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Abstract

Human movement disorders encompass a group of neurological conditions that

cause abnormal movements. These disorders, even when subtle, may be sympto-

matic of a broad spectrum of medical issues, from neurological to musculoskeletal.

Clinicians and researchers still encounter challenges in understanding the underly-

ing pathologies. In light of this, medical professionals and associated researchers

are increasingly looking towards the fast-evolving domain of computer vision in

pursuit of precise and dependable automated diagnostic tools to support clinical

diagnosis. To this end, this thesis explores the feasibility of the interpretable and

accurate human movement disorders analysis system using graph neural networks.

Cerebral Palsy (CP) and Parkinson’s Disease (PD) are two common neuro-

logical diseases associated with movement disorders that seriously affect patients’

quality of life. Specifically, CP is estimated to affect 2 in 1000 babies born in the UK

each year, while PD affects an estimated 10 million people globally. Considering

their clinical significance and properties, we develop and examine the state-of-the-

art attention-informed Graph Neural Networks (GNN) for robust and interpretable

CP prediction and PD diagnosis.

We highlight the significant differences between the human body movement

frequency of CP infants and healthy groups, and propose frequency attention-

informed convolutional networks (GCNs) and spatial frequency attention based

GCNs to predict CP with strong interpretability. To support the early diagnosis of

PD, we propose novel video-based deep learning system, SPA-PTA, with a spatial

pyramidal attention design based on clinical observations and mathematical the-

ories. Our systems provide undiagnosed PD patients with low-cost, non-intrusive

PT classification and tremor severity rating results as a PD warning sign with

interpretable attention visualizations.
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Chapter 1

Introduction

Human movement disorders refer to a group of neurological conditions that

cause abnormal movements. Such abnormal movements are categorized into in-

creased movements (e.g., tremors, dystonia) or decreased movements (e.g., Par-

kinsonism). Since even subtle movement disorders can be a sign of a variety of

conditions ranging from neurological disorders to musculoskeletal problems, accur-

ate diagnosis of movement disorders and potential related neurological conditions

is highly relied on experienced neurologists. However, with an aging population

and a projected increase in neurological diseases countries all over the world do

not have enough clinicians to meet patient needs [3]. For example, there was only

one consultant neurologist per 91,175 of the population in the UK based on a neur-

ology workforce survey in 2019 [4]. Hence, medical professionals and associated

researchers are increasingly looking towards the fast-evolving domain of computer

vision in pursuit of precise and dependable automated diagnostic tools to support

clinical diagnosis [5].

Automated human action recognition (HAR) has been a rapidly evolving re-

search field for several years [6]. By identifying and classifying human actions, it

can be applied in surveillance systems to detect suspicious or dangerous activities,

autonomous driving systems to predict pedestrian behavior, and other applications

like human-computer interaction, video retrieval, and sports analysis. In addition,
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1. Introduction

HAR provides healthcare monitoring solutions to ensure the safety of patients or

the elderly through risky activity detection or prediction, such as fall prediction and

other irregular human movements detection. Specifically, human pose estimation

algorithms provide informative 2D or 3D skeletal data from RGB videos or depth

maps. These representations are less affected by backgrounds, relatively robust

to occlusions, easy for visualization and interpretation, and cost-effective both in

data acquisition and computation, such that they are suitable for real-world clinical

applications.

For the skeletal data mentioned above, traditional deep learning methods, such

as convolutional neural networks (CNNs) and recurrent neural networks (RNNs),

encounter difficulties in processing non-Euclidean structured data (e.g., graphs or

manifolds) due to the lack of the inherent flexibility to handle the variability of

node-wise connections and distances. This prompted researchers to propose graph

neural networks (GNNs) specifically designed to learn graph structure data. Spe-

cifically, GNN is designed to process graph data composed of nodes and edges, and

capture the topology in the data and the complex relationships between nodes.

Since the concept of GNN was proposed, GNNs have achieved remarkable results

in various fields, such as social network analysis [7], biomedical engineering [8],

transportation networks [9], and recommendation systems [10], providing a new

perspective for processing and understanding graph-structured data.

In this thesis, we aim to develop state-of-the-art GNNs for analyzing the

graph-structure human pose features extracted from video recordings to develop

automated disease diagnosis systems. We further complement our system with ad-

ditional clinical guidance to make them more accurate, robust, and whose decisions

can be explained by humans. We wish such automated diagnostic tools could not

only be used to assist clinicians in making more comprehensive and precise dia-

gnoses but also offer low-cost diagnostic support for regions with limited clinical

resources.

