast marching method is a one-pass, non-iterative algorithm for

the numerical solution of Equation (5.3). The algorithm presented in Tsitsiklis (1995)

provides a solution in time O(n logn) where n is the number of grid points. A potential

field φi is constructed for each vertex vi in the current user-defined control mesh Fc (t).

In each case, φi = 0 in the cell containing vi and everywhere else φi satisfies Equa-

tion (5.3). This means that the total number of cost fields to calculate is determined

only by the number of formation target positions in Fc (t) and is independent of the

number of agents in the simulation. Each agent can reuse the cost field associated with

a target position to obtain their cost to travel to it. This means that a larger number

of agents could be controlled by the same number of target positions with a relatively

small increase in the computation time. An example potential field for a single vertex

in Fc (t) can be seen in Figure 5.3. Given the position x of an agent a ∈ A, where A is

the set of all agents, we can retrieve the cost for the agent to travel to each vertex, vi,

in Fc (t), by taking the value at that location in the appropriate potential field:

Cax→vi = φi (ax) , (5.4)

where Cax→vi is the cost for agent a at position x to travel to vi.

Due to the discrete nature of the two-dimensional grid we use bilinear interpolation

on the values associated with the edges of the grid square containing ax to achieve a

78 Chapter 5. Interaction with the Environment

more accurate reading from φi. These values can be passed into our mass transport

solver in order to assign agents an appropriate goal position in the final formation.

Once a point in the mesh is assigned to an agent their route to the location is computed

using gradient descent on the field associated with their assigned goal vertex. The char-

acters then move to their corresponding target locations with a simple PD controller.

A maximum speed is defined to avoid unnatural fast movement.

Figure 5.3: An example of a potential field produced for a single vertex in the user-

defined control mesh in an environment containing obstacles and motion data patches.

Red indicates a high cost to travel and white indicates a low cost. The field shown is

with respect to the formation position of the top-left agent (highlighted in yellow).

5.3.3 Representing Environment Interactions in the Cost Metric

In the majority of previous crowd simulation research, environments consist solely of

traversable “free” space or impassable obstacles. However, in a number of real-life en-

vironments there are certain objects that, while traversable, will affect a person’s speed

of travel across them. Examples of these include low areas through which a person

must crawl or fences/walls over which people must jump or climb. In this section, we

describe how we apply such an idea to agent planning to produce appropriate motion

in various environments.

The fast marching method [Tsitsiklis (1995)], used to compute the cost field for

the environment-aware metric (Section 5.3.2), is an approach that can be used to track

a moving boundary expanding outwards from a source point. The concept of a speed

field is used to define the rate at which the front of the moving boundary propagates.

5.3. Improved Character to Formation Mapping 79

In this way, low values in the speed field can be used to represent obstacles, whilst

high values can signify open areas in a scene. We can therefore think of this value

as representing the speed at which an agent can travel through a given point, x, in

the environment. For impassable areas the travel speed can be considered to be zero

(creating infinitely high cost values) whilst for open areas, in which an agent can move

freely, the travel speed can be considered to have a value of 1, allowing an agent to

move at their desired speed. Areas that do not permit an agent to move freely but

are still traversable can be assigned an intermediate value for travel speed. It is also

possible that certain areas of an environment, such as moving walkways, allow an

agent to travel faster than their normal running speed. We incorporate this idea into the

current framework by rewriting C in Equation (5.2) to be:

C ≡ α f +β+ γg
f ×S (x)

, (5.5)

where S (x) represents the speed at which an agent can travel through a given point,

x, in the environment. By formulating our cost function in this way, areas of the

environment that do not affect an agent’s motion can be assigned a travel speed of

1, essentially having no effect on the original cost metric from Treuille et al. (2006).

Areas with travel speeds less than 1, that therefore slow the movement of the agents,

induce a high value for C. Objects in the environment that actually decrease the time to

move through a given area are assigned a travel speed greater than 1, making the value

computed for C much smaller. This can occur when an agent performs an interaction

with an object in the environment that actually speeds up the motion of the agent, for

example when travelling on an escalator or conveyor belt.

5.3.4 Embedding Motion Data in the Environment

By considering environment travel speed in the cost function, we can easily incorporate

a variety of different motions into agent planning by extracting velocity information

from motion data in a preprocessing stage and later embedding this information into

the crowd scene. Our method only relies on information from the 2D trajectory of a

given motion, so it works equally well with both video tracking or full-body motion

capture data.

Preprocessing Motion Data: In the current work we use trajectories extracted from

80 Chapter 5. Interaction with the Environment

full-body motions of characters traversing various environmental obstacles. Given

a trajectory we use finite (forward) differencing to calculate the velocity, x′, of the

recorded motion at a given time t in the data:

x′ (t) =
x(t +∆t)−x(t)

∆t
, (5.6)

where x(t) is the two-dimensional position of the centre (root position) of the character

at the time t and ∆t is the timestep between consecutive frames in the motion data. The

magnitude of this set of velocities represents the per-frame speed at which the character

is travelling in the motion data example. To calculate a speed value, S, to be used in

Equation (5.5) we take the average magnitude of the character’s velocity across the n

frames of the motion data:

S =
∑

n
i=1 ‖x′i‖

n
. (5.7)

Given the entire set of motion data clips, M, to be used in the crowd scene, we calculate

the values of S for each individual clip m ∈ M using Equation (5.7). We define the

normal travelling speed of an agent, S(O), as their speed when unaffected by objects in

the environment i.e. they are running in open space. We normalise each motion clip’s

average speed values by adjusting them according to S(O):

Ŝm = Sm/S(O) ∀m∈M, (5.8)

where Sm represents the original average speed of the motion data clip m and Ŝm is

the adjusted value of motion data clip m relative to movement in the open space. In

our experiments S(O) is the speed associated with a cycle of running motion data and,

when applied to Equation (5.8), it is in turn normalised with itself. As a result, Equa-

tion (5.8) gives a value of 1 to the motion used for the character moving in open space

and a value relative to this motion for all other data. Table 5.1 shows the values ex-

tracted from the motion data used in our experiments. Note that, with this method, at

no point is a value of zero assigned to a motion data example as this is used to represent

impassable obstacles. This would only occur if the motion data clip being processed

showed no movement at all.

Adding Data to the Scene: This information can be applied to the scene by creating

“patches”. These patches are represented as 2D polygons in the scene and contain

5.3. Improved Character to Formation Mapping 81

Motion Type Average Travel Speed

Run 1.0

Crawl 0.33

Duck 0.30

Swim 0.46

Jump 1.24

Climb Up 0.50

Climb Down 0.48

Table 5.1: The average speeds extracted from motion data used in the experiments

the motion data file name, ID, and average speed of the motion. Entrance to a patch

is detected when the agent’s current motion ID switches from the ID for the running

data, used in the open environment, to the ID given by the patch. When an agent

enters a patch, the motion data ID determines the motion for the agent to carry out

and the average travel speed determines the speed of the agent as it passes through the

patch. The average travel speed also determines the speed field value in any grid cells

that contain any part of the patch, so that it can be used in Equation (5.5) to compute

the unit cost field during the planning phase. As described in section 5.3.2, examples

of these patches, and how they affect the overall cost field, can be seen as the two

transparent blocks on the right side of Figure 5.3. It can be seen that the value of the

cost field increases within patches that slow the movement of an agent, in this case

a crawling and a swimming motion. For cyclic motions such as crawling, ducking,

and swimming, patches can be of arbitrary shape and size, however, for single-step

motions such as jumping and climbing, the length of the patch is constrained by the

length of the motion data’s trajectory. This prevents these actions from inappropriately

executing multiple times in the final render. Additionally, for the crawling, ducking,

and swimming motions, an appropriate transition motion is applied when it is detected

that the agent enters or leaves the patch.

5.3.5 Coupling of User Input and Crowd Motion

In the system in Chapter 3, the movement of the deformable mesh is governed by the

constrained vertices’ progress along a user’s input trajectories. To enable the agents to

follow the deforming mesh, these constraints move at the same speed as an agent. If the

agents remain unperturbed then they are able to keep up with the mesh and follow the

82 Chapter 5. Interaction with the Environment

crowd motion defined by the user. If however the motion of the agent is hindered, either

through collision with an obstacle or slowing down as they pass through a motion data

patch, then the coupling between the mesh and the crowd is decreased and the final

crowd motion does not closely fit the user’s input. In Section 3.6.4 we discussed how,

in interactive applications with high chance of collisions, it is important for the agents

to not be fixed to the mesh movement so as to prevent conflict when following a user’s

input in complex environments. In light of this, we employ a feedback term to the

movement of the deformable mesh that accounts for the current state of the crowd.

The key idea is to prevent the mesh from continuing to follow the constraints when

the crowd is not tracking it well i.e. when the crowd is a significant distance from the

position of the mesh. Equation (3.1) defines the movement of the control points used

to update Fc according to the user’s input. In order to adjust this movement we add

an additional feedback signal to our control point update, Equation (3.1), that adjusts

the velocity of the control point according to the average distance of agents from their

target points on the formation:

ci (t +∆t) =
pi, j− ci (t)
‖pi, j− ci (t)‖

(
s−min

(
s,eD(Fc(t),A(t))

))
∆t, (5.9)

where s is the speed of an agent, and D(F,A) is based on the distance between a set of

agents and their target formation:

D(F,A) =
∑

n
i=1 ‖vi−ai,x‖

r
, (5.10)

where n is the total number of agents in A, r is the radius of an agent, and ai,x and

vi are the position of the ith agent and its corresponding goal point in the formation

F respectively. Note that if the agents in the crowd are all at their respective goals in

the formation then Equation (5.9) reduces to Equation (3.1) and no feedback signal

is applied. We use an exponential function for the feedback signal, with the distance

normalised by the radius of an agent. This is so that the signal is quite weak when

the agents are tracking the formation well but quickly becomes stronger as the agents

are perturbed from their goal positions. We apply the min operator with the agents’

speed so that the feedback signal is never negative and the formation does not move

backwards. This has the effect that when the crowd is not tracking the formation well

the mesh appears to stop and “wait” for the agents to catch up with it.

5.4. Experimental Results 83

5.4 Experimental Results
We have produced scenes showing a group of characters passing through different

static environments including corridors, woodlands, an obstacle course and a dynamic

environment with moving cars. Each scene contains open space and obstacles as well

as various objects that the characters can traverse in order to reach their goal. The

formation of the characters is manipulated in some of the examples such that they can

pass through narrow pathways or interact directly with certain parts of the environment.

All the examples were produced starting from a uniform rectangular formation with 36

characters, except the obstacle course example, which consists of 100 characters.

5.4.1 Handling Motion Data Patches

Here we show how characters in the crowd are affected by motion data patches in

different environments and how the crowd can handle an arbitrary number of static or

dynamic patches. Our first example involves a crowd moving through dense woodland,

incorporating several trees modelled by small obstacles. The branches of the trees

overlap with one another and as a result, characters must duck to pass through (see

Figure 5.4(a)). This motion is represented in the scene by applying appropriately sized

motion data patches around the base of each tree. These patches contain the average

travel speed from the ducking motion data used in the final render of the scene. The

characters are able to pass through the small gaps between each tree while exhibiting

a slower travel speed resembling the required ducking motion.

In the next example, the characters are controlled to pass through an environment

containing multiple dynamic obstacles (cars) and dynamic patches (mice). When the

characters approach the cars they automatically avoid them according to the user con-

trol and the potential field produced by the cars (see Figure 5.4(b)). We can tune the

strength of the potential field to adjust the distance at which a character starts to avoid

the obstacles. Furthermore, in the simulation the characters react to the mice with

a jump motion when they pass through the crowd. This reaction is produced by the

movement of the dynamic patches and the effect on the character’s speed when they

interact.

We also produce an example where a larger crowd passes through an obstacle

course with narrow corridors, walls to climb/jump over, netting to crawl under, and

a pool to swim through (see Figure 5.4(c)). This scene contains different motion data

patches that allow the characters to interact appropriately with the environment. Even

in such a complex condition, the characters have no difficulty moving through the area.

84 Chapter 5. Interaction with the Environment

(a)

(b)

(c)

Figure 5.4: A crowd (a) moving through dense woodland, (b) avoiding large and small

moving cars, and (c) passing through a complex obstacle course area. The crowd is

able to interact with many arbitrarily placed objects in the environment by responding to

motion data patches in the scene.

5.4. Experimental Results 85

5.4.2 Defining Crowd Trajectories

In these examples we show how a user is able to control the overall motion of the

crowd while the low-level interactions of the crowd are handled by the system. We

first show an example in which characters pass through an environment containing

three separate pathways. Each pathway contains a different kind of terrain, from top-

to-bottom: a net to crawl under, open space to run through, and a pool to swim through.

A snapshot can be seen in Figure 5.5(a). The user is able to specify the subsets of the

crowd that pass through each individual pathway using a basic multi-touch gesture.

The movement of individual characters is not defined explicitly by the user, instead,

based on the formation defined, the characters fit into the pathways automatically. In

each pathway the characters move appropriately according to the type of terrain they

are passing through.

In addition to this, we show a similar example in which characters have multiple

paths through which they can travel (see Figure 5.5(b)). This time however the path-

ways are narrower than before. The central pathway contains open space and the two

pathways either side have objects that the characters must climb over. When the user

performs a gesture to move the entire crowd through the central pathway it becomes

too congested. As a result, the characters choose the slower side pathways rather than

waiting for the central pathway to clear. The side pathways have become a better choice

for following the formation specified by the user. This example shows the ability for

the system to adapt the character’s trajectories to best follow the user’s commands.

5.4.3 Choosing an Appropriate Path

In this section we further demonstrate the effects of incorporating information on

character-environment interactions into the planning and movement of the crowd. Fig-

ure 5.6 shows a situation where a crowd must reach a goal formation on the other side

of the scene with an obstacle in between (beige box). The agents have a choice of two

routes to the goal formation, one of which contains a motion data patch that will slow

the movement of the characters. If this effect is not considered in the agents’ planning

(i.e. the cost is evaluated using Equation (5.2)) then the agents split into two separate

groups moving via the upper and lower routes (Figure 5.6(a)). If however the travel

speed for the motion data patch is considered in the cost (Equation (5.5)) then all of

the agents move via the lower path (Figure 5.6(d)). As the simulation progresses we

can see that not considering the effect of the character-environment interactions causes

86 Chapter 5. Interaction with the Environment

the group travelling via the open lower route to move ahead of the group following the

upper route (Figure 5.6(b)) and to reach their destination well before (Figure 5.6(c)).

In the second instance, by avoiding the slower upper route the whole crowd can reach

the goal formation at the same time (Figure 5.6(f)).

(a)

(b)

Figure 5.5: A crowd (a) moving through several pathways containing various terrain, and

(b) choosing slower pathways in response to congestion. The crowd plans an optimal

trajectory to follow the instructions of the user whilst also considering the environment.

5.4. Experimental Results 87

?

(t)

Without Travel Speed Information: With Travel Speed Information:

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.6: A crowd must reach a goal formation (light blue square) on the far side

of the environment where one route contains an obstacle to crawl under (represented

by the purple area indicating a motion data patch). (a)-(c) The crowd moves without

considering the slowing of their movement by the obstacle causing them to split into

two groups, with one reaching the goal well before the other. When the effect of the

obstacle is considered (d)-(f) the agents choose the more efficient lower route allowing

them to reach the desired formation quickly and simultaneously.

88 Chapter 5. Interaction with the Environment

5.4.4 Formation Tracking

Here we show the benefit of adding a feedback signal to the update of the control points

that deform the formation mesh (Equation (5.9)) based on the current state of the target

formation and the crowd. In Figure 5.7(a) the user provides a control signal to move

the crowd through a gap between a set of obstacles. This gap contains a motion data

patch representing a crawl motion that will slow down the movement of the agents.