2



1.1. Research Challenges and Methodology Overview

1.1 Research Challenges and Methodology Overview

This section introduces two critical human movement-based diseases we ana-

lyze in this thesis: cerebral palsy (CP) and Parkinson’s disease (PD) analysis.

Although CP and PD are distinct neurological disorders, the movement patterns

of their patients show significant differences from those of healthy people, making

them suitable for classification using neural networks. Our research found that the

framework of extracting pose features from patient video records and then using a

GNN-based classification model to diagnose diseases related to human movement

demonstrated reliable interpretability and accuracy. In the following subsection,

we first discuss the motivations and challenges associated with each disease and

then present an overview of the methodologies used for their analysis.

1.1.1 Cerebral Palsy Prediction

Robust and interpretable identification of infants at high risk of cerebral palsy

(CP) is critical for early intervention. CP is one of the most prevalent physical

disabilities affecting children and occurs in around 2 out of 1,000 live births [11].

In general, the average diagnosis period of CP is formulated to families when the

child is approximately 11 months old, but the diagnosis may be delayed until 24

months for those with milder symptoms [12]. As intervention programs are required

to commence before the age of 6 months [13], this may result in late intervention

and irreversible harm to the patient’s life [14].

To detect whether an infant is at high risk for CP, clinical methods prefer a

combination of standardized tools in conjunction with clinical history. One of the

most predictive tools is the video-based General Movements qualitative Assessment

(GMA) [15]. General movements (GMs) are spontaneous movements and involve all

body parts. They emerge during early fetal life and disappear when goal-directed

motor behavior emerges around 4–5 months corrected age (CA). The form of typical

3



1.1.1. Cerebral Palsy Prediction

GMs changes as a result of developmental transformations of the nervous system. In

the last phase, at 2 to 5 months CA, GMs have a ‘fidgety’ character. Fidgety GMs

(FMs) occur irregularly all over the body and consist of a continuous stream of tiny

elegant movements. During each phase, typical GMs are primarily characterized by

complexity and variation [16]. GMs are considered abnormal when their complexity

is reduced. However, GMA requires a high level of expertise in the assessors, which

impedes the application in broad clinical practice [17]. In pediatric practice, there’s

a growing need for an automated, user-friendly screening tool as a substitute for

expert-dependent GM video ratings [18]. Therefore, for broad applicability, this

computer-aided diagnostic tool should be sensitive, accurate, affordable, and permit

free movements [19].

Although existing pose-based systems achieved great progress in CP predic-

tion [20, 21, 22], most of the existing models’ performance was constrained because

they predominantly focus on spatial pose features, which cannot fully represent

complex human movements. In addition, interpretability is a critical factor for

the clinical validation and practical application of these systems [23]. Despite

its importance, there has been limited research on developing methodologies to

visualize the detailed decision-making process within complex deep learning frame-

works [20]. Effective visualization techniques, such as attention maps or feature

attribution methods, are vital for medical applications, as they can provide insights

into the model’s reasoning, thereby increasing clinician confidence and facilitating

the adoption of computer-aided tools in real-world healthcare settings.

To address the above key challenges, we design our CP prediction systems

based on two key observations: (i) clinicians indicates a significant difference

between CP infants’ frequency of human movement and that of the healthy group,

specifically, Rahmati et al. [24] found that compared with very low or high-frequency

ranges, the middle-to-low frequency range data showed more differences between

the healthy group and the CP group; (ii) we found that the infants’ joint position

data in the high-frequency domain is mainly caused by data noise, such as the mis-
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detected joint position by the pose extraction algorithm. Furthermore, the theory

of time-frequency consistency [25] demonstrates that frequency domain information

is complementary to the spatial domain. Based on these, we hypothesize that mod-

eling CP in the frequency domain could lead to more informative representation

learning compared to the spatial domain.

In our first CP prediction work [26] (Chapter 4), we propose a frequency-

binning mechanism and a graph convolution network to improve the performance

of CP prediction with better interpretability. Firstly, we employ a pose estimation

algorithm, namely OpenPose [1] to extract the human joint position data from the

RGB video sequences as the input to our system. Then, we propose an automatic

frequency-binning module suitable for videos with different frame rates to reduce

data noise and the percentages of less-informative high-frequency movements in

the whole video sequence for improving CP prediction accuracy. We propose to

investigate the use of GNN in the analysis of human movement diseases, such as CP,

since the graph-based structure with nodes and edges offers enhanced capacity and

interpretability for modeling human pose data. In addition, the existing publicly

available dataset for CP prediction, MINI-RGBD [27], only consists of a limited

number (i.e., 12) of synthetic infant body movement video recordings, resulting in

network training and system evaluation that lack strong robustness. Therefore, our

team has collected the RVI-38 dataset as part of routine clinical care at the Royal

Victoria Infirmary (RVI) in Newcastle upon Tyne, UK. It includes 38 RGB video

sequences of different infants aged between 12 to 21 weeks, with an average video

length of 3 minutes and 36 seconds. We make the pose data of the RVI-38 dataset

available to the community to encourage research in this field.

During the above CP prediction work, we further identified three limitations

in CP prediction systems. First, existing studies lack a holistic framework to learn

both spatial and frequency information [26, 28], where spatial information could be

complementary to frequency information, and both contribute to a more compre-

hensive understanding of CP. Because analysis in the frequency domain primarily
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focuses on identifying specific patterns, such as abnormal muscle contractions and

rhythmic movement, while spatial domain analysis provides insights into the gen-

eral physical movements and postures of individuals. Second, while interpretability

is crucial for clinical validation and real-world application [23], existing work has

limited focus on visualizing the decision process of complex deep learning [20, 26].

Third, whilst the efficacy of pose-based methods is intrinsically linked to the qual-

ity of pose features, the de facto pose extraction method, OpenPose, results in less

accurate body joints, particularly during self-occlusion [29, 26].

To this end, we further propose a novel two-stream Spatial and Frequency

Attention-based Graph Convolutional Network (SAFA-GCN) to fuse the spatial

pose and the movement frequency features for robust CP prediction (Chapter 5).

Our SAFA-GCN includes a spatial attention module, a masked-frequency attention

module, and a clipping-and-fusion method to improve model prediction accuracy

and interpretability, facilitating the visualizations of significant human joints, fre-

quency bands, and time ranges during CP prediction. Finally, we supplement CP

datasets with new and more accurately extracted pose features.

1.1.2 Parkinson’s Disease Analysis

We transfer and validate our research insights and methodologies from the

CP prediction project into Parkinson’s disease (PD) analysis, as PD is the second

most common progressive neurological disease affecting a wider population, with

an estimated 10 million people worldwide [30]. It is characterized by the loss of

dopaminergic neurons within the substantia nigra region of the brain, resulting in

motor dysfunction [31]. Existing PD diagnosis is mainly based on the clinical assess-

ment of PD symptoms, medical history, l-dopa and dopamine responses [32]. The

clinical diagnostic accuracy is approximately 73%-84% [33], and may be affected

by medical experts’ subjective opinions and experiences. An automatic, efficient,

and interpretable PD assessment system would support clinicians in making more

robust diagnostic decisions.
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Recent research in PD diagnosis with machine learning using human-centric

visual, audio, and movement features has shown promising results. Models based

on neuroimaging [34] and cerebrospinal fluid biomarkers [35] provide an accur-

ate diagnosis but are costly and intrusive, making them unsuitable for large-scale

pre-diagnosis. Non-intrusive methods with speech [36] are limited by their general-

izability due to the significant difference in language and pronunciation for patients

from different geographical areas. Although gait disturbance is not typically the

primary symptom of early-onset PD [37, 38], over 70% of these patients exhibit

at least one form of tremor [38]. Hence, identifying Parkinson’s Tremor (PT) is

seen as a more generalizable approach for assisting in early PD diagnosis. To date,

hand tremors-based studies mostly rely on wearable sensor data [39]. However, the

use and set-up of wearable technology may be time and resource-consuming [39].

Video-based analysis with consumer-grade cameras is preferable as a more cost-

effective solution without disrupting the natural behavior of the participants.

To this end, we propose to support PD diagnosis by classifying PT since it is

one of the most predominant symptoms of PD with strong generalisability. Dif-

ferent from other computer-aided time and resource-consuming PT classification

systems that rely on wearable sensors, we propose the first GNN-based PT analysis

system, SPA-PTA, to provide undiagnosed patients with low-cost PT classification

and tremor severity estimation results as a PD warning sign via only consumer-

grade non-intrusive video recordings. In addition, we propose a novel attention

module with a lightweight pyramidal channel-squeezing-fusion architecture to ex-

tract relevant PT information and filter the noise efficiently. This design aids in

improving both classification performance and system interpretability. Our solu-

tion outperforms existing ones in PT analysis, achieving 91.3% accuracy and 80.0%

F1-score in PT classification, 76.4% accuracy and 76.7% F1-score in tremor rating

classification.
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1.2 Summary of Contributions

Our research demonstrates the effectiveness of incorporating clinical knowledge

into existing deep neural network (DNNs), specifically, GNN frameworks for im-

proving system accuracy and robustness. In addition, we flexibly apply and develop

attention mechanisms to interpret CP prediction and PT analysis. Specifically, our

contributions can be summarized as follows:

• In the CP prediction project, we propose two attention-informed GNNs to

accurately predict CP by only using the pose features extracted from non-

intrusive consumer-grade RGB videos.