Without the feedback signal, as the agents are moving through this crawling area, the

formation mesh progresses beyond the obstacles and into the open area (Figure 5.7(b)).

Even though the user has specified that the crowd should be thin while passing through

the gap, without the feedback signal the agents spread out more than they should.

Furthermore, the user has specified that the crowd should smoothly return to their

original square configuration after passing through the obstacles. In the absence of

feedback the deformable mesh has reached the end of the user’s input before the crowd

has moved out from between the obstacles. This results in the agents moving toward

the formation mesh and then changing direction quite abruptly and the final trajectories

reflect this (Figure 5.7(c)).

By incorporating a feedback term into the update of the mesh’s movement the position

of the target formation and the crowd shows much better coupling. In Figure 5.7(d)

it can be seen that the mesh remains much closer to the position of the crowd even

though they have been slowed down by the crawling motion patch. This allows the

crowd to replicate the user’s signal for the crowd to be thin as they move through the

obstacles. In turn, the final trajectories of the crowd follow the signal from the user

to remain thin and then smoothly transition back to the square on the other side of the

obstacles (Figure 5.7(e)).

5.4.5 Computational Costs and 3D Rendering

The experiments are run on one core of a Core i7 2.67GHz CPU with 1GB of memory.

For the multi-touch input we used a G4 multitouch overlay from PQ labs, attached to

a 24” Acer S240HL LCD monitor. The computation of the 2D trajectories including

the deforming of the control mesh, reshaping it through its interaction with the en-

vironment, computing of the character destination by the mass transport solver, and

updating their positions are all done in real-time at a rate of ∼32 frames per second.

We found that with the current unoptimised implementation, framerates reduced to

around 8-10fps at a crowd size of >160 characters which still allows for interactive

control of the crowd.

5.5. Discussion 89

Control Signal:

No Feedback:

With Feedback:

(a)

(b) (c)

(d) (e)
-

(t)

Figure 5.7: (a) The input signal provided by the user. Without a feedback signal the

crowd becomes easily separated from the motion of the user-defined deformabe mesh,

(b), and the resulting crowd trajectories (red lines), do not reflect the smoothness of

the user control, (c). By adding the feedback signal there is better coupling between

the crowd and the movement of the deformable formation mesh,(d), generating agent

trajectories that better fit the user’s input, (e).

90 Chapter 5. Interaction with the Environment

5.5 Discussion

5.5.1 Character-Environment Interactions

In this chapter we have presented a method for including character-environment inter-

actions into the multitouch crowd formation control framework presented in Chapter 3.

This method provides the system with more information on the effects that objects in

the environment can have on an agent’s movement speed. This allows our planner to

assign character goals in a user-defined formation based on an appropriate approxima-

tion of each character’s ability to reach their goal. This leads to a better assignment of

goals which in turn results in more effective user-defined formation tracking.

The inclusion of a feedback signal based on the state of the agents and their target

formation creates a better coupling between the crowd and the user-defined motion

when agents are undergoing the interactions with the environment. By employing

a feedback signal to achieve this coupling, instead of fixing agents’ positions in the

target formation, we allow our system to keep the flexibility provided by characters

being able to switch positions in the formation. The combination of the feedback signal

and the use of the mass transport solver results in greater adherence of the characters’

trajectories to a user’s input signal and better resolution of any perturbations in the

crowd’s motion.

5.5.2 Scalability

For the environment-aware cost metric to be incorporated into the mass transport solver

a cost field must be created for each goal position in the target formation. This signifi-

cantly increases the time to compute agent goal assignment compared to using a basic

Euclidean distance metric, particularly since we wish to keep this information up to

date with regards to the state of the environment.

Alternative representations of the environment, including roadmaps and navigation

graphs, could be used instead of our grid-based cost field to only compute a cost for

areas of the environment rather than individual grid cells. However, such representa-

tions would only be able to incorporate the information from our motion data patches

in a coarse fashion. For example, the travel speed from a motion data patch would only

affect the cost to travel along the edge of a graph or roadmap that is associated with the

area in which it is placed. This means that graphs or roadmaps could not as accurately

capture the effect of smaller motion data patches such as those used in our experiments

5.5. Discussion 91

(Section 5.4.1). Furthermore, the costs associated with roadmaps or graphs are more

discrete than from a grid-based cost field. As a result, multiple goal positions are more

likely to be judged to have the same cost for an agent to reach. This can cause unnec-

essary switching in the assignment of agents’ goal positions when using these values

in the mass transport solver. Decreasing the resolution of the grid is a reasonable com-

promise between accuracy and speed of computation. Fewer grid squares improves

the computation time of the Fast Marching Method whilst the values taken from a grid

square can still be interpolated using bilinear interpolation for a more accurate result

for an individual agent.

In the current framework there exists one goal position for every agent in the crowd.

With small numbers of agents, computation of the unit cost field and approximation

of the Eikonal equation by the Fast Marching Method can be performed on the fly.

However, as the number of agents increases this approach can become computationally

prohibitive. A simple solution can be to only update a subset of the cost fields at each

timestep. This will reduce the computational load but mean there is no guarantee that

all of the cost fields are representative of the current state of the environment. Since

we reassign agents’ goal positions at each frame this can have knock-on effects in the

planning stage of our system and ultimately the tracking of the user-defined formation.

Alternatively, a reduced number of goal positions compared to agents can be used, as

suggested in Section 3.7.

5.5.3 Environment-Aware Cost Metric

The environment-aware cost metric presented in Equation (5.5) is able to account for

the travel speed of an agent passing through a given point in the environment. How-

ever, under the current framework the travel speed value is restricted to being positive.

This value therefore cannot consider objects that might have a net negative effect on

the agents motion i.e. objects that don’t just stop a character but also force them back-

wards. This is the kind of effect that a moving obstacle will have on the agent. Without

this information, an agent will not actively move away from any object that has this

effect, ultimately hindering their movement and their ability to track the user’s input.

Furthermore, the travel speed value does not consider any direction of travel that the

object may impose upon an agent. This kind of information is important when con-

sidering objects such as ticket gates that only allow a person to pass through in one

direction.

92 Chapter 5. Interaction with the Environment

5.5.4 Motion Data Patches

The motion data patches presented in this chapter are an effective way to add real mo-

tion capture data to the planning of characters in the crowd. Not only do they affect

the trajectories and motion of the crowd according to real character-environment in-

teractions but they are a straightforward way to tell which motion data clip should be

used in the final render of the scene. Overall, using the average speed of the motion

data provides values that implement the effects of executing such actions on both the

planning and the eventual movement of the characters in simulation. However, the av-

erage speed may not be reflective of the true character-environment interaction. This is

true of the non-cyclic motions, such as jumping, that have variable speeds throughout

the course of the motion. Applying the speed values across all frames of the motion

data would be more representative though this makes the use of such data less flexible

and therefore less appropriate in our interactive system. In this work we have pre-

sented actions that either passively or actively interact with the environment (such as

running and avoiding, or crawling and climbing respectively). We would like to extend

this approach by considering motion data involving character-character interactions. A

modified version of the patch-based approach could enable us to simulate scenes in-

volving dynamic interactions between characters, such as two armies fighting [Shum

et al. (2008)].

5.6 Summary

Interactions between characters and their environment play an important part in con-

veying realistic and immersive experiences in animation and interactive applications.

In a similar way to previous research, [Yersin et al. (2009); Lee et al. (2006); Hyun

et al. (2013); Shum et al. (2008)], we have enhanced the motion of characters in our

simulations by embedding motion data into the environment in the form of patches.

Whilst previous patch-based approaches require strict constraints to be satisfied, our

patches are more flexible, allowing a user to have greater control over the motion and

formation of the crowd and still have influence over character-environment interac-

tions. Motion capture data of such interactions is incorporated into a character’s path

planning by including information about the motion in the cost metric. This allows for

better following of a user’s input signals in complex environments. As a result, our

method provides a more enriching user experience in real-time applications such as

games.

Chapter 6

Flexible Multi-agent Motion Control

In previous chapters we have shown how effective a multitouch device can be for con-

trolling the motion of a group of agents in a virtual environment. A clear advantage

of a multitouch device over other input mechanisms in this case is the ability to reg-

ister several simultaneous control inputs from a user. This fact means such devices

offer the opportunity for users to interact with an application in an expressive manner.

We believe that this expressibility translates well for control of crowds in interactive

applications and creation of animation.

A major difficulty when designing multitouch control comes from the trade-off be-

tween keeping the control scheme simple and still being able to harness the expressive

nature of touch devices. It is also important that a control scheme is able to handle

variations in a user’s performance of a gesture. Rekik et al. (2013) found that users

often articulate gestures with one or both hands, using multiple fingers when perform-

ing similar tasks. Furthermore, users showed similar variations in their gestures when

asked to provide control for the movement of robot groups [Micire et al. (2009)].

Often, to enable a user to perform complex actions, control schemes can place re-

strictions on the way in which a user interacts via the touch device, such as in our

work in chapters 3 & 5. In that work we defined a two-dimensional mesh as an in-

termediary between a user’s input and the movement of the crowd. In doing so the

control scheme forces the user to provide input in a certain way. In this case, users can

only interact by applying touch inputs directly to vertices on the mesh. As such, the

configuration of the mesh affects where a user can apply their fingers to the touch de-

vice and subsequently articulate their control signal. Our previous control scheme also

requires a user to manipulate the crowd using a certain number of fingers in order to

elicit motions such as expanding and contracting or splitting of the crowd. Limiting the

93

94 Chapter 6. Flexible Multi-agent Motion Control

methods for providing input can affect the user’s experience with the application, in-

cluding how easily they can provide their intended control signal and how comfortable

they are when attempting to do so.

As well as affecting how a user interacts with a touch device to provide their input,

control schemes can limit the types of motion that can be produced by a user. For

example, the use of an intermediate mesh constrains the crowd to move in a very

specific, sometimes unnatural, manner. In particular, the natural interaction between

characters in a crowd can be lost because the movement of the crowd is governed by

the relative positioning of the vertices on the mesh. This approach is appropriate for

controlling a crowd to perform motion whilst maintaining a formation but to create

more free-form, natural crowd motion we need something more flexible. Instead of

restricting how input can be provided, we wish for the user to be able to control the

crowd in a way that is intuitive to them. Additionally, we wish to be able to generate

motion for crowds of arbitrary size and shape and for this motion to be defined directly

by variations in the user’s input.

In the current chapter we present a data-driven approach that allows a user to per-

form control gestures in a flexible and intuitive manner. Our system uses gesture ex-

amples taken from real users to infer the intended control signal from a new user input

and to produce a crowd motion accordingly. We believe that simultaneous inputs offer

greater ability for a user to express their intent to the application. In our system, a user

can provide touch input by employing a variable number of fingers using one or two

hands, placed on the touch device at various orientations. To achieve this we apply a

method for recognising the style of a user’s gesture based on a set of features that are

independent of common variations in a user’s touch input. These features can not only

handle different numbers of inputs but they also retain information on the sequence

of touch inputs (stroke) that the user provides. This information is often missing in

previous gesture recognition research [Rekik et al. (2014); Jiang et al. (2012); Vatavu

et al. (2012)].

Our system uses our proposed features to detect the desired control signal in a

continuous manner by identifying similar gestures from the examples in our data set.

This is in contrast to previous work on multitouch gesture recognition (Section 2.3),

whose goal is often to determine which gesture type, from a discrete list, a user’s input

most closely resembles. Once the type is determined, the specific action associated

with that gesture is performed. This is a valid approach when the intention is for a user

to perform a discrete set of gestures. However, in the current work, we wish for a user

6.1. Contributions 95

to be able to perform a continuous set of gestures such that the resulting actions i.e. the

crowd motion, will vary with the user’s input. This allows our system to produce new

crowd motions that are not part of our original data set but reflect the control given by

the user. Our system maps from a new user input to its corresponding crowd motion

using the crowd motion data associated with the similar gesture examples identified in

the classification step. The resulting crowd motion can be produced for an arbitrary

number of agents using statistical models of the crowd’s trajectories that maintain the

original style of the raw motion data.

6.1 Contributions

1. We offer a data-driven method for inferring appropriate crowd motion based on

a user’s input signal. To control the crowd, our approach is not restricted by a

set of prespecified crowd formations nor does it require an explicit set of control

points in order to manipulate the crowd’s movement. We allow a user to interact

naturally with the touch device and generate the final crowd motion using this

information.

2. We present a set of features that are invariant to variability in users’ preferred

touch input style. We show how these features can be used for recognising dif-

ferent properties of a user’s multitouch input, allowing us to distinguish between

a variety of control signals.

3. We use input controls and crowd motion pairs collected from real users to de-

fine the concept of a gesture space and its associated crowd motion space. We

describe a mapping between these spaces that can be used to convert a new user

input into its corresponding crowd motion.

4. We show how new sets of agent trajectories can be produced from models of

crowd motion data that we term crowd motion primitives. We describe a method

to combine a number of these primitives to generate new models capable of

producing crowd motion not seen in the original data set.

96 Chapter 6. Flexible Multi-agent Motion Control

6.2 Method Overview

The approach presented in this chapter consists of two main stages: an offline stage,

where data is collected and placed into data structures that describe the mapping from

a user’s input to a given crowd motion style, and an online stage, where our system

receives new user input and converts this into a new crowd motion appropriate for the

agents in the simulation. Here we present an overview of these stages.

Offline - User-defined gestures for controlling different types of crowd motion are

collected as described in Section 6.3. The inputs provided by users are normalised

(Section 6.4.1) and a set of features is computed for each example Section 6.4.2.

These gestures form data points in a gesture space that describes the possible types

of user input that can be received by our system (Section 6.4). Each motion data

example used to collect the gestures is modelled as a crowd motion primitive that

represents a data point in a corresponding crowd motion space. These primitives

can be used to produce new crowd motion of a similar style (Section 6.5.1). The

pairing of example user gestures and crowd motion primitives forms a correspon-

dence between gesture space and crowd motion space that can be used in our online

phase to map from a new user gesture to its associated crowd motion.

Online - Our online phase consists of a number of steps for converting a user’s input

into an appropriate crowd motion:

1. Recording and processing of user input - When a new input is received via a

multitouch device it is first converted into a normalised gesture (Section 6.4.1)

and a set of features is computed (Section 6.4.2) so that it can be compared to the

user gesture examples in our data set.

2. Continuous classification of the user gesture - The representation of the new user

gesture is determined by finding its neighbourhood in gesture space based on its

set of features (Section 6.4.3).

3. Mapping from gesture space to crowd motion space - A new crowd motion prim-

itive is generated by mapping from the point in gesture space represented by the

new user gesture to a corresponding point in crowd motion space. This mapping

is achieved by using the implicit relationship defined by our user gesture and

crowd motion primitive pairs along with the neighbourhood information from

step 2 (Section 6.5.2).

6.3. Data Collection 97

4. Creating and applying new crowd motion - A set of trajectories is generated for

the crowd in the simulation using the crowd motion primitive created in the pre-

vious step. Each of these trajectories is assigned to an agent in the crowd based

on their current positions (Section 6.5.3).

(a) Crowd “contract” motion (b) Crowd “converge” motion

(c) Crowd “expand” motion (d) Crowd “split” motion

(e) Crowd “straight” motion (f) Crowd “twist” motion

Figure 6.1: Examples of basic crowd motion shown to users to collect their control

gestures. The light blue colour indicates the start of the motion and the dark blue

indicates the end.