• We develop the first frequency attention informed CP prediction GNN, namely

FAIGCN, by modeling frequency features to support CP prediction and inter-

pret it in the frequency domain. In addition, we designed a frequency-binning

module that can be applied to machine learning networks for videos with dif-

ferent frame rates to improve the CP prediction performance.

• We further improve the CP prediction performance by proposing a novel two-

stream GNN, namely SAFA-GCN, to fuse complementary spatial poses and

movement frequency features, validated with MINI-RGBD and RVI-38 using

a more robust evaluation protocol.

• Our final CP prediction solution, SAFA-GCN, further improves both the

interpretability and prediction accuracy by following designs:

(1) Spatial-wise and frequency-wise attention modules allow the visualizations

of which joints and frequency bands contribute to a prediction.

(2) A clipping-and-fusion method that analyzes individual temporal clips and

fuses the results for a final prediction, allowing the visualization of when the

movements are significant for making a prediction.
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• We supplement the MINI-RGBD and RVI-38 datasets with new and more

accurately extracted posture features, and conduct a comprehensive bench-

mark analysis on leading methods, demonstrating a consistent performance

enhancement. We make the pose data of these datasets available to the com-

munity to encourage the research in this field.

• In the PD analysis project, we propose a GNN, namely SPA-PTA, to diagnose

PD through PT classification and provide tremor severity estimation.

• We propose a novel attention module with a lightweight pyramidal channel-

squeezing-fusion architecture to capture the self, short and long-range joint

information specific to PT and filter noise. This design aids in improving

both classification performance and system interpretability.

• We evaluate the leading systems via a more challenging individual-based

leave-one-out cross-validation to improve system robustness, our SPA-PTA

outperforms existing ones in PT analysis, achieving 91.3% accuracy and

80.0% F1-score in PT classification, 76.4% accuracy and 76.7% F1-score in

tremor rating classification.

• Our works demonstrate the effectiveness and efficiency of computer-assisted

technologies in supporting the CP prediction and the diagnosis of PD non-

intrusively. Our systems provide the CP and PT classification warning sign

for supporting the CP prediction and the diagnosis of PD in resource-limited

regions where the clinical resources are not abundant.

• We open our source code of each project for validation and encourage further

development in related areas.

1.3 Thesis Structure

The structure of the remainder of the thesis is as follows: In Chapter 2, we first

provide a comprehensive literature review on computer-aided CP prediction and
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PD analysis methods. Then, we discuss two critical deep learning techniques that

highly effective and relevant to CP prediction and PD analysis tasks: the attention

mechanism and GNNs.

In Chapter 3, we cover the technical details of two major deep learning tech-

niques in this thesis: the attention mechanism and Graph Convolutional Networks.

In Chapter 4, we provide the initial insight and research outcome about devel-

oping an interpretable GNN with an attention mechanism for CP prediction. We

also highlight the significant differences in joint motion frequencies between CP

infants and healthy groups, which can be effectively learned by frequency-informed

GCNs. In addition, we further identified three limitations in existing CP prediction

systems, which will be addressed in Chapter 4.

In Chapter 5, we provide full details of our improved CP prediction model,

SAFA-GCN, with higher accuracy, stronger robustness, and better interpretability.

We also introduce a more robust evaluation protocol and corresponding perform-

ance benchmarks to aid future research in this area.

In Chapter 6, we provide details of the proposed PT classification and tremor

severity estimation framework with novel GNN design to support PD analysis. We

provide information related to qualitative visualization results of the experimental

performance and clinical significance of the proposed method.

In Chapter 7, we conclude the research outcome of my PhD study and then

provide a comprehensive discussion of my research experience, research limitations,

and future directions in this research area.
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Chapter 2

Literature Review

In this chapter, we introduce some background knowledge of the two target dis-

eases (i.e., CP and PD) in the thesis, along with the deep learning methods that are

applied or can be transferred into the analysis of these two diseases. We first review

the mainstream clinical infant CP assessment tool - the general movement assess-

ment. Then, several existing computer-aided CP automatic prediction methods

are introduced. Besides, we provide an overview of various machine learning-based

methods for PD detection. After that, we specifically discuss two key deep learn-

ing techniques that highly effective and relevant to CP prediction and PD analysis

tasks: the attention mechanism and GNNs.