6.3 Data Collection

In this section we explain our process for collecting data on user-defined gestures for

controlling a variety of crowd motions. First we ascertained six key components of

crowd movement that we believe can define a number of different crowd manoeuvres

98 Chapter 6. Flexible Multi-agent Motion Control

(Figure 6.1). These components capture the basic movement of a crowd of agents from

a start point to a goal point (Figure 6.1(e)), the idea that the movement of agents in a

crowd can increase or decrease its overall density (Figure 6.1(a) & (c) respectively),

and the fact that a crowd can move in a circular motion around a given point (Fig-

ure 6.1(f)). This last “twist” example is also relevant to the movement of a crowd

around corners, where the trajectory arc of agents closer to the corner is smaller than

those further away i.e. on the outside edge of the crowd. The proposed motion compo-

nents also account for instances where a crowd can form from, or split into, subgroups

(Figure 6.1(b) & (d)).

The chosen motions by themselves are quite basic but in combination with one

another they help to describe a variety of different crowd manoeuvres. As an example,

the straight movement of the crowd can be combined with the splitting or merging

motions to generate a scene where two groups of characters converge to a point on

the other side of the environment or where a crowd splits apart whilst moving past

an obstacle. These movements are useful for performing simple tasks and generating

collective crowd movement. It is also plausible that a user could guide one crowd to

split whilst moving another crowd between them using these kinds of movement. The

choice of these crowd motion examples allows a user to provide basic gestures for their

control which can then be layered to generate more interesting scenes. The motions are

clear, and it is straightforward for a user to understand what the intention of the motion

is. However, these motion examples make it difficult to generate more complex crowd

movement, such as multiple characters crossing and moving past one another around a

common centre point.

Examples of the basic styles of motion in Figure 6.1, along with hybrid motions

incorporating two of these basic motions’ styles (Figure 6.2), were created using the

system presented in chapters 3 & 5. Ten participants, aged between 20 and 50, were

presented with a number of these motion examples and asked to provide a gesture to

control the crowd motion using two or more fingers. The gestures were recorded on a

G4 multitouch overlay from PQ labs, attached to a 24” Acer S240HL LCD monitor.

The orientation of the crowd motion on the screen was varied to prevent any bias in

terms of the positioning of the hands when recording the gesture. Postprocessing of

the user’s inputs was performed to clean up any noise caused by the switching of touch

input ID when the fingers became too close on the screen. This cleanup was minimal

and the inputs remained untouched otherwise. As a result, 80 input-to-crowd-motion

pairs were generated for the basic motions and 70 pairs for the hybrid motions. These

6.4. Gesture space 99

(a) Crowd “converge & move” motion (b) Crowd “split & move” motion

(c) Crowd “twist & expand” motion (d) Crowd “twist & contract” motion

Figure 6.2: Examples of hybrid crowd motion shown to users to collect their control

gestures. These motions incorporate combinations of the styles of motions seen in

Figure 6.1. The light blue colour indicates the start of the motion and the dark blue

indicates the end.

pairings provided for the basic crowd motions form the basis for the gesture space and

crowd motion space described in sections 6.4 & 6.5. The total set of provided user

inputs for each basic motion style can be seen in Section 6.6.1 along with an analysis.

The gestures provided by users for the hybrid crowd motions were used as inputs for

our experiments on generating new crowd motions presented in section 6.5.2.

6.4 Gesture space

In previous work on multitouch gesture recognition, users’ inputs are defined in terms

of a discrete set of gesture templates that map directly to a discrete set of actions to

perform in an application. In the current work we wish for a user input to be defined

in a continuous space, allowing each unique gesture to represent a different point in

this space and therefore a different input to the application. Here we define a gesture

space; a representation of all the possible gestures that a user can provide to our sys-

tem. The continuous nature of this space means that variations in a user’s input can

be used to generate variations in the final crowd motion (Section 6.5.2). The coverage

100 Chapter 6. Flexible Multi-agent Motion Control

of this gesture space is limited by the underlying gesture data used. As mentioned in

Section 6.3, the crowd motions used in this work, and their related gestures, cover a

number of different scenarios for control of crowd movement but do not comprehen-

sively cover all possible user gestures. Instead, they are intended to cover continuous

control of crowd movement by user input.

Our concept of a gesture space is similar to the idea of Motion Fields, described

by Lee et al. (2014)). In this work the authors proposed a high-dimensional continu-

ous space that incorporated the set of all possible motion states in character motion.

Unlike character motion however, where the state of a character is well described by

a consistent set of joint positions and velocities, the way in which a user performs a

particular gesture can vary significantly from person to person. For example, a user

can use a variable number of fingers to perform the same intended gesture, meaning a

direct comparison of the touch inputs is not appropriate. We therefore propose a set of

features that are independent of this variation but still capture the intent of the input,

allowing us to effectively distinguish between different types of user gesture. In the

rest of this section we describe our concept of gesture space, starting with how we de-

fine a gesture in terms of a user’s input on a multitouch device (Section 6.4.1). We then

outline the features that we use to differentiate various kinds of gesture (Section 6.4.2)

and finally we show how these features can be used to define a gesture’s location in the

gesture space (Section 6.4.3).

6.4.1 Creating a Gesture

In the current work, a gesture is described by the set of trajectories corresponding to the

distinct inputs provided by a user on a touch device. Since a touch device will record

the positions of a user’s input at discrete time intervals we can define the trajectory, gn,

of touch input n as a set of points over time:

gn = {gn(t) | t = 1, . . . ,Tn}, (6.1)

where Tn is the time at which the finger describing input n is removed from the touch

screen device. Each point of the trajectory, gn(t) ∈R2, is a vector describing the x and

6.4. Gesture space 101

y screen coordinates of touch input n at time t:

gn(t) =

[
gx

n(t)

gy
n(t)

]
, for t = 1, . . . ,T, where T = max

n
(Tn). (6.2)

Therefore, we can describe a gesture, G, as a set of N trajectories:

G = {gn | n = 1, . . . ,N}, (6.3)

where N is the number of distinct touch inputs provided in the user’s gesture. For ease

of notation we define a point cloud P containing N points, and its mean value, P̄, as:

P = {pn | n = 1, . . . ,N}, (6.4)

P̄ =
1
N

N

∑
n=1

pn,

pn ∈ R2.

In terms of a gesture, G, GP(t) is defined as the point cloud created by the positions

of the N touch inputs at timestep t such that:

GP(t) = {gn(t) | n = 1, . . . ,N}, (6.5)

From this we can further define the point cloud for the entire gesture G as:

GP = {GP(t) | t = 1, . . . ,T}. (6.6)

Variations in sampling rate can occur due to different sensing hardware and input soft-

ware, and as a result the value for T can be affected by the movement speed of the

user’s touch inputs. To compare different gestures even when they are provided at dif-

ferent movement speeds we resample G such that each touch input trajectory, gn ∈ G,

defined by the original T points is defined by T ′ points instead. For this purpose we

use a cubic Hermite spline to interpolate the original trajectories of the user’s touch

inputs at the new sampling resolution. A function for resampling a two-dimensional

102 Chapter 6. Flexible Multi-agent Motion Control

trajectory, z, from T data points to T ′ data points can be defined as follows:

S(z,T,T ′) = {H
(
z(t0),m(t0),z(t0 +1),m(t0 +1),s(t ′,T ′)T − t0

)
| t ′= 1 . . .T ′}, (6.7)

where s(x,y) =
x
y
, 1≤ x≤ y, y > 0,

t0 = bs
(
t ′,T ′

)
Tc,

m(t) =
1
2
(z(t +1)− z(t−1)),

and H (p0,m0,p1,m1,r) =
(
2r3−3r2 +1

)
p0 +

(
r3−2r2 + r

)
m0

+
(
−2r3 +3r2)p1 +

(
r3− r2)m1,

for p0,m0,p1,m1 ∈ R2,

r ∈ [0,1],

where H is the Hermite spline function. The resampled gesture G′ is subsequently

defined as:

G′ = {S(gn,T,T ′) | n = 1, . . . ,N}. (6.8)

The choice of value for T ′ is important since undersampling would remove too much

information from the original gesture but oversampling would add unnecessary detail

and increase computational overhead in later stages. Wobbrock et al. (2007) suggested

that T ′ = 64 was an effective value for resampling user gestures and we found this

worked well in our experiments. Given the resampled gesture, G′, we produce the

final, normalised gesture, Ĝ, by translating the gesture’s point cloud, G
′P, so that its

centroid is at the origin and each point is scaled into unit range [0,1]× [0,1] whilst

preserving the gesture’s shape. If we define Px and Py as the set of x and y positions for

all the points in G
′P we can use the following equation to achieve this:

Ĝ = {g′n(t)− Ḡ
′P

λ
| n = 1, . . . ,N, t = 1, . . . ,T ′}, (6.9)

where λ = max{ max
px1 ,px2∈Px

(|px1− px2 |) , max
py1 ,py2∈Py

(|py1− py2|)}.

In this case, λ acts as a scaling factor based on the axis-aligned bounding box of the set

of points G
′P. This approach of gesture preprocessing is common throughout gesture

recognition research [Wobbrock et al. (2007); Anthony & Wobbrock (2010); Vatavu

et al. (2012); Rekik et al. (2014)]. For ease of notation, in the rest of this chapter we

will assume that G refers to the normalised gesture, Ĝ, and T = T ′ unless explicitly

stated.

6.4. Gesture space 103

6.4.2 Gesture Features

As with Motion Fields [Lee et al. (2014)], the concept of similarity between gestures is

key to our definition of a gesture space. Here we define a set of features for an arbitrary

gesture, G, that we believe can distinguish well between different types of user input.

Centroid Feature
The centroid feature represents the average position of the user’s touch inputs (cen-

troid) over time. Given equation 6.5, we can define this feature as a function of the

input gesture G, by producing an array of the average value of the gesture’s point

clouds for t = 1, . . . ,T :

C(G) = [ḠP(1) ḠP(2) · · · ḠP(T)]T . (6.10)

Distance to Centroid Feature
The distance to centroid feature represents the average distance of each touch input

relative to their centroid over time. For a given point set, P, the average centroid

distance, l(P), is calculated as:

l(P) =
1
N

N

∑
n=1
‖pn− P̄‖, pn ∈ P. (6.11)

We compute this feature for the input gesture G by applying equation 6.11 to each of

its point clouds for t = 1, . . . ,T :

L(G) = [l(GP(1)) l(GP(2)) · · · l(GP(T))]T . (6.12)

Rotation Feature
The rotation feature represents the average cumulative change in rotation over time of

each touch input around the centroid of all the inputs. For two point sets, P0 and P1,

the average change in rotation of corresponding points in the point sets is given by:

r(P0,P1) =
1
N

N

∑
n=1

θ(pn0− P̄0,pn1− P̄1), pn0 ∈ P0, pn1 ∈ P1 (6.13)

104 Chapter 6. Flexible Multi-agent Motion Control

where θ(v1,v2) = atan2(v2×v1,v2 ·v1), v1,v2 ∈ R2 and

atan2(y,x) =



arctan y
x x > 0

arctan y
x +π y≥ 0,x < 0

arctan y
x −π y < 0,x < 0

+π

2 y > 0,x = 0

−π

2 y < 0,x = 0

undefined y = 0,x = 0

We compute the final feature by using r on a gesture, G’s point clouds for t = 1, . . . ,T :

R(G) = R = [0,r(GP(2),GP(1))+R(1) · · · r(GP(T),GP(T−1))+R(T −1)]T . (6.14)

Minimum Oriented Bounding Box Feature
This feature records the minimum and maximum dimension (henceforth referred to as

width and height respectively) of the minimum oriented bounding box (MOBB) for

the positions of the touch inputs at each timestep. Given a function, MOBB(P), that

returns a set of points, ordered counterclockwise, that define the MOBB of P using the

rotating calipers method [Toussaint (1983)], we define this feature as:

b(P) =
[
w(P),h(P)

]
, (6.15)

where w(P) = min
pn,pn+1∈MOBB(P)

(‖pn−pn+1‖) ,

h(P) = max
pn,pn+1∈MOBB(P)

(‖pn−pn+1‖) ,

As with the other gesture features, we produce an array of the values from function b

for the input gesture G:

B(G) = [b(GP(1)) b(GP(2)) · · · b(GP(T))]T . (6.16)

Distance Between Gestures
Given this set of features we can define a function for computing the distance between

two gestures, G0 and G1:

D(G0,G1) = αDTW(C(G0),C(G1)) +

βDTW(L(G0),L(G1)) +

γDTW(R(G0),R(G1)) +

δDTW(B(G0),B(G1)),

(6.17)

6.5. Crowd Motion Space 105

where DTW provides a distance between two n-dimensional vectors using dynamic

time warping [Berndt & Clifford (1994)], and α, β, γ, and δ, are weights for each

feature. In the current research we found α = 0.04, β = 0.36, γ = 0.36, and δ = 0.24

to work well for defining the distance between gestures in our dataset.

6.4.3 Forming Gesture Space

Generally speaking, a gesture space constitutes the set of all possible gestures that a

user can perform, however, in practice it is represented by a finite collection of gesture

data examples. In the current work, our gesture space is defined by the set of user-

provided gestures, GU , for different styles of crowd motion (Section 6.3). Given our

distance function in equation 6.17, a gesture G’s location in gesture space can be de-

scribed by its neigbourhood, GN and a set of similarity weights, w, that describe how

close G is to other gestures in its neighbourhood. Here we define GN to be the set of

K-nearest gestures in GU :

GN = {Gi | i = 1, . . . ,K}, Gi ∈GU , (6.18)

where Gi is the ith closest gesture in GU , and the similarity weights are computed as:

w = {wi | i = 1, . . . ,K}, (6.19)

wi =
1

µD(G,Gi)
, Gi ∈GN ,

µ =
K

∑
i=1

D(G,Gi).

Here, µ acts as a normalisation factor to make sure that all the weights sum to 1. In our

experiments we found K = 10 to be appropriate.

6.5 Crowd Motion Space

Here we present our formulation of a crowd motion space which is conceptually sim-

ilar to a gesture space. We represent a crowd motion in a similar way to a gesture

(Section 6.4.1), such that a crowd motion, M, consisting of the movement on a two-

dimensional plane of N agents for T timesteps is defined as:

M = {mn | n = 1, . . . ,N}, (6.20)

106 Chapter 6. Flexible Multi-agent Motion Control

where mn = {mn(t) | t = 1, . . . ,T},

mn(t) =

[
mx

n(t)

my
n(t)

]
,

where mx
n(t) and my

n(t) are the x and y position respectively of the nth agent at time

t. We define the point set, MP(t) to be the positions of the N agents at timestep t such

that:

MP(t) = {mn(t) | n = 1, . . . ,N}, (6.21)

and the point set for the entire crowd motion, M as:

MP = {MP(t) | t = 1, . . . ,T}. (6.22)

To provide consistency between crowd motion examples we resample the trajectories

of each crowd motion to T ′ points using equation 6.7 and subtract the centroid of the

motion so that it is at the origin:

M′ = {S(mn,T,T ′) | n = 1, . . . ,N}, (6.23)

M̂ = {m′n(t)− M̄
′P | n = 1, . . . ,N, t = 1, . . . ,T ′}.

As with gestures, for ease of notation we assume that M refers to a normalised M̂ and

T = T ′ for the rest of this chapter unless otherwise stated.

To generate our crowd motion space we use the set of basic motions, MU , presented

to users during the data collection stage (Section 6.3). Unlike in a gesture space we

wish to produce crowd motion for crowds consisting of any number of agents. Further-

more, we wish to produce new styles of motion based on a user’s gesture and not just

on the types of motion in our data set. This is not achievable by simple interpolation of

the original data examples and becomes more difficult if we want to incorporate mo-

tion examples that include groups of arbitrary size. For these reasons we create crowd

motion primitives from the motions in MU that are similar in form to morphable mo-

tion primitives [Min et al. (2009); Min & Chai (2012)]. In Section 6.5.1 we describe

how we generate our crowd motion primitives and how we can blend between multiple

primitives to produce new crowd motion that is appropriate to a user’s input gesture.

6.5. Crowd Motion Space 107

6.5.1 Generating Motion Models

From a given crowd motion example, MU ∈MU , we construct an N×2T matrix, EMU ,

where the nth row consists of a sequential concatenation of the position of the nth

trajectory, mn, in the crowd example:

EMU =


mx

1(1) my
1(1) · · · mx

1(T) my
1(T)

mx
2(1) my

2(1) · · · mx
2(T) my

2(T)
...

...
...

mx
N(1) my

N(1) · · · mx
N(T) my

N(T)

 (6.24)

We apply principle component analysis (PCA) on the matrix, EMU , to produce a set

of eigenvectors, EMU
V , that describe the modes of the crowd motion data, and a set

of eigenscores, EMU
S , that represent the projection of the original data into the space

defined by EMU
V . The nth row in the original data matrix, EMU

[n] , can be recovered by

using the mean trajectory from the data, m̄MU , the nth row of eigenscores, EMU
S[n], and

the set of eigenvectors:

EMU
[n] = m̄+EMU

S[n]E
MU T
V (6.25)

In this case, the eigenvectors describe the main axes of variation for the example tra-

jectories, and the eigenscores denote the weights to apply to these axes to reproduce

the trajectories in the crowd motion example. By modelling the distribution of the

eigenscores we can sample new scores that will produce trajectories similar to those

in the original example. We model this probability distribution, φ(EMU
S) using a Gaus-

sian mixture model (GMM) whose parameters are estimated automatically using an

Expectation-Maximization algorithm (Bishop (1996)). With GMMs, we can define a

set number of Gaussian components that constitute the overall probability distribution.

This property allows us to model any clustering of eigenscores that might be present

in crowd motion examples. This is particularly relevant to our basic “split” and “con-

verge” motions which involve the movement of two separate sets of agents. These ex-

amples produce two aggregated sets of eigenscores, one per subgroup of agents. With

a single Gaussian we would not be able to capture this property and thus be unable

to effectively reproduce these motion styles. For other motion types that do not show

this clustering, such as for “twist” examples, GMMs produce an appropriate mixture

of their constituent Gaussians to model this. We found that a general rule of thumb is

to set the number of GMM components equal to the maximum number of subgroups

present in the set of crowd motion examples. This allows any clustering property of

108 Chapter 6. Flexible Multi-agent Motion Control

the crowd motion to be maintained. Should a motion example contain fewer subgroups

than this number of components then they will blend together to form an appropriate

distribution for the model. In the current work, using two Gaussian components al-

lowed us to model the different styles in our crowd motion data set well. Since users

only use two hands to control the crowd this number of components is appropriate for

the current application.

With PCA we can also reduce the dimensionality of the crowd motion data by

altering the number of modes we use for recovery in Equation (6.25). This helps us

to reduce computation time when creating new motion data, and also to remove noise

from the original data caused by tiny variations in an agent’s trajectory. We found that

with as little as 15 modes we could retrieve > 99% of the variations for each of the

original crowd motion data examples in MU . We can define a crowd motion primitive

for a motion example, MU as a combination of the motion data’s mean, eigenvector

matrix, and GMM: M (MU) = {m̄MU ,EMU
V ,φ(EMU

S)}. We create our crowd motion

space not from the set of crowd motion examples, MU , but from their corresponding

crowd motion primitives, {M (MU) |MU ∈MU}.

6.5.2 Generating a New Crowd Motion Model

From our data collection, each user-defined gesture, GU , corresponds directly to a

motion example, MU such that there is an implicit mapping ψ : GU→MU . As such, we

can map directly from each gesture, Gi, in the set of neighbour gestures determined in

Section 6.4.3, to their corresponding crowd motion primitives in crowd motion space:

M (Mi) = M (ψ(Gi)), Gi ∈GN , Mi ∈MU . (6.26)

As a result, M (Mi) represents the ith neighbour to the, as yet undetermined, crowd

motion primitive corresponding to the new user gesture. To produce the final crowd

motion primitive we create a model based on the weighted sum of each neighbour

model using the similarity weights, w, calculated in Section 6.4.3:

M (M̂) =
K

∑
i=1

wiM (Mi) =
K

∑
i=1
{wim̄Mi,wiE

Mi
V ,wiφ(E

Mi
S)} (6.27)

Since the trajectories in each motion example have been resampled, combining the

mean trajectories in this way is simply a matter of summing the weighted trajectory

vectors:

m̄M̄ =
K

∑
i=1

wim̄Mi. (6.28)

6.5. Crowd Motion Space 109

We also combine the eigenvectors for the models in the same way:

EM̄
V =

K

∑
i=1

wiE
Mi
V . (6.29)

To ensure orthonormalisation of the new eigenvectors we apply the modified Gramm-

Schmidt method [Cheney & Kincaid (2008)], and we enforce each eigenvector to be

positive so that they do not cancel each other out when combined.

To produce an appropriate GMM for the new crowd motion primitive, a naive com-

bination of the neighbour’s GMM parameters is not sufficient. If this approach is taken,

cross fading of the Gaussian components can occur if the mean and variance of the nth

component in each model do not match well. To alleviate this, we first establish the

correspondence between the GMM components of each neighbour motion primitive

with those of the closest neighbour. We do this using the mass transport solver ap-

proach described in Section 3.5, where the target points are the means of the closest

neighbour’s GMM components, and the source points are the GMM component means

of the neighbour currently being considered. The weight for each GMM component is

set to its weighting in the GMM mixture. This approach is similar to the work on dis-

placement interpolation presented by Bonneel et al. (2011). Once a correspondence is

established we produce a weighted sum of the parameters of matching components and

use this information to produce the final GMM distribution. We find this technique is

able to match components well between GMMs and prevent the issue of cross fading.

6.5.3 Applying the Generated Motion Model

To produce new motion we sample N scores from our new GMM, where N is the

number of agents in the crowd for which we are creating the motion. These scores are

then applied to the interpolated eigenvectors and mean trajectory of M (M̂) to generate

a new set of trajectories using Equation (6.25). We assign these new trajectories to

individual agents based on the current configuration of the crowd. The start points

of each trajectory are used as the set of goal points and the agents’ positions as the

source points and we solve for the assignment using the mass transport solver as in

Section 3.5. The agents then follow their provided trajectory to produce the motion of

the crowd in response to the user’s gesture.

110 Chapter 6. Flexible Multi-agent Motion Control

6.6 Experimental Results

In this section we provide experimental results that demonstrate our system’s ability

to recognise the style of a user’s gesture and to produce a crowd motion that replicates

this. We start with an analysis of the gestures for controlling crowd motion collected

from users (Section 6.6.1) and the effectiveness of our proposed features to distinguish

between different types of user input (Section 6.6.2). We then show examples of the

motions produced by our system in response to a variety of user gestures, including

those that are not present in the original dataset (Section 6.6.3).

6.6.1 User Input Analysis

In this section we present an analysis of the gestures collected from users for control-

ling the basic crowd motions shown in Figure 6.1. We show how our features described

in Section 6.4.2 are expressive enough to distinguish the styles of user gesture provided

for the different types of basic crowd motion.

Figure 6.3 shows plots for all of the user inputs provided per crowd motion type.

There is a clear distinction between the different sets of user inputs, showing that user’s

alter how they choose to control the crowd based on the overall crowd movement. For

those crowd motions that occur opposite to one another i.e. expand and contract mo-

tions or split and converge motions, it can be seen that user’s provide equally opposing

gestures that signify this difference (Figure 6.3(a) - (d)). It is also clear that there is a

difference in the style of gesture provided for conveying motions where the crowd ex-

pands or contracts (Figure 6.3(a) and Figure 6.3(c)) and for motions where the crowd

splits or merges (Figure 6.3(b) and Figure 6.3(d)). Generally speaking these gestures

closely resemble the true crowd motion.

Centroid Feature
The position of the centroid for the duration of different types of user gesture can be

seen in Figure 6.4. As would be expected, the gestures for straight crowd movement

show the greatest movement of the centroid from the start of the gesture. The ex-

panding and contracting classes both show a significant change in the position of the

centroid along the y axis. Since the feature for distance to the centroid shows a de-

crease in distance between the fingers in these two gestures, this indicates that the user

prefers to move a finger (or multiple fingers) less than others whilst performing the

gesture. This would explain why this shift in the mean position of the fingers occurs.

6.6. Experimental Results 111

(a) User’s “Contract” Inputs (b) User’s “Converge” Inputs

(c) User’s “Expand” Inputs (d) User’s “Split” Inputs

(e) User’s “Straight” Inputs (f) User’s “Twist” Inputs

Figure 6.3: User’s inputs provided for controlling various crowd motions. The light blue

colour indicates the start of the input and the dark blue colour indicates the end.

Distance to Centroid Feature
Figure 6.5 shows the average distance to centroid feature computed on the gestures

provided for different classes of crowd motion across all input examples. It is clear

that this feature is able to distinguish between three different subsets of the crowd

motion gestures: 1) Gestures provided for the crowd’s movement towards each other

(contract and converge movement), 2) Gestures provided for the crowd’s movement

away from each other (split and expand movement), and 3) Gestures for motion where

the crowd remain a similar distance away from one another (twist and straight motion).

Not only are these three subsets distinct from one another, this property is consistent

with the corresponding crowd motion for each type of gesture.As a consequence, this

feature is unable to separate the inputs within these subsets but this is accounted for

112 Chapter 6. Flexible Multi-agent Motion Control

Figure 6.4: Centroid feature for different user gesture classes. The user gestures for

controlling the “straight” crowd motion show the most significant change in the centroid

of the user’s touch inputs.

using the other proposed gesture features.

Figure 6.5: Distance to Centroid Feature for different user gesture classes. This feature

clearly shows that it can distinguish between three significant subsets of gesture styles,

coupling the “converge” & “contract”, “split” & “expand”, and the “straight” & “twist” types

of gesture.

6.6. Experimental Results 113

Rotational Feature
The difference in the rotational feature between different classes of crowd motion can

be seen in Figure 6.6. This figure shows the average of this feature for each of the

different types of motion. The most rotational of the crowd motions (the twist mo-

tion) also shows the greatest total rotation in the user’s gestures. In some gestures for

straight motion the user provided a slightly curved trajectory that is likely to account

for the greater rotational feature shown towards the middle of the gesture. In all other

cases the total rotation is low, indicating that this feature is appropriate for establishing

the presence of a twist style command in a user’s gesture and for separating this from

the presence of other styles of gesture that might be provided as input.

Figure 6.6: Average total rotation of user’s inputs for different user gesture classes.

Here we can see that most of the gesture types show little to no total rotation of the

user’s touch inputs. However, there is a significant total rotation shown by the “twist”

(and to some extent the “straight”) gesture type showing how this feature can help to

identify the presence of this control in a user gesture.

Minimum Oriented Bounding Box Feature
For this feature we track the minimum oriented bounding box of the touch inputs at

each time step and encode the feature as a 2D function using the values for the mini-

mum and maximum dimension of the box (henceforth referred to as width and height

respectively). Figure 6.7 shows these 2D functions for each of our classes of crowd

motion gesture, with the width plotted on the x axis and the height plotted on the y axis.

We can see that for both contract and expand gestures there is a strong positive cor-

114 Chapter 6. Flexible Multi-agent Motion Control

relation between the width and height of the minimum bounding box. The converge,

and particularly the split gestures do not show as significant a correlation between the

dimensions of their minimum oriented bounding box.

By looking at Figure 6.8, the values for the width and height of the bounding box

in contract and expand gestures can be seen to decrease and increase respectively,

highlighting the difference between the two motions, despite their similar shape in

Figure 6.7. This shows that for these gestures the minimum bounding box shrinks or

grows appropriately but its shape remains relatively square throughout. In contrast, the

split and converge gestures show a similar, consistently small, value for the width of

the bounding box but an increase in the height of the bounding box. This reflects the

fact that the gestures show touch inputs moving apart from one another but only along

one axis. In the user’s gesture, this results in the bounding box looking like a rectangle

being stretched (in the case of split) or compacted (in the case of converge).

Figure 6.7: Combined minimum oriented bounding box feature (2D) for different user

gesture classes. There is a clear separation between the “contract” & “expand” gestures

from the “split” & “converge” gestures, something that is not seen in the basic Distance

to Centroid feature shown in Figure 6.5

For the split and converge gestures, the curvature of the 2D functions in Figure 6.7

occurs as a result of a switch between the sides of the bounding box that represent the

minimum and maximum dimensions. In the case of a converge gesture, this switch

occurs as the fingers become closer towards the end of the gesture. This can be seen in

Figure 6.8, where the values for each dimension become closer as time increases. The

opposite is true of the split gesture. Finally, for Figure 6.7 we see that twist and straight

6.6. Experimental Results 115

gestures show consistent values for both the width and height of the bounding box

throughout the gesture. For the twist gesture, Figure 6.8 shows that the height of the

bounding box is much greater than the width of the bounding box but for the straight

gestures these are always at a similar value. This indicates that a user either places

their fingers further apart during a twist gesture as compared with a straight gesture or

that this placement remains more colinear (forming a thin rectangular bounding box)

over time.

Figure 6.8: Change in dimensions over time for the minimum oriented bounding box

feature in different user gesture classes. For “converge” (“split”) gestures the values

for these dimensions become closer together (further apart) over time. This is different

to “contract” (“expand”) gestures where the values for dimensions remain in a similar

proportion, despite changing absolute value.

6.6.2 Classification

For testing the usefulness of the suggested features for classification we ran leave-one-

out cross validation on our basic gesture data set. We classified each user input in turn

using all other user input examples as the training set. To classify we used weighted

nearest neighbour voting, where the class with the highest total weight was chosen as

the classification.

Figure 6.9 shows a confusion matrix with the results of this classification test. This

matrix shows a strong ability for the features presented here to classify each class of

input gesture. All the classes (with the exception of contract) were classified correctly

more than 80% of the time. Although not as strong as the rest of the classes, the

116 Chapter 6. Flexible Multi-agent Motion Control

contract class could still be classified correctly more than 60% of the time using the

current set of features. The incorrect classification of the contract gestures as converge

types is likely due to the similarity of their rotational and distance to centroid features.

Figure 6.9: Confusion matrix for classification of basic user input gestures. Values in

column i, row j indicate the proportion of all ith test gestures that were classified as the

jth output gesture.

6.6.3 Producing Crowd Motions

To show the effectiveness of our method we produced a set of crowd motions from a

number of example user inputs. Figures 6.10-6.12 show examples of users’ gestures for

controlling the basic “straight”, “split”, “converge”, “expand”, “contract”, and “twist”

movements of the crowd, and the trajectories for the crowd’s motion generated by our

system. It can be seen from these figures that our system generates crowd motions that

accurately reflect the different user gesture types. In each case the trajectories produced

by the new crowd motion primitive maintain the same style as in the original crowd

motion examples (Figure 6.1). In particular, the primitive produced for the “twist”

gesture creates a distribution of the trajectories that maintain the concentric circles

style seen in the original motion (Figure 6.12(b)). Furthermore, the motions produced

for the “split” and “converge” examples show the subgrouping of agent trajectories

where the agents move directly towards or away from one another (Figure 6.10(a) &

Figure 6.11(a)), whilst the “expand” and “contract” trajectories maintain the radial

movement observed in the original data (Figure 6.10(b) & Figure 6.11(b)).