2.1 Cerebral Palsy Prediction

This section introduces the clinical aspects and computer-aided perspectives

of CP. It covers its prevalence, prognosis, associated developmental milestones, and

the impact on individuals diagnosed with CP. Additionally, the section discusses

the primary diagnostic tool for predicting CP, the General Movement Assessment

(GMA), along with existing methods for its automated prediction. Furthermore,

we introduce the current frequency analysis techniques for understanding infants’

movements and predicting CP, emphasising the research gaps that merit further

investigation.
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2.1.1 Cerebral Palsy and the General Movement Assessment

Cerebral palsy (CP) is an umbrella term that covers a variety of persistent

neurological conditions. Essentially, CP mainly impairs the patient’s mobility,

muscle tone, posture, and coordination, such that CP is considered a human move-

ment disorder. In addition to these cardinal symptoms, infants with cerebral palsy

may experience many other challenges, including dysphagia and speech articulation

problems, hearing deficits, vision problems, epilepsy, gastroesophageal reflux dis-

ease, and learning disabilities [40]. CP symptoms vary significantly in severity, with

some people experiencing relatively mild symptoms such as motor impairments,

while others are severely disabled and face significant challenges in undertaking

daily activities.

CP stands out as a significant physical disability in children, presenting itself in

about 2 per 1,000 live births [11]. Typically, families are alerted to a CP diagnosis

around the child’s 11th month. However, in cases showcasing less overt symp-

toms, this diagnostic timeframe could extend to 24 months [12]. Considering that

interventions ideally start by the 6th month [13], delays can lead to missed thera-

peutic windows, potentially introducing irreversible consequences for the patient’s

future [14]. Therefore, early diagnosis and intervention are clinically considered

the paramount part of treating CP.

For a number of years, the pursuit of a reliable early diagnosis for CP has been

at the forefront of medical research. Multiple physical examinations have shown

potential in identifying early signs of the CP condition by focusing on infants’

muscle tone, engagement, and coordination. Additionally, they consider the preci-

sion and intricacy of infants’ spontaneous movements during specific developmental

milestones. Among these physical examinations, the Prechtl’s General Movements

Assessment (GMA) [15] achieves the most prominent accuracy and reliability. The

GMA is a non-invasive physical assessment tool for identifying neurological anom-

aly conditions that could potentially result in CP. GMs involve the whole body,
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mainly in different sequences of neck, arm, trunk, and leg movements [16]. Around

6-9 weeks after full term, a specific type of GMs known as “fidgety movements”

(FMs) gradually occurs, replacing the previously observed “writhing movements”,

and persists until approximately 16-20 weeks [15]. FMs refer to subtle neck, trunk,

and limb movements in various directions and at different accelerations [41]. [15]

proposed that infants with a compromised nervous system exhibit a deficiency in

FMs, which were associated with CP.

Existing studies have supported the argument of the high relationship between

FMs and CP. Ricci et al. [42] proposed that lack of FMs can be considered a crucial

indicator for identifying abnormal GMs, thus helping to predict CP. In addition,

a systematic review incorporating 47 studies concluded that GMA during the fid-

gety period exhibits the highest sensitivity (97%) and specificity (89%) among the

currently available CP prediction methods [43]. Moreover, as most infants were

no longer hospitalized during the fidgety period, the authors encouraged parents

to utilise technologies such as smartphone applications to facilitate remote captur-

ing of infant movements during this critical age. This perspective supports the

development of video-based CP prediction systems.

2.1.2 Automated CP Prediction Systems

While GMA has been extensively proven as an accurate and reliable non-

invasive tool for predicting CP, training a proficient GMA assessor still requires

substantial investment. Therefore, several studies in the past decade have focused

on developing automated CP prediction methods based on GMA. Pioneering re-

search in this field [44] introduced a method that utilized differences between suc-

cessive frames to generate a depiction of infant movements for abnormal movement

classification. However, this method relies on the difference of images as feature

representations, making it heavily affected by self-occlusion issues and potential

camera motion constraints. After that, Orlandi et al. [45] used the Large Shift Op-

tical Flow (LDOF) to track the baby’s movement and gain speed. Before extracting
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features for classification, they calculated the displacement of each pixel within ten

frames. In addition, they binary classified the extracted features to determine

normal or abnormal general movements using multiple classifiers. [46] proposed a

method for early prediction of CP based on GMA theory with RGB videos. They

explored human pose recognition in a supine position based on RGB-D videos and

applied it to auto-GMA. Specifically, they employed the pose estimation method on