6.6. Experimental Results 117

(a) A user’s “converge” input (left) and the generated motion (right)

(b) A user’s “contract” input (left) and the generated motion (right)

Figure 6.10: Gestures provided for basic “converge” and “contract” crowd motion types

and the new motion generated by the current system. The light blue colour indicates

the start of the input/motion and the dark blue colour indicates the end.

(a) A user’s “split” input (left) and the generated motion (right)

(b) A user’s “expand” input (left) and the generated motion (right)

Figure 6.11: Gestures provided for basic “split” and “expand” crowd motion types and

the new motion generated by the current system. The light blue colour indicates the

start of the input/motion and the dark blue colour indicates the end.

118 Chapter 6. Flexible Multi-agent Motion Control

The user gesture provided for the “expand” motion exhibits this radial property,

where the user’s touch inputs move away from the centre of the gesture (Figure 6.11(b)).

This is different to the “split” gesture, that sees the user’s inputs move directly away

from one another (Figure 6.11(a)). Our system is able to distinguish between these

different user input styles and produce the appropriate crowd motion.

(a) A user’s “straight” input (left) and the generated motion (right)

(b) A user’s “twist” input (left) and the generated motion (right)

Figure 6.12: Gestures provided for basic “straight” and “twist” crowd motion types and

the new motion generated by the current system. The light blue colour indicates the

start of the input/motion and the dark blue colour indicates the end.

We also tested our system using a set of hybrid gestures, where a user provided

input for controlling the “split & move”, “converge & move”, “twist & expand”, and

“twist & contract” examples seen in Figure 6.2. Figure 6.13 shows examples of users’

gestures for these hybrid motions and the corresponding crowd trajectories produced

by our system. It should be noted that these gestures were provided as controls for

producing the crowd motions in Figure 6.2 but these motion examples do not form part

of the crowd motion space described in Section 6.5; the motions that are produced here

are types that are not present in our system’s dataset. Here we can see that the generated

motion displays the same properties present in each of the user gesture examples. The

“converge & move straight” and “split & move straight” gestures both show movement

of the user’s touch inputs from left to right whilst simultaneously coming together or

moving apart (Figure 6.13(a) & (b)).

6.6. Experimental Results 119

(a) A user’s “converge & move” input (left) and the generated motion (right)

(b) A user’s “split & move” input (left) and the generated motion (right)

(c) A user’s “twist & contract” input (left) and the generated motion (right)

(d) A user’s “twist & expand” input (left) and the generated motion (right)

Figure 6.13: User gestures provided for hybrid crowd motion types and the new mo-

tion generated by the current system. The light blue colour indicates the start of the

input/motion and the dark blue colour indicates the end.

The sets of trajectories generated as a result of these gestures show how our system can

produce appropriate crowd motion in response to seeing these properties in a user’s

input. We can see a similar effect when a user performs a gesture with simultaneous

twisting and contracting/expanding properties (Figure 6.13(c) & (d)). We have also

120 Chapter 6. Flexible Multi-agent Motion Control

produced animation of characters in response to a user’s input to show the final result

of our system (Figure 6.14). It can be seen that the generated crowd motion captures

the features seen in the user’s input. In all cases, the number of touch inputs provided

for a gesture does not affect our system’s ability to produce appropriate crowd motion

in response to a user’s input.

(a) Animation for a “straight” input (b) Animation for a “split” input

(c) Animation for an “expand” input (d) Animation for a “twist & expand” input

Figure 6.14: Examples of animated character motions produced from various user

input gestures. The user input is shown by the red lines and the movement of the

characters in the scene is shown by blue lines.

6.6.4 Computational Costs and 3D Rendering

The final animations produced in figure 6.14 are run on one core of a Core i7 2.67GHz

CPU with 1GB of memory. For the multi-touch input we used a G4 multitouch overlay

from PQ labs, attached to a 24” Acer S240HL LCD monitor. For the data set described

in section 6.3 the computation of the features and the neighbourhood in gesture space

for a new user gesture, the creation of a new crowd motion primitive from this informa-

tion, and the sampling and application of the new trajectories to the crowd containing

6.7. Discussion 121

50 characters in the scene are all done in real-time at a rate of ∼40 frames per second.

We did however find that there was a slight slow down in framerate when computing a

new crowd motion. The average time for our algorithm to convert a new user gesture

was around 330 milliseconds. We can see from a breakdown of timings for different

stages of the algorithm that the calculation of the nearest neighbours, which averaged

around 300 milliseconds, is the main cause for this increased computation time. The

creation of the crowd motion primitive accounts for approximately 12 milliseconds on

average and the generation and assigning of the trajectories to the crowd takes about

4 milliseconds. In the current work we used a naive nearest neighbours search, com-

puting the distance of the new gesture from all of the examples in our data set and

then sorting them to find the nearest neighbours. The time taken for this stage could

be improved by using better data structures for determining the nearest-neighbours at

runtime.

6.7 Discussion

There are a number of key components to the system presented in this chapter. Firstly,

the approach’s ability to handle a variety of user control signals by accounting for indi-

vidual variations when performing the same gesture type. Secondly, the effectiveness

of our system’s mapping from a novel user input to a corresponding crowd motion,

including our system’s ability to classify a user’s gesture as part of this process. Fi-

nally, the generation of a new crowd motion based on the properties extracted from the

user’s input and its appropriateness for use in crowd animation. Here we discuss the

effectiveness of our method for such tasks and propose some areas for future improve-

ments.

6.7.1 Handling User Variations in Gestures

The approach presented in this chapter allows a user to provide control of a crowd’s

motion without the need to perform the input on a predefined control structure, such

as the intermediate mesh used in chapters 3 & 5. This frees the user from having to

control the crowd using a method that might require awkward placement of their fin-

gers or hands, instead allowing the user to interact with the touch device in a way that

is more comfortable for them. However, the removal of these restrictions makes the

control of multiple crowds more difficult when using this method i.e. by not interact-

122 Chapter 6. Flexible Multi-agent Motion Control

ing with a specific control structure it is less obvious which crowd the control signal is

intended for. This could be resolved by selecting the agents that are controlled using

the positioning of the user’s fingers when they are first placed onto the touch device.

The user-defined controls for crowd motion collected in the current work (Sec-

tion 6.3) show consistency across all users in the style of gesture for each of the dif-

ferent crowd motion types. However, there are still variations in the number of fingers

used to perform a gesture and the absolute placement of the fingers can be different

for each user. For example, in the gestures for the “straight” crowd motion, some

users placed their thumb and index finger that formed a line with one another when

performing the gesture, while other users also placed their middle finger on the touch

device, forming a triangle shape. Despite this variation, the overall movement of the

user’s fingers was similar in the two gestures. Since our system uses features that are

invariant to these properties it can recognise the correct gesture type when presented

with examples using both of these approaches.

Unfortunately, the invariance of our presented features to user differences in in-

put does simplify the kinds of gestures that can be recognised by the current system.

For example, to control a group of agents to pass between two other groups, a user

may perform a gesture on the touch device that passes the index finger on one hand

between the index and thumb of the other. To capture this “threading” of fingers on

the touch device our set of features would need to be adapted to consider the spatial

relationship between the touch inputs in a user’s gesture. Furthermore, the features

presented in Section 6.4.2 are not as effective when a user performs a gesture with

two hands placed far apart from one another. If the user were to move the fingers on

an individual hand towards themselves, the distance to centroid feature would not be

able to highlight this because the centroid in this case is between the position of the

two hands and the change in distance would be small. This situation could be resolved

by first determining the existence of a two-handed gesture in a preprocessing step and

then calculating the feature for each hand separately.

Our experimental results have shown that our system can produce appropriate,

novel crowd motion based on real user input (Section 6.5.2). This suggests that our

method can handle a variety of user inputs specified in a way that was intuitive to each

of the users involved in our data collection phase (Section 6.3). Despite this, in the

future it would be appropriate to conduct a user study to evaluate our system’s ability

to handle various user control styles.

6.7. Discussion 123

6.7.2 Recognising User Gestures

Our experimental results show that our proposed set of gesture features can classify

different types of user gesture well (Section 6.6.2). These features are a key part of

our method and are particularly important for determining a gesture’s neighbourhood

in the gesture space along with the set of weights that we use to map from a new

gesture to the final crowd motion. The crowd motions produced by our system show

that our gesture features are effective for identifying the basic styles of user gesture by

themselves and also when they are applied in combination (Section 6.6.3).

Lü & Li (2013) present a set of features based on translation, rotation, and scal-

ing of a user’s finger configurations that are similar to some of those presented in the

current work. While their work uses these features to form a state machine for recog-

nition of a predefined gesture, we use them to define the relationship between a new

user gesture and the gesture examples in our dataset. Furthermore, we show that our

minimum oriented bounding box feature is effective at distinguishing between a user’s

split/converge and expand/contract control signals. This is something that is not possi-

ble using only the set of features provided by Lü & Li.

Our current set of features is based on the change over time to properties of the

position of a user’s touch inputs. We would like to add to the kinds of gestures that can

be used with our system by incorporating velocity information into our set of features.

This would allow a user to control variations in the speed of the agents’ movement

as well as the overall crowd motion. We would also like to incorporate “intra-class”

variations when processing a user’s gesture. This sort of variation could include, for

example, the dimensions of a user’s gesture for controlling a wide or narrow “straight”

motion or any of the other crowd motion types specified in section 6.3.

6.7.3 Generating Crowd Motion

In order to map from a user gesture to a crowd motion our method relies on the implicit

relationship between the pairs of crowd motion examples and the gesture examples

collected from users (Section 6.3). A more explicit relationship might have been es-

tablished by using the eigenvectors of the user’s input and those of the corresponding

motion. However, performing PCA to get the eigenvectors for such data was not plau-

sible due to the low number of trajectories in each data example (in most cases users

tended to use 2 or 4 fingers to provide a gesture). Despite this, the implicit mapping

provided by the user gesture and crowd motion pairs works well in our system. The

124 Chapter 6. Flexible Multi-agent Motion Control

many-to-one relationship between the set of user-defined gestures and the crowd mo-

tion data examples is well suited for our use of KNN to define the mapping between

the gesture space and the crowd motion space.

In the current work we presented a crowd motion primitive as a model for crowd

motion data. Our experiments have shown that new crowd motion can be generated

from such a model whilst maintaining the underlying properties of the original crowd

motion data (Section 6.6.3). Ju et al. (2010) presented a method for generating Mor-

phable Crowds based on data examples of different styles of crowd motion. While their

method is based on modelling the positions of characters surrounding an individual in

a crowd motion, our method models the full trajectories of characters in the crowd.

An alternative, naı̈ve approach to our method for generating crowd motion could

be to replicate the user’s input directly for each of the agents in the crowd. We argue

instead that there are a number of advantages to using the approach presented here.

Firstly, the signal on touch input devices can be very noisy, and it is possible that the

input IDs for different fingers can temporarily swap, causing the trajectories to cross

over or even be lost. Directly applying these trajectories to agents in the crowd would

lead to undesirable motion and poor quality animation. By converting from a user

gesture to a crowd motion primitive, our system acts as a filter for this signal noise,

preventing it from affecting the final animation. Secondly, by using a model of the

crowd motion we prevent the implicit constraints of a user’s touch input from altering

the final crowd motion and are able to maintain the characteristics of the original mo-

tion data. For example, when a crowd “twists” their motion forms concentric circles,

with the agents toward the middle of the crowd moving in smaller circles than those

on the outside. To specify such motion directly would require a large number of si-

multaneous touch inputs that would be awkward for a user to provide. Alternatively,

if we were to simply replicate the user’s finger movements this type of motion would

not be reliably reproduced. By using our crowd motion models we can see that this

property of the crowd movement is maintained. Finally, it would not be easy to com-

bine different crowd motion styles if raw data was used, especially if the data examples

contained different numbers of agents in the crowd. Using crowd motion primitives we

can combine multiple models to generate hybrid motions in a straightforward manner

and to produce trajectories for various size crowds (Section 6.5.2).

The use of a Gaussian mixture model (GMM) to represent the distribution of the

individual trajectory data in our crowd motion primitives is effective for capturing the

clustering of trajectories in the original data. We chose to use two Gaussian compo-

6.8. Summary 125

nents in our GMM as this enabled us to model the various kinds of crowd motion we

used in our experiments. As a user is only able to use two hands to provide a gesture to

our system this number of components seems appropriate for the current application.

Since our method is sampling from a model’s GMM in order to produce new crowd

trajectories it is possible in some circumstances that our model cannot reproduce the

original motion data effectively. This can happen if a crowd motion example contains

a large imbalance in the size of groups in the data e.g. separately clustered motion of a

very large group and a very small group of characters. In this case, because sampling

is probabilistic, the trajectories shown by the small group of characters are less likely

to be drawn from the distribution represented by the model’s GMM.

Although our approach is able to generate crowd motion styles that are not present

in the original data set (Section 6.6.3) this ability is limited by the examples that the

system is provided with. Currently, due to ease of data collection, these crowd motion

examples are created by the system presented in chapters 3 & 5. A crowd motion

primitive is general enough to be used with different types of crowd motion data that

could be generated from another crowd animation system. Future work would also

consider the use of motion data examples taken from real crowds.

6.8 Summary

In this chapter we have proposed an alternative data-driven approach to our method

presented in Chapter 3 for control of crowd motion using a multitouch device. In

contrast to our previous method, the approach presented in this chapter does not place

as many restrictions on how a user is able to interact with the touch device, instead

allowing a user to interact naturally to provide their input gesture. Our approach uses

the properties of the user input instead of an intermediate control mesh to generate a

corresponding crowd motion, enabling a user to more directly specify the movement

of the crowd.

In this work we use input control and crowd motion pairs collected from real users

to define the concept of a gesture space and its associated crowd motion space. The

implicit correspondence between the pairs of gesture and crowd motion data is used

to define a mapping between these two spaces. Given a new user input gesture, we

can use its similarity to examples in our dataset and this implicit mapping to create a

new crowd motion that is appropriate to the user’s control. To produce novel crowd

motion we define a model of crowd movement that we term a crowd motion primitive.

126 Chapter 6. Flexible Multi-agent Motion Control

A crowd motion primitive is able to generate crowd motion for an arbitrary number

of characters that maintains the properties of the original motion data. We show how

several primitives can be combined to create new styles of crowd motion.

Our experimental results show that our proposed gesture features are expressive

enough to capture different properties of a user’s multitouch input, and mean that our

system can distinguish between various user control gestures. We tested our system

with inputs of the same type as those in our user gesture examples as well as for styles

not seen in the original data set. The resulting crowd trajectories show how our system

can produce crowd motion that corresponds well to a user’s input gesture.

Chapter 7

Conclusion

The main goal of this thesis was to provide a method for realtime, intuitive control of

the motion of a crowd in interactive applications. Such control is important for efficient

creation of crowd simulations and for providing enjoyable interactive experiences for

users. Previous research approaches require a lot of time and input to specify crowd

motion. These methods do not provide a user with the ability to directly, and contin-

uously express the desired crowd motion, instead expecting them to apply constraints

to existing crowd motion and/or to define intermediate crowd configurations to dictate

their movement. Furthermore, these approaches do not consider the direct interaction

between characters in the crowd and their surrounding environment. This thesis pro-

poses the use of a multitouch device for user input in order to solve these problems.

We develop algorithms for controlling the high-level movement of a crowd in complex

environments using a touch device and methods for handling the low-level interactions

between the crowd and the environment. We provide experimental results to evaluate

the effectiveness of our approaches.

7.1 Findings and Contributions

This section provides an overview of the methods presented in this thesis and highlights

the contributions arising from this work.