RGB images to achieve the infant full-body 2D key points. By combining the depth

information, the 3D movement of the infant in a supine position is obtained. Then,

they achieved the infant’s movement complexity index by extracting the infant’s

whole-body movement characteristic. However, the robustness of the extracted fea-

tures in these studies still significantly suffers from noise introduced by occlusion,

drift, and susceptibility to unrelated movements. For example, the optical flow-

based feature extraction method employed in [45] faces challenges in addressing the

incomplete data issue caused by occluded body parts, hindering accurate motion

reconstruction.

Conventional machine learning-based CP prediction methods were mainly in

2D space. Das et al. [47] proposed a machine learning-based algorithm by using

KAZE points to track infant kicking and collect kinematic data. Each type of

movement was classified by computing unique feature criteria and learning motion

models using support vector machines (SVM). Ihlen et al. [48] presented a ma-

chine learning model, namely the Computer-based Infant Movement Assessment

(CIMA) model, for clinically feasible early CP prediction based on infant video

recordings. The CIMA model was designed to use time-frequency decomposition

of the movement trajectories of the infant’s body parts to assess the proportion

of movements related to the risk of CP. A linear discriminant analysis (LDA) was

used to classify common movements in children with and without CP. However,

infant movements have complex temporal patterns [46], which requires the use of

more advanced computing techniques and more predictive feature learning, such

as deep learning models with technical designs for representation learning that can
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handle temporal dynamics and nonlinearity.

In the past few years, deep learning frameworks with pose estimation pro-

cesses have been applied to automated CP prediction systems, yielding promising

results. McCay et al. [29] explored the feasibility of extracting pose-based fea-

tures from video sequences to automatically classify infant body movement into

two categories: normal and abnormal. They further proposed a fully connected

deep learning network and four Convolutional Neural Network (CNN)-based deep

learning architectures to classify the abnormal movements of CP infants by using

the histogram of joint orientation 2D and joint displacement 2D features, achieved

the highest prediction accuracy of approximately 92%. On the same dataset, [49]

achieved similar CP prediction performance by incorporating a SENet [50] based

CNN, significantly enhancing the interpretability. Additionally, [51] utilized 3D

graph convolution to extract spatial-temporal information, followed by an online

detection process and an unsupervised pseudo-label generation process to augment

the data and improve both model capacity and performance. However, the robust-

ness and generality of their proposed method have not been fully evaluated since

the results are obtained from a single small dataset. In addition, the robustness of

these methods is constrained as they have only been evaluated on a single dataset

with a single data-splitting strategy.

2.1.3 Frequency Analysis in CP Prediction

One of the earliest frequency-based studies of analysing CP is from Rahmati

et al. [24]. Specifically, Rahmati et al. [52] first conducted motion segmentation on

accelerometer sensor data and RGB video data, and extracted the following three

features for classifying CP via the support vector machine(SVM) classifier: areas

beyond the standard deviation of the moving average; periodicity; and correla-

tion between trajectories. Based on this, in [24], they performed a frequency-based

analysis of accelerometer data, where the movement frequency components were ex-

tracted by employing the Fourier transform on the accelerometer sequences. They
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provided a result that compared with high-frequency ranges, the middle-to-low

frequency range showed more differences between the healthy group and the CP

group.

Mills et al. [53] designed a controlled experiment for 11 youth with CP and

16 typically developing (TD) youth aged 7–17 years. Their research indicated that

youth with CP behaved like age-matched TD controls at lower frequencies (0.1 and

0.25Hz) during the experiment. In addition, they noted that youth with CP were

less able to maintain balance at high oscillation frequencies.

In the study by Stahl et al. [54], a method based on optical flow was introduced,

which predicts CP through statistical analysis and pattern recognition of an infant’s

spontaneous movements. Wavelet frequency analysis was employed to evaluate the

temporally correlated trajectory signals found in the optical flow data. However,

there were challenges in tracking more significant movements using this optical flow

technique, suggesting future analyzes might benefit from videos captured at higher

frame rates.

Mccay et al. [28] proposed two histogram-based hand-crafted frequency fea-

tures, namely Fast Fourier Transform of Joint Displacement (FFT-JD) and Fast

Fourier Transform of Joint Orientation (FFT-JO) from the extracted pose sequence

from RGB videos. These features provided information on the magnitude of every

frequency component extracted from the movement, alongside information on the

stiffness, directional shifts, and movement extent linked to the infant’s posture.

Such insights facilitate a thorough modeling of the infant movement’s variability.

By classifying CP with an ensemble machine learning classifier, they observed that

CP samples showed more low-frequency angular movement at the joints, consistent

with their expected characteristics of smoother movements.

Although existing pose-based systems achieved great progress in CP predic-

tion [20, 21, 22, 26, 51], there are three critical limitations that still need to be ad-

dressed. Firstly, most of the existing models’ performance was constrained by the
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fact that only spatial pose features are modelled, which cannot fully represent com-

plex human movements [20, 22, 51]. Those integrating frequency domain analysis

lack a holistic framework to learn both spatial and frequency information [26, 28].

Secondly, while interpretability is crucial for clinical validation and real-world ap-

plication [23], existing work has limited focus on visualising the decision process of

complex deep learning [20, 26]. Finally, while the efficacy of pose-based methods

is intrinsically linked to the quality of pose features, the de facto pose extraction

method, OpenPose, results in less accurate body joints, particularly during self-

occlusion [29, 26].

Despite the significant advancements in CP prediction by existing pose-based

systems [20, 21, 22, 26, 51], three pivotal limitations persist. First, the perform-

ance of existing models is hampered as they primarily model only spatial pose

features, inadequately capturing the intricacies of human movement [20, 22, 51].

Approaches that incorporate frequency domain analysis miss an integrated frame-

work to analyze both spatial and frequency details simultaneously [26, 28]. Second,

while the system interpretability is paramount for clinical validation and prac-

tical application [23], there’s a noticeable gap in the existing literature concerning

the visualization of decision-making processes within intricate deep learning sys-

tems [20, 26]. Lastly, the effectiveness of pose-based techniques heavily relies on

the quality of pose features. However, the commonly adopted method for pose ex-

traction, OpenPose, tends to misinterpret body joints, especially during instances

of self-occlusion [29, 26].

2.2 Parkinson’s Disease Analysis

This section delves into clinical aspects and computer-assisted perspectives of

PD. We explore its prevalence, main symptoms, and impact of PD on patients. We

also discuss the various major diagnostic methods used for PD detection. In ad-

dition, we also introduce different existing computer vision methods for analyzing
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PD, including but not limited to Parkinson’s gait (PG) classification and Parkin-

son’s tremor (PT) quantification. Lastly, we highlight the research gap in the field

of PD diagnosis for further Research.

2.2.1 Parkinson’s Disease Background

Parkinson’s disease (PD) is a recognisable clinical syndrome with a range of

causes and clinical presentations. PD represents a fast-growing neurodegenerat-

ive condition; the rising prevalence worldwide resembles the many characteristics

typically observed during a pandemic, except for an infectious cause. In most pop-

ulations, 3–5% of PD is explained by genetic causes linked to known PD genes,

thus representing monogenic PD, whereas 90 genetic risk variants collectively ex-

plain 16–36% of the heritable risk of non-monogenic PD [55]. Additional causal

associations include having a relative with PD or tremor, constipation, and being

a non-smoker, each at least doubling the risk of PD.

The diagnosis is clinically based; ancillary testing is reserved for people with

an atypical presentation. Current criteria define PD as the presence of bradykin-

esia combined with either rest tremor, rigidity, or both. In addition, PD symp-

tom is visible during the gait and general posture of patients [56]. Prognostic

counselling is guided by awareness of disease subtypes. Clinically manifest PD is

preceded by a potentially long prodromal period. Presently, the establishment of

prodromal symptoms has no clinical implications other than symptom suppression,

although recognition of prodromal parkinsonism will probably have consequences

when disease-modifying treatments become available. Treatment goals vary from

person to person, emphasising the need for personalised management. There is no

reason to postpone symptomatic treatment in people developing a disability due

to PD. Levodopa is the most common medication used as first-line therapy. Op-

timal management should start at diagnosis and requires a multidisciplinary team

approach, including a growing repertoire of non-pharmacological interventions. At

present, no therapy can slow down or arrest the progression of PD. Therefore, an ef-
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ficient and interpretable automatic PD diagnosis system is valuable for supporting

clinicians with more robust diagnostic decision-making.