To resolve the issue of a lack of single-step, interactive approaches for control of

crowds in previous research, we have presented a method for realtime specification

of a crowd’s motion in a constrained environment using a multitouch device. In our

approach a user can alter the movement of the crowd through a set of simple gestures

that affect the crowd’s formation at different levels of detail. The subtle movements

127

128 Chapter 7. Conclusion

of the user’s fingers impact on the overall shape of the crowd and how each character

interacts with the environment. Our approach combines the user-defined movement

of the crowd with the restrictions placed on their formation by the environment to

specify the final crowd motion. This allows the user to focus on the design of high

level movements, while leaving the fine details to the system (Chapter 3).

To enable control of a crowd in complex environments we propose the use of a mass

transport solver to allow characters to reassign their goal position in a user-defined

crowd formation. This reassignment is achieved by minimising the total cost for all

the characters to reach their goal locations. This enables a crowd to track the user’s

control well by accounting for perturbations in the individual characters’ movement

caused by the environment (Chapter 3).

We carried out an evaluation of the usability and intuitiveness of our proposed

multitouch crowd control framework via a user study. We measured the performance

of users ability to control a crowd to carry out a task using our multitouch method

and a traditional mouse-based control scheme and provide a comparison of the results

(Chapter 4). This comparison indicated that a multitouch device is effective for control

over crowd simulation. Our multitouch crowd control framework showed reduce times

for task completion in most scenarios and showed high scores when rated by users for

ease of use, ability to complete the given task, and the feeling that they are able to

control the crowd’s behaviour. The results of our study highlighted a limitation of our

approach for defining the crowd’s movement, particularly in terms of the restrictions

implied by our use of a mesh for user control.

We describe an environment-aware cost metric for the movement of a character in

environments containing traversable obstacles. The proposed metric uses information

from motion capture data to account for the effect of interacting with traversable ob-

stacles on the cost of a character’s path. This enables effective path planning to be

performed in a wider variety of virtual environments and generates realistic biasing of

an agent’s movement through areas of more easily traversable terrain. By incorporat-

ing this metric into the mass transport solver as part of the multitouch control scheme

in chapter 3 a user is able to control large crowds to move in complex environments

and simulate crowd motion involving interesting character-environment interactions

(Chapter 5). We introduce a feedback loop to adjust the user’s control signal based on

the current state of the characters in the crowd. This creates a better coupling between

the user’s commands and the actual movement of the crowd in the simulation, resulting

in better formation tracking and a more appropriate final animation (Chapter 5).

7.2. Limitations and Future Research Directions 129

To overcome the limitations of our approach in chapters 3 & 5 we presented an al-

ternative data-driven method for inferring appropriate crowd motion based on a user’s

input signal. We use input controls and crowd motion pairs collected from real users

to define the concept of a gesture space and its associated crowd motion space. Our

algorithm uses a mapping defined between these spaces to generate new crowd motion

that corresponds to a user’s input gesture. We present a set of features that are invariant

to variability in users’ preferred touch input style. This allows a user to interact natu-

rally with the touch device to provide their input gesture. We show how these features

can be used for recognising different properties of a user’s multitouch input, allowing

our system to distinguish between a variety of control signals. We define a model of

crowd movement called a crowd motion primitive that allows the final crowd motion

to be generated for any number of characters and to combine crowd motion types to

create new styles of crowd motion not seen in the original data set (Chapter 6).

7.2 Limitations and Future Research Directions

7.2.1 Combining Flexible Control with Environment Interactions

One future direction for this research is to incorporate obstacle avoidance into the mo-

tion generated by our method in chapter 6. Currently the trajectories that are produced

do not consider the existence of obstacles around the crowd. One approach would be

to combine the generated trajectories with the planning approach seen in chapters 3 &

5, where characters will loosely follow the path closest to them but only do so if they

are not blocked by an obstacle. A better approach would be to incorporate informa-

tion on the environment into the initial generation of the trajectories. New examples

of crowds performing manoeuvres in constrained local environments could be added

to our crowd motion database. We could store the crowd motion primitives generated

by these examples along with a description of the crowd’s surrounding environment.

This would result in a set of models that can be used in different environmental sit-

uations that the crowd is in. At runtime the current state of the crowd, including the

positions of the agents and the configuration of any surrounding obstacles, could be

matched with crowd-environment models in the database. Given a model that matches

well to the crowd’s state, the method could sample new trajectories for the crowd that

is appropriate to their current situation.

130 Chapter 7. Conclusion

7.2.2 Controlling Group Interactions

The work presented in this thesis considers the high-level control of a single crowd that

can interact at a low-level with static and dynamic environments. A future extension

of this approach would be to simulate multiple crowds, where individual characters

can interact with one another. This kind of simulation is important in sports games

for example, where often there is a high-level strategy for the team but also there

are low-level conflicts between the characters. In this situation the high-level control

scheme developed in chapter 3 could be used to specify the formation of the team. Our

solution for assigning character positions in the formation could be extended to take

into account the global formation objective as well as a local objective of interacting

with a nearby character. In this way a character can still respect the command of the

user but be able to place themselves well to counteract the opponent crowd.

7.2.3 User Control Over Low-Level Character Interactions

In chapter 5 we presented a method for characters in a crowd to interact with the

environment whilst obeying the controls of a user. While this method works to simulate

these interactions, they occur passively and the user does not have control over the kind

of interaction characters should perform. In some cases a character can interact with an

object in different ways. For example, when confronted with a low hanging horizontal

pole a character could choose to jump over it or to crawl under it. In other cases a

character might encounter a small obstacle where it would be better to sidestep the

object rather than to interact with it. This is also the case when groups are interacting

with one another. A user may wish for the characters they are controlling to dodge the

characters in the other crowd or to directly engage them. Currently the user does not

have the ability to make this decision because the interactions are fixed in data patches

that are embedded in the environment. It might be possible to use information from

the user’s gesture to bias the kind of action that might be performed in these situations.

For example, if a user’s control is quite fast then characters might be more aggressive

in their interactions with other characters.

7.2.4 Controlling Non-Planar Crowd Movement & Particle Systems

The approaches presented in this thesis consider control of crowd movement on a

two-dimensional plane. There is also a need to control groups of characters in three-

7.3. Publications and Acknowledgements: 131

dimensional space, for instance controlling a flock of birds or a school of fish. In these

cases the movement of a crowd could be considered as a three-dimensional particle

system; a concept that is ubiquitous in computer graphics where it is used for simula-

tion of fire and fluids. A future research direction would be to explore how the control

schemes presented in this thesis might apply to such systems. A multitouch device of-

fers effective control over two-dimensional motion but is not sufficient for expressing

such 3D control. Other devices, such as Microsoft’s Kinect, allow a user to interact

in this space and future work would explore the use of such devices for this kind of

control. Although it would be necessary to adapt our method to three-dimensional in-

teraction, the solutions for simultaneous formation and motion control and low-level

character-environment interactions presented in this thesis could still apply. For in-

stance, the use of the mass transport solver and our environment-aware cost metric in

chapters 3 & 5 are still important for handling perturbations in the crowd’s movement

such that they can follow the user’s control effectively. Furthermore, our data-driven

approach in chapter 6 provides a general framework for a system to allow a user to

control crowd simulation in an intuitive way.

7.3 Publications and Acknowledgements:

The concepts related to multitouch formation control in Chapter 3 are included in:

• Henry, Joseph, Shum, Hubert P. H., & Komura, Taku. 2012. Environment-

aware realtime crowd control. Pages 193-200 of: Proceedings of the 11th ACM

SIGGRAPH Eurographics conference on Computer Animation. EUROSCA’12.

Aire-la-Ville, Switzerland, Switzerland: Eurographics Association.

The work related to the evaluation of our multitouch control scheme in Chapter 4 and

the control of crowds involving character-environment interactions in Chapter 5 are

included in:

• Henry, Joseph, Shum, Hubert P. H. & Komura, Taku. 2014. Interactive Forma-

tion Control in Complex Environments. Visualization and Computer Graphics,

IEEE Transactions on, 20(2), 211-222.

The final rendering of the full body character motion for the work in chapters 3 and 5

and figures 3.1 and 3.7 were produced by Hubert P.H. Shum. The motion capture data

for the character-environment interactions in chapter 5 was provided by Myung Geol

Choi.

Bibliography

Allain, Pierre, Courty, Nicolas, & Corpetti, Thomas. 2014. Optimal crowd editing.

Graphical Models, 76(1), 1–16.

Alonso-Mora, Javier, Breitenmoser, Andreas, Rufli, Martin, Siegwart, Roland, &

Beardsley, Paul. 2011. Multi-robot system for artistic pattern formation. Pages

4512–4517 of: 2011 IEEE International Conference on Robotics and Automation

(ICRA). IEEE.

Anderson, Matt, McDaniel, Eric, & Chenney, Stephen. 2003. Constrained animation of

flocks. Pages 286–297 of: Proceedings of the 2003 ACM SIGGRAPH/Eurographics

symposium on Computer animation. Eurographics Association.

Anthony, Lisa, & Wobbrock, Jacob O. 2010. A Lightweight Multistroke Recognizer

for User Interface Prototypes. Pages 245–252 of: Proceedings of Graphics Interface

2010. GI ’10. Toronto, Ont., Canada, Canada: Canadian Information Processing

Society.

Arkin, Ronald C. 1992. Cooperation without communication: Multiagent schema-

based robot navigation. Journal of Robotic Systems, 9(3)(3), 351–364.

Balch, T., & Hybinette, M. 2000. Social potentials for scalable multi-robot formations.

Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference

on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 73–80.

Balch, Tucker, & Arkin, Ronald C. 1998. Behavior-based formation control for multi-

robot teams. Robotics and Automation, IEEE Transactions on, 14(6), 926–939.

Bayazit, O Burchan, Lien, Jyh-Ming, & Amato, Nancy M. 2003. Better Group Be-

haviors in Complex Environments using Global Roadmaps. Artificial Life Eight, 8,

362.

133

134 Bibliography

Berndt, Donald J., & Clifford, James. 1994. Using Dynamic Time Warping to Find

Patterns in Time Series. Pages 359–370 of: Fayyad, Usama M., & Uthurusamy,

Ramasamy (eds), KDD Workshop. AAAI Press.

Bishop, Christopher M. 1996. Neural Networks for Pattern Recognition. Oxford, UK:

Oxford University Press.

Bonneel, Nicolas, van de Panne, Michiel, Paris, Sylvain, & Heidrich, Wolfgang. 2011.

Displacement interpolation using Lagrangian mass transport. Proceedings of the

2011 SIGGRAPH Asia Conference on - SA ’11.

Bouvier, Eric, & Guilloteau, Pascal. 1996. Crowd Simulation in Immersive Space

Management. Pages 104–110 of: Proceedings of the Eurographics Workshop on

Virtual Environments and Scientific Visualization ’96. London, UK, UK: Springer-

Verlag.

Braun, Adriana, Musse, Soraia Raupp, de Oliveira, Luiz Paulo Luna, & Bodmann,

Bardo EJ. 2003. Modeling individual behaviors in crowd simulation. Pages 143–148

of: Computer Animation and Social Agents, 2003. 16th International Conference on.

IEEE.

Brogan, David C, & Hodgins, Jessica K. 1997. Group behaviors for systems with

significant dynamics. Autonomous Robots, 4(1), 137–153.

Chang, Jen-Yao, & Li, Tsai-Yen. 2007. Simulating crowd motion with shape prefer-

ence and fuzzy rules. In: Proceedings of International Symposium on Artificial Life

and Robotics (AROB2007). Citeseer.

Cheney, Ward, & Kincaid, David R. 2008. Linear Algebra: Theory and Applications.

1st edn. USA: Jones and Bartlett Publishers, Inc.

Chenney, Stephen. 2004. Flow tiles. Pages 233–242 of: Proceedings of the 2004

ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics

Association.

Choi, Myung Geol, Kim, Manmyung, Hyun, Kyung Lyul, & Lee, Jehee. 2011. De-

formable Motion: Squeezing into Cluttered Environments. Computer Graphics Fo-

rum, 30(2), 445–453.

Bibliography 135

Clements, Richard R, & Hughes, Roger L. 2004. Mathematical modelling of a mediae-

val battle: the Battle of Agincourt, 1415. Mathematics and Computers in Simulation,

64(2), 259–269.

Courty, Nicolas, & Corpetti, Thomas. 2007. Crowd motion capture. Computer Ani-

mation and Virtual Worlds, 18(4-5), 361–370.

Desai, J. P., Ostrowski, J. P., & Kumar, V. 2001. Modeling and control of formations

of nonholonomic mobile robots. IEEE Transactions on Robotics and Automation,

17(6), 905–908.

Fiorini, P., & Shiller, Z. 1998. Motion Planning in Dynamic Environments Using

Velocity Obstacles. The International Journal of Robotics Research, 17(7), 760–

772.

Floater, Michael S. 2003. Mean value coordinates. Computer Aided Geometric Design,

20(1), 19–27.

Funge, John, Tu, Xiaoyuan, & Terzopoulos, Demetri. 1999. Cognitive modeling:

knowledge, reasoning and planning for intelligent characters. Pages 29–38 of: Pro-

ceedings of the 26th annual conference on Computer graphics and interactive tech-

niques. ACM Press/Addison-Wesley Publishing Co.

Geraerts, R., & Overmars, M. H. 2007. The Corridor Map Method: A general frame-

work for real-time high-quality path planning. Computer Animation and Virtual

Worlds, 18(2), 107–119.

Golas, Abhinav, Narain, Rahul, & Lin, Ming. 2013. Hybrid long-range collision avoid-

ance for crowd simulation. Pages 29–36 of: Proceedings of the ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games - I3D ’13. ACM Press.

Goldenstein, Siome, Karavelas, Menelaos, Metaxas, Dimitris, Guibas, Leonidas,

Aaron, Eric, & Goswami, Ambarish. 2001. Scalable nonlinear dynamical systems

for agent steering and crowd simulation. Computers & Graphics, 25(6), 983–998.

Gu, Qin, & Deng, Zhigang. 2011a. Context-aware motion diversification for crowd

simulation. Computer Graphics and Applications, IEEE, 31(5), 54–65.

Gu, Qin, & Deng, Zhigang. 2011b. Formation sketching: an approach to stylize groups

in crowd simulation. Pages 1–8 of: Proceedings of Graphics Interface 2011. Cana-

dian Human-Computer Communications Society.

136 Bibliography

Gu, Qin, & Deng, Zhigang. 2013. Generating Freestyle Group Formations in Agent-

Based Crowd Simulations. IEEE Computer Graphics and Applications, 33(1), 20–

31.

Guy, S. J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., & Dubey, P. 2009.

ClearPath: highly parallel collision avoidance for multi-agent simulation. Pages

177–187 of: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium

on Computer Animation - SCA ’09.

Guy, Stephen J, Chhugani, Jatin, Curtis, Sean, Dubey, Pradeep, Lin, Ming, &

Manocha, Dinesh. 2010. Pledestrians: a least-effort approach to crowd simula-

tion. Pages 119–128 of: Proceedings of the 2010 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation. Eurographics Association.

Heigeas, Laure, Luciani, Annie, Thollot, Joëlle, & Castagné, Nicolas. 2003. A

Physically-Based Particle Model of Emergent Crowd Behaviors. In: Graphicon.

Helbing, D. 1992. A fluid-dynamic model for the movement of pedestrians. Complex

Systems, 6, 391–415.

Helbing, Dirk, & Molnar, Peter. 1995. Social force model for pedestrian dynamics.

Physical review E, 51(5), 4282.

Helbing, Dirk, Farkas, Illes, & Vicsek, Tamas. 2000. Simulating dynamical features

of escape panic. Nature, 407(6803), 487–490.

Helbing, Dirk, Molnár, Péter, Farkas, Illés J, & Bolay, Kai. 2001. Self-organizing

pedestrian movement. Environ. Plann. B, 28(3), 361–383.

Helbing, Dirk, Buzna, Lubos, Johansson, Anders, & Werner, Torsten. 2005. Self-

Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design So-

lutions. Transportation Science, 39(1), 1–24.

Henderson, L.F. 1974. On the fluid mechanics of human crowd motion. Transportation

Research, 8(6), 509–515.

Henry, Joseph, Shum, Hubert P. H., & Komura, Taku. 2012. Environment-aware real-

time crowd control. Pages 193–200 of: Proceedings of the 11th ACM SIGGRAPH

/ Eurographics conference on Computer Animation. EUROSCA’12. Aire-la-Ville,

Switzerland, Switzerland: Eurographics Association.

Bibliography 137

Henry, Joseph, Shum, Hubert P. H., & Komura, Taku. 2014. Interactive Formation

Control in Complex Environments. Visualization and Computer Graphics, IEEE

Transactions on, 20(2), 211–222.

Ho, Choon Sing, Nguyen, Quang Huy, Ong, Yew-Soon, & Chen, Xianshun. 2010.

Autonomous multi-agents in flexible flock formation. Pages 375–385 of: Motion in

Games. Springer.

Ho, Choon Sing, Ong, Yew-Soon, Chen, Xianshun, & Tan, Ah-Hwee. 2012. FAME,

soft flock formation control for collective behavior studies and rapid games devel-

opment. Pages 258–269 of: Simulated Evolution and Learning. Springer.

Hongwan, L., Wai, F.K., & Chor, C.H. 2003. A study of pedestrian flow using fluid

dynamics. Tech. rept. National University of Singapore.

Hoogendoorn, S., & Daamen, W. 2005. Self-Organization in Pedestrian Flow. Traffic

and Granular Flow ’03, 373–382.

Hoogendoorn, Serge, & Bovy, Piet. 2000. Gas-Kinetic Modeling and Simulation of

Pedestrian Flows. Transportation Research Record, 1710(1), 28–36.

Hoogendoorn, S.P., & Bovy, P.H.L. 2004. Pedestrian route-choice and activity schedul-

ing theory and models. Transportation Research Part B: Methodological, 38(2),

169–190.

Hughes, Roger L. 2002. A continuum theory for the flow of pedestrians. Transporta-

tion Research Part B: Methodological, 36(6), 507–535.

Hughes, Roger L. 2003. The flow of human crowds. Annual review of fluid mechanics,

35(1), 169–182.

Hyun, K, Kim, M, Hwang, Y, & Lee, J. 2013. Tiling Motion Patches. IEEE transac-

tions on visualization and computer graphics.

Igarashi, Takeo, Moscovich, Tomer, & Hughes, John F. 2005. As-rigid-as-possible

shape manipulation. Pages 1134–1141 of: ACM Transactions on Graphics (TOG),

vol. 24. ACM.

Jiang, H., Xu, W., Mao, T., Li, C., Xia, S., & Wang, Z. 2010. Continuum crowd

simulation in complex environments. Computers & Graphics, 34(5), 537–544.

138 Bibliography

Jiang, Yingying, Tian, Feng, Zhang, Xiaolong, Liu, Wei, Dai, Guozhong, & Wang,

Hongan. 2012. Unistroke Gestures on Multi-touch Interaction: Supporting Flexible

Touches with Key Stroke Extraction. Pages 85–88 of: Proceedings of the 2012 ACM

International Conference on Intelligent User Interfaces. IUI ’12. New York, NY,

USA: ACM.

Jin, Xiaogang, Xu, Jiayi, Wang, Charlie CL, Huang, Shengsheng, & Zhang, Jun. 2008.

Interactive control of large-crowd navigation in virtual environments using vector

fields. Computer Graphics and Applications, IEEE, 28(6), 37–46.

Jordao, Kevin, Pettré, Julien, Christie, Marc, & Cani, Marie-Paule. 2014. Crowd

Sculpting: A Space-time Sculpting Method for Populating Virtual Environments.

Computer Graphics Forum.

Ju, Eunjung, Choi, Myung Geol, Park, Minji, Lee, Jehee, Lee, Kang Hoon, & Taka-

hashi, Shigeo. 2010. Morphable crowds. ACM Transactions on Graphics (TOG),

29(6), 140.

Kamphuis, A., & Overmars, M. H. 2004. Finding paths for coherent groups using

clearance. Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on

Computer animation - SCA ’04.

Kanyuk, Paul. 2009. Brain Springs: Fast Physics for Large Crowds in WALL E.

Computer Graphics and Applications, IEEE, 29(4), 19–25.

Karamouzas, Ioannis, & Overmars, Mark. 2010. Simulating the local behaviour of

small pedestrian groups. Pages 183–190 of: Proceedings of the 17th ACM Sympo-

sium on Virtual Reality Software and Technology. ACM.

Karamouzas, Ioannis, Geraerts, Roland, & van der Stappen, A. Frank. 2013. Space-

Time Group Motion Planning. Algorithmic Foundations of Robotics X, 86, 227–243.

Kato, Jun, Sakamoto, Daisuke, Inami, Masahiko, & Igarashi, Takeo. 2009. Multi-

touch interface for controlling multiple mobile robots. Pages 3443–3448 of: CHI’09

Extended Abstracts on Human Factors in Computing Systems. ACM.

Kim, Jongmin, Seol, Yeongho, Kwon, Taesoo, & Lee, Jehee. 2014. Interactive ma-

nipulation of large-scale crowd animation. ACM Transactions on Graphics, 33(4),

1–10.

Bibliography 139

Kim, Manmyung, Hyun, Kyunglyul, Kim, Jongmin, & Lee, Jehee. 2009. Synchronized

multi-character motion editing. Page 79 of: ACM Transactions on Graphics (TOG),

vol. 28. ACM.

Kim, Sujeong, Guy, Stephen J., & Manocha, Dinesh. 2013. Velocity-based modeling

of physical interactions in multi-agent simulations. Pages 125–133 of: Proceedings

of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation -

SCA ’13. ACM Press.

Kin, Kenrick, Hartmann, Björn, DeRose, Tony, & Agrawala, Maneesh. 2012. Proton:

Multitouch Gestures As Regular Expressions. Pages 2885–2894 of: Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems. CHI ’12. New

York, NY, USA: ACM.

Klotsman, Marina, & Tal, Ayellet. 2012. Animation of flocks flying in line formations.

Artificial Life, 18(1), 91–105.

Koenig, S., & Likhachev, M. 2002. Improved fast replanning for robot navigation in

unknown terrain. Proceedings 2002 IEEE International Conference on Robotics

and Automation - ICRA ’02, 1, 968–975.

Kwon, Taesoo, Lee, Kang Hoon, Lee, Jehee, & Takahashi, Shigeo. 2008. Group mo-

tion editing. Page 80 of: ACM Transactions on Graphics (TOG), vol. 27. ACM.

Lai, Yu-Chi, Chenney, Stephen, & Fan, ShaoHua. 2005. Group motion graphs. Pages

281–290 of: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium

on Computer animation. ACM.

Lamarche, Fabrice, & Donikian, Stéphane. 2004. Crowd of virtual humans: a new ap-

proach for real time navigation in complex and structured environments. Computer

Graphics Forum, 23, 509–518.

Lau, Manfred, & Kuffner, James J. 2005. Behavior planning for character animation.

Pages 271–280 of: Proceedings of the 2005 ACM SIGGRAPH/Eurographics sym-

posium on Computer animation. ACM.

Lau, Manfred, & Kuffner, James J. 2006. Precomputed search trees: planning for

interactive goal-driven animation. Pages 299–308 of: Proceedings of the 2006 ACM

SIGGRAPH/Eurographics symposium on Computer animation - SCA ’06.

140 Bibliography

Lee, Kang Hoon, Choi, Myung Geol, & Lee, Jehee. 2006. Motion patches: building

blocks for virtual environments annotated with motion data. Pages 898–906 of:

ACM Transactions on Graphics (TOG), vol. 25. ACM.

Lee, Kang Hoon, Choi, Myung Geol, Hong, Qyoun, & Lee, Jehee. 2007. Group be-

havior from video: a data-driven approach to crowd simulation. Pages 109–118 of:

Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer

animation. Eurographics Association.

Lee, Yongjoon, Wampler, Kevin, Bernstein, Gilbert, Popović, Jovan, & Popović, Zo-

ran. 2014. Motion fields for interactive character locomotion. Communications of

the ACM, 57(6), 101–108.

Lemercier, S., Jelic, A., Kulpa, R., Hua, J., Fehrenbach, J., Degond, P., Appert-

Rolland, C., Donikian, S., & Pettré, J. 2012. Realistic following behaviors for crowd

simulation. Computer Graphics Forum, 31(2pt2), 489–498.

Lerner, Alon, Chrysanthou, Yiorgos, & Lischinski, Dani. 2007. Crowds by example.

Pages 655–664 of: Computer Graphics Forum, vol. 26. Wiley Online Library.

Lewis, M Anthony, & Tan, Kar-Han. 1997. High precision formation control of mobile

robots using virtual structures. Autonomous Robots, 4(4), 387–403.

Li, Norman H.M., & Liu, Hugh H.T. 2008. Formation UAV flight control using vir-

tual structure and motion synchronization. Pages 1782–1787 of: American Control

Conference, 2008. IEEE.

Li, Tsai-Yen, & Chou, Hsu-Chi. 2003. Motion planning for a crowd of robots. Pages

4215–4221 of: IEEE International Conference on Robotics and Automation, 2003 -

ICRA ’03. IEEE.

Li, Y., Christie, M., Siret, O., Kulpa, R., & Pettré, J. 2012. Cloning crowd motions.

Pages 201–210 of: Proceedings of the ACM SIGGRAPH/Eurographics Symposium

on Computer Animation - SCA ’12.

Lipman, Yaron, Levin, David, & Cohen-Or, Daniel. 2008. Green Coordinates. ACM

Trans. Graph., 27(3), 78:1–78:10.

Loscos, C., Marchal, D., & Meyer, A. 2003. Intuitive Crowd Behaviour in Dense

Urban Environments using Local Laws. Page 122 of: Proceedings of the Theory

and Practice of Computer Graphics 2003 - TPCG ’03.

Bibliography 141

Løvås, Gunnar G. 1994. Modeling and simulation of pedestrian traffic flow. Trans-

portation Research Part B: Methodological, 28(6), 429–443.

Low, Chang Boon, & San Ng, Quee. 2011. A flexible virtual structure formation

keeping control for fixed-wing UAVs. Pages 621–626 of: 9th IEEE International

Conference on Control and Automation (ICCA), 2011. IEEE.

Lü, Hao, & Li, Yang. 2013. Gesture studio: authoring multi-touch interactions through

demonstration and declaration. Pages 257–266 of: Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems. ACM.

Mataric, M. 1993. Designing emergent behaviors: From local interactions to collective

intelligence. Pages 432–441 of: Proceedings of the International Conference on

Simulation of Adaptive Behaviour: From Animals to Animats, vol. 2.

Mataric, M.J. 1992. Minimizing complexity in controlling a mobile robot population.

Pages 830–835 of: Proceedings 1992 IEEE International Conference on Robotics

and Automation. IEEE Comput. Soc. Press.

McNamara, Antoine, Treuille, Adrien, Popović, Zoran, & Stam, Jos. 2004. Fluid con-

trol using the adjoint method. ACM Transactions on Graphics (TOG) - Proceedings

of ACM SIGGRAPH 2004, 23(3), 449–456.

Mehrjerdi, Hasan, Ghommam, Jawhar, & Saad, Maarouf. 2011. Nonlinear coordina-

tion control for a group of mobile robots using a virtual structure. Mechatronics,

21(7), 1147–1155.

Micire, Mark, Desai, Munjal, Courtemanche, Amanda, Tsui, Katherine M, & Yanco,

Holly A. 2009. Analysis of natural gestures for controlling robot teams on multi-

touch tabletop surfaces. Pages 41–48 of: Proceedings of the ACM International

Conference on Interactive Tabletops and Surfaces. ACM.

Milazzo, Joseph, Rouphail, Nagui, Hummer, Joseph, & Allen, D. 1998. Effect

of Pedestrians on Capacity of Signalized Intersections. Transportation Research

Record, 1646(1), 37–46.

Min, Jianyuan, & Chai, Jinxiang. 2012. Motion graphs++. ACM Transactions on

Graphics, 31(6), 1.

142 Bibliography

Min, Jianyuan, Chen, Yen-Lin, & Chai, Jinxiang. 2009. Interactive generation of hu-

man animation with deformable motion models. ACM Transactions on Graphics,

29(1), 1–12.

Moussaı̈d, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., & Theraulaz,

G. 2009. Experimental study of the behavioural mechanisms underlying self-

organization in human crowds. Proceedings of the Royal Society B: Biological

Sciences, 276(1668), 2755–2762.

Moussaı̈d, M., Perozo, N., Garnier, D., Helbing, D., & Theraulaz, G. 2010. The walk-

ing behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS

ONE, 5(4), e10047.

Musse, S. R., & Thalmann, D. 1997. A Model of Human Crowd Behavior: Group

Inter-Relationship and Collision Detection Analysis. Eurographics, 39–51.

Musse, S.R., & Thalmann, D. 2001. Hierarchical model for real time simulation of

virtual human crowds. IEEE Transactions on Visualization and Computer Graphics,

7(2), 152–164.

Musse, S.R., Jung, C.R., Jacques Jr, J., & Braun, A. 2007. Using computer vision

to simulate the motion of virtual agents. Computer Animation and Virtual Worlds,

18(2), 83–93.

Narain, Rahul, Golas, Abhinav, Curtis, Sean, & Lin, Ming C. 2009. Aggregate dy-

namics for dense crowd simulation. Page 122 of: ACM Transactions on Graphics

(TOG), vol. 28. ACM.

Ondřej, Jan, Pettré, Julien, Olivier, Anne-Hélène, & Donikian, Stéphane. 2010. A

synthetic-vision based steering approach for crowd simulation. ACM Transactions

on Graphics (TOG), 29(4), 123.

Paris, Sébastien, Pettré, Julien, & Donikian, Stéphane. 2007. Pedestrian reactive nav-

igation for crowd simulation: a predictive approach. Pages 665–674 of: Computer

Graphics Forum, vol. 26. Wiley Online Library.

Park, Min Je. 2010. Guiding flows for controlling crowds. The Visual Computer,

26(11), 1383–1391.

Bibliography 143

Patil, Sachin, Van Den Berg, Jur, Curtis, Sean, Lin, Ming C, & Manocha, Dinesh.

2011. Directing crowd simulations using navigation fields. IEEE Transactions on

Visualization and Computer Graphics, 17(2), 244–254.

Pelechano, Nuria, Allbeck, Jan M, & Badler, Norman I. 2007. Controlling individual

agents in high-density crowd simulation. Pages 99–108 of: Proceedings of the 2007

ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics

Association.

Pelechano, Nuria, Allbeck, Jan M., & Badler, Norman I. 2008. Virtual Crowds: Meth-

ods, Simulation, and Control. Synthesis Lectures on Computer Graphics and Ani-

mation, 3(1), 176.

Peng, Jufeng, & Akella, Srinivas. 2005. Coordinating Multiple Robots with Kinody-

namic Constraints Along Specified Paths. The International Journal of Robotics

Research, 24(4), 295–310.

Peters, Christopher, & Ennis, Cathy. 2009. Modeling Groups of Plausible Virtual

Pedestrians. IEEE Computer Graphics and Applications, 29(4), 54–63.

Pettré, Julien, Laumond, Jean-Paul, & Thalmann, Daniel. 2005. A navigation graph

for real-time crowd animation on multilayered and uneven terrain. Pages 81–90 of:

First International Workshop on Crowd Simulation.

Pettré, Julien, Ciechomski, Pablo de Heras, Maı̈m, Jonathan, Yersin, Barbara, Lau-

mond, Jean-Paul, & Thalmann, Daniel. 2006. Real-time navigating crowds: scal-

able simulation and rendering. Computer Animation and Virtual Worlds, 17(3-4),
445–455.

Pettré, Julien, Ondřej, Jan, Olivier, Anne-Hélène, Cretual, Armel, & Donikian,

Stéphane. 2009. Experiment-based Modeling, Simulation and Validation of Interac-

tions Between Virtual Walkers. Pages 189–198 of: Proceedings of the 2009 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’09. New

York, NY, USA: ACM.

Poonawala, Hasan A, Satici, Aykut C, & Spong, Mark W. 2013. Leader-follower

formation control of nonholonomic wheeled mobile robots using only position mea-

surements. Pages 1–6 of: 2013 9th Asian Control Conference (ASCC). IEEE.

144 Bibliography

Qingge, J. I., & Can, G. A. O. 2007. Simulating crowd evacuation with a leader-

follower model. IJCSES International Journal of Computer Sciences and Engineer-

ing Systems, 1(4), 249–252.

Qiu, Fasheng, & Hu, Xiaolin. 2010. Modeling group structures in pedestrian crowd

simulation. Simulation Modelling Practice and Theory, 18(2), 190–205.

Rekik, Yosra, Grisoni, Laurent, & Roussel, Nicolas. 2013. Towards Many Gestures to

One Command: A User Study for Tabletops. Pages 246–263 of: Kotz, Paula, Mars-

den, Gary, Lindgaard, Gitte, Wesson, Janet, & Winckler, Marco (eds), INTERACT

(2). Lecture Notes in Computer Science, vol. 8118. Springer.

Rekik, Yosra, Vatavu, Radu-Daniel, & Grisoni, Laurent. 2014. Match-up & conquer.

Proceedings of the 2014 International Working Conference on Advanced Visual In-

terfaces - AVI ’14, 201–208.

Reynolds, Craig. 1999. Steering Behaviors for Autonomous Characters. Pages 763–

782 of: Game Developers Conference 1999.

Reynolds, Craig W. 1987. Flocks, herds and schools: A distributed behavioral model.

Proceedings of the 14th annual conference on Computer graphics and interactive

techniques - SIGGRAPH 1987.

Rubine, Dean. 1991. Specifying Gestures by Example. SIGGRAPH Comput. Graph.,

25(4), 329–337.

Rubner, Yossi, Tomasi, Carlo, & Guibas, Leonidas J. 1998. A metric for distributions

with applications to image databases. Pages 59–66 of: Sixth International Confer-

ence on Computer Vision, 1998. IEEE.

Sakuma, Takeshi, Mukai, Tomohiko, & Kuriyama, Shigeru. 2005. Psychological

model for animating crowded pedestrians. Computer Animation and Virtual Worlds,

16(3-4), 343–351.

Sandler, Seth. 2008 (August). Community Core Vision Software. http://ccv.

nuigroup.com/.

Sandler, Seth. 2010 (November). Multitouch Mini. http://sethsandler.com/

multitouch/mtmini/.

http://ccv.nuigroup.com/
http://ccv.nuigroup.com/
http://sethsandler.com/multitouch/mtmini/
http://sethsandler.com/multitouch/mtmini/

Bibliography 145

Schmidt, Ryan. 2009 (February). As-Rigid-As-Possible 2D Shape Manipulation Demo.

http://www.dgp.toronto.edu/˜rms/software/Deform2D/.

Schwartz, J. T., & Sharir, M. 1983. On the Piano Movers’ Problem: III. Coordi-

nating the Motion of Several Independent Bodies: The Special Case of Circular

Bodies Moving Amidst Polygonal Barriers. The International Journal of Robotics

Research, 2(3), 46–75.

Shao, Wei, & Terzopoulos, Demetri. 2007. Autonomous pedestrians. Graphical Mod-

els, 69(5-6), 246–274.

Shum, Hubert PH, Komura, Taku, Shiraishi, Masashi, & Yamazaki, Shuntaro. 2008.

Interaction patches for multi-character animation. Page 114 of: ACM Transactions

on Graphics (TOG), vol. 27. ACM.

Simeon, T., Leroy, S., & Lauumond, J. P. 2002. Path coordination for multiple mo-

bile robots: a resolution-complete algorithm. IEEE Transactions on Robotics and

Automation, 18(1), 42–49.

Singh, Shawn, Kapadia, Mubbasir, Hewlett, Billy, Reinman, Glenn, & Faloutsos, Pet-

ros. 2011. A modular framework for adaptive agent-based steering. Pages 141–150

of: Symposium on Interactive 3D Graphics and Games - I3D ’11. ACM Press.

Snape, Jamie, van den Berg, Jur, Guy, Stephen J., & Manocha, Dinesh. 2009. Inde-

pendent navigation of multiple mobile robots with hybrid reciprocal velocity obsta-

cles. Pages 5917–5922 of: 2009 IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE.

Sorkine, Olga, Cohen-Or, Daniel, Lipman, Yaron, Alexa, Marc, Rössl, Christian, &

Seidel, H-P. 2004. Laplacian surface editing. Pages 175–184 of: Proceedings of the

2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing. ACM.

Spry, Stephen, & Hedrick, J Karl. 2004. Formation control using generalized coordi-

nates. Pages 2441–2446 of: CDC. 43rd IEEE Conference on Decision and Control,

2004., vol. 3. IEEE.

Sud, A., Andersen, E., Curtis, S., Lin, M.C., & Manocha, D. 2008. Real-Time Path

Planning in Dynamic Virtual Environments Using Multiagent Navigation Graphs.

IEEE Transactions on Visualization and Computer Graphics, 14(3), 526–538.

http://www.dgp.toronto.edu/~rms/software/Deform2D/

146 Bibliography

Sung, Mankyu, Gleicher, Michael, & Chenney, Stephen. 2004. Scalable behaviors for

crowd simulation. Pages 519–528 of: Computer Graphics Forum, vol. 23. Wiley

Online Library.

Sung, Mankyu, Kovar, Lucas, & Gleicher, Michael. 2005. Fast and accurate goal-

directed motion synthesis for crowds. Pages 291–300 of: Proceedings of the 2005

ACM SIGGRAPH/Eurographics symposium on Computer animation. ACM.

Takahashi, Shigeo, Yoshida, Kenichi, Kwon, Taesoo, Lee, Kang Hoon, Lee, Jehee, &

Shin, Sung Yong. 2009. Spectral-Based Group Formation Control. Pages 639–648

of: Computer Graphics Forum, vol. 28. Wiley Online Library.

Teknomo, Kardi. 2006. Application of microscopic pedestrian simulation model.

Transportation Research Part F: Traffic Psychology and Behaviour, 9(1), 15–27.

Thalmann, Daniel, & Musse, Soraia Raupp. 2013. Crowd Simulation.

Toussaint, Godfried. 1983. Solving geometric problems with the rotating calipers.

Treuille, Adrien, Cooper, Seth, & Popović, Zoran. 2006. Continuum crowds. Pages

1160–1168 of: ACM Transactions on Graphics (TOG), vol. 25. ACM.

Tsitsiklis, John N. 1995. Efficient algorithms for globally optimal trajectories. Auto-

matic Control, IEEE Transactions on, 40(9), 1528–1538.

Ulicny, Branislav, Ciechomski, Pablo de Heras, & Thalmann, Daniel. 2004. Crowd-

brush: Interactive authoring of real-time crowd scenes. Pages 243–252 of: Proceed-

ings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer anima-

tion. Eurographics Association.

van den Akker, M., Geraerts, R., Hoogeveen, H., & Prins, C. 2010. Path planning

for groups using column generation. Pages 94–105 of: Proceedings of the Third

international conference on Motion in games - MIG ’10.

van den Berg, J.P., & Overmars, M.H. 2005. Prioritized motion planning for multiple

robots. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,

430–435.

van den Berg, Jur, Patil, Sachin, Sewall, Jason, Manocha, Dinesh, & Lin, Ming. 2008a.

Interactive navigation of multiple agents in crowded environments. Pages 139–147

Bibliography 147

of: Proceedings of the 2008 symposium on Interactive 3D graphics and games.

ACM.

van den Berg, Jur, Lin, Ming C., & Manocha, Dinesh. 2008b. Reciprocal Velocity

Obstacles for Real-Time Multi-Agent Navigation. Pages 1928–1935 of: IEEE In-

ternational Conference on Robotics and Automation. IEEE.

van den Berg, Jur, Guy, S. J., Lin, M. C., & Manocha, D. 2009. Reciprocal n-body

collision avoidance. Pages 3–19 of: International Symposium of Robotics Research.

Vatavu, Radu-Daniel, Anthony, Lisa, & Wobbrock, Jacob O. 2012. Gestures As Point

Clouds: A $P Recognizer for User Interface Prototypes. Pages 273–280 of: Pro-

ceedings of the 14th ACM International Conference on Multimodal Interaction.

ICMI ’12. New York, NY, USA: ACM.

Wang, P.K.C. 1989. Navigation Strategies For Multiple Autonomous Mobile Robots

Moving In Formation. Journal of Robotic Systems, 8(2), 177–195.

Wang, Yanzhen, Xu, Kai, Xiong, Yueshan, & Cheng, Zhi-Quan. 2008. 2D shape de-

formation based on rigid square matching. Computer Animation and Virtual Worlds,

19(3-4), 411–420.

Weng, Yanlin, Xu, Weiwei, Wu, Yanchen, Zhou, Kun, & Guo, Baining. 2006. 2D

shape deformation using nonlinear least squares optimization. The Visual Computer,

22(9-11), 653–660.

Wilkie, D., van den Berg, J., & Manocha, D. 2009. Generalized Velocity Obstacles.

Pages 5573–5578 of: IEEE/RSJ International Conference on Intelligent Robots and

Systems. IEEE.

Wobbrock, Jacob O., Wilson, Andrew D., & Li, Yang. 2007. Gestures Without Li-

braries, Toolkits or Training: A $1 Recognizer for User Interface Prototypes. Pages

159–168 of: Proceedings of the 20th Annual ACM Symposium on User Interface

Software and Technology. UIST ’07. New York, NY, USA: ACM.

Wojtan, Chris, Mucha, Peter J, & Turk, Greg. 2006. Keyframe control of complex

particle systems using the adjoint method. Pages 15–23 of: Proceedings of the 2006

ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics

Association.

148 Bibliography

Wolinski, D., Guy, S. J., Olivier, A. H., Lin, M., Manocha, D., & Pettré, J. 2014.

Parameter estimation and comparative evaluation of crowd simulations. Computer

Graphics Forum, 33(2), 303–312.

Xu, Jiayi, Jin, Xiaogang, Yu, Yizhou, Shen, Tian, & Zhou, Mingdong. 2008. Shape-

constrained flock animation. Computer Animation and Virtual Worlds, 19(3-4), 319–

330.

Xu, M., Wu, Y., Ye, Y., Farkas, I., Jiang, H., & Deng, Z. 2014. Collective Crowd

Formation Transform with Mutual Information based Runtime Feedback. Computer

Graphics Forum, (accepted).

Xu, Mingliang, Wu, Yunpeng, & Ye, Yangdong. 2012. Smooth and efficient crowd

transformation. Proceedings of the 20th ACM international conference on Multime-

dia - MM ’12, 1189–1192.

Yang, Wenwu, Feng, Jieqing, & Wang, Xun. 2012. Structure Preserving Manipulation

and Interpolation for Multi-element 2D Shapes. Computer Graphics Forum, 31(7),

2249–2258.

Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., & Lin, M. 2008.

Composite Agents. Pages 39–47 of: Proceedings of the 2008 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation. SCA ’08. Aire-la-Ville,

Switzerland, Switzerland: Eurographics Association.

Yersin, Barbara, Maı̈m, Jonathan, Pettré, Julien, & Thalmann, Daniel. 2009. Crowd

patches: populating large-scale virtual environments for real-time applications.

Pages 207–214 of: Proceedings of the 2009 symposium on Interactive 3D graph-

ics and games. ACM.

Yu, Qinxin, & Terzopoulos, Demetri. 2007. A decision network framework for the

behavioral animation of virtual humans. Pages 119–128 of: Proceedings of the 2007

ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics

Association.

Zheng, Liping, Zhao, Jianming, Cheng, Yajun, Chen, Haibo, Liu, Xiaoping, & Wang,

Wenping. 2014. Geometry-constrained crowd formation animation. Computers &

Graphics, 38(Feb), 268–276.

	cover sheet
	JWRHenryThesis
	Introduction
	Demand for Interactive Crowd Control
	Problem Definition
	Realtime Control of Crowd Formation and Movement
	Control of Crowd Motion in Complex Environments
	Direct, Intuitive User Control of Crowd motion

	Thesis Outline
	Summary

	Related Work
	Crowd Simulation
	Microscopic (Local) Approaches
	Macroscopic (Global) Approaches
	Hybrid Approaches
	Summary

	Crowd Motion Control
	Agent Pathing and Crowd Flow Control
	Group Formation and Interaction Control
	Summary

	Touch-based Gesture Recognition

	Multitouch Formation Control
	Contributions
	Method Overview
	Movement and Formation Control
	Formation Representation and Control
	Point, Line and Area Controls

	Environment-Guided Mesh Deformation
	Character Mapping
	Experimental Results
	Environments with Static Obstacles
	Environments with Dynamic Obstacles
	Formation Manipulation
	Mass Transport Solver
	Computational Costs and 3D Rendering

	Discussion
	Multitouch control
	Mass Transport Solver
	Scalability
	Formation Representation and Crowd Movement
	Character-environment interaction
	Formation tracking

	Summary

	User Evaluation of Multitouch Control
	Contributions
	Method
	Results
	Task Completion
	Required User Input
	User Feedback
	Use of Multitouch

	Discussion
	User Compatibility
	Flexibility
	Other Crowd Simulation Control

	Interaction with the Environment
	Contributions
	Method Overview
	Improved Character to Formation Mapping
	Environment-Aware Metric for Goal Assignment
	Evaluating Cost to the Goal
	Representing Environment Interactions in the Cost Metric
	Embedding Motion Data in the Environment
	Coupling of User Input and Crowd Motion

	Experimental Results
	Handling Motion Data Patches
	Defining Crowd Trajectories
	Choosing an Appropriate Path
	Formation Tracking
	Computational Costs and 3D Rendering

	Discussion
	Character-Environment Interactions
	Scalability
	Environment-Aware Cost Metric
	Motion Data Patches

	Summary

	Flexible Multi-agent Motion Control
	Contributions
	Method Overview
	Data Collection
	Gesture space
	Creating a Gesture
	Gesture Features
	Forming Gesture Space

	Crowd Motion Space
	Generating Motion Models
	Generating a New Crowd Motion Model
	Applying the Generated Motion Model

	Experimental Results
	User Input Analysis
	Classification
	Producing Crowd Motions
	Computational Costs and 3D Rendering

	Discussion
	Handling User Variations in Gestures
	Recognising User Gestures
	Generating Crowd Motion

	Summary

	Conclusion
	Findings and Contributions
	Limitations and Future Research Directions
	Combining Flexible Control with Environment Interactions
	Controlling Group Interactions
	User Control Over Low-Level Character Interactions
	Controlling Non-Planar Crowd Movement & Particle Systems

	Publications and Acknowledgements:

	Bibliography