2.2.2 Gait-based and Tremor-based PD Detection

Due to the specificity and significance of Parkinson’s gait, some existing meth-

ods classify Parkinson’s gait to detect Parkinson’s disease. Aversano et al. [57]

proposed a deep learning method for early detection of PD. This method detects

PD and the severity of PD by analysing data extracted from wireless sensors. The

identification feature they used was the dynamics of the Vertical Ground Reaction

Force (VGRF). They employed two deep neural networks to classify PD subjects

from healthy subjects, and the best validation accuracy outperformed the other

studies on the same dataset. Alharthi et al. [58] proposed a deep CNN to ana-

lyze the data of gait-induced ground reaction force for PD patients and healthy

subjects. They further employed layer-wise relevance propagation to make the

model’s output interpretable and investigate the most significant feature in the

spatial-temporal gait ground reaction force signals for PD prediction. Alle and

Priyakumar [59] use Linear Prediction Residuals to extract discriminating patterns

from gait recordings and then use a 1D convolution neural network with depth-

wise separable convolutions to perform diagnosis. The proposed network achieved

an AUC of 0.91 with a 21 times speedup and about 99% lesser parameters in the

model compared to the methods at that time. The ability of the proposed net-

work to identify Parkinsonian gait accurately while being small and fast opens new

avenues for it to be deployed in embedded systems with limited memory.

Tremor-based PD detection approaches are mainly using the accelerometer

sensor data from different human body parts (e.g. wrist, knee and hip). Kim

et al. [60] proposed the first CNN-based framework aiming for estimating clinical

Parkinsonian tremor (PT) score by using the data collected from the wrist sensor.

They also proposed a 2D image representation for training CNN models by trans-

forming sensor data into the frequency domain using the fast Fourier transform. As
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a result, their CNN structure outperformed the previous machine learning-based

methods (e.g. random forest, decision tree) by validating their networks on a data

set with 143 case sizes. Zhang et al. [61] proposed two CNN-based deep learning

algorithms to distinguish PD symptoms with controlled groups by classifying PT

class with non-PT class. In addition, they compared CNN on raw sensor data and

handcrafted data to show that CNN benefited from training on data decomposed

into tremor and activity spectra rather than raw accelerometer sensor data. Oktay

and Kocer [62] focused on the differential diagnosis of PT and essential tremor

(ET). They employed a convolutional LSTM network to classify the PT and ET,

and evaluated their method on a dataset of 23 PD patients and 17 ET patients. The

results showed the feasibility of convolutional LSTM on differentiation of tremor.

However, they also proposed that their methods showed a 10% lower performance

(recall) on postural position than testing position for PT classification.

2.2.3 Automatic Video Analysis on PD

Researchers have invented a few automatic methods to analyze PD videos.

The early typical automatic methods primarily focus on the extraction of mainly

human skeletal data from patients as the first step, followed by the utilization

of machine learning classifiers or statistical methods on these skeleton data to

achieve the relevant medical objectives [63, 64, 65, 66, 67, 68]. Recently, deep

learning methods are also used for modeling human skeletal data extracted from

PD videos to increase model capacity for better performances. Guo et al. proposed

a sparse adaptive graph convolutional network to achieve automatic leg agility

(LA) assessment for PD patients with an accuracy of 98.85% [69]. Lu et al. used

human skeletal data to train a Double-feature Double-motion Network with focal

loss [70, 71], which achieved reasonable predictions of MDS-UPDRS scores for PD

gait [72, 73]. Besides whole body skeleton information, few studies demonstrated

hand skeleton information can also be effectively employed to detect and assess

Parkinson’s disease (PD) tremors through training with common deep learning
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techniques such as Long Short-Term Memory (LSTM) or graph neural network

(GNN) [74, 75, 76]. In addition, some studies also extracted the feature from RGB

frames and optical flow data directly to train their network and also realise accurate

performance for automatic PD severity assessment [77, 78].

Although neuroimagings [79] or cerebrospinal fluid [80] based models perform

well, they face a problem of high cost and intrusive. As for the non-intrusive

methods, current speech-based models [81] are limited by their generalizability, as

the language and pronunciation habits of people in different regions and countries

vary significantly. Several studies [82, 83] indicate that gait disturbance is less

likely to be the main symptom in patients with early-onset PD, but more than

70% of those patients present at least one type of tremors [84, 85, 83]. Hence,

we believe that detecting PD by diagnosing Parkinson’s Tremor (PT) is a more

generalizable approach compared with other methods. Conventional hand tremors-

based studies [86] achieve promising performance by using a deep learning network

on wearable sensor data to detect PD. However, using wearable sensors is still time

and resource-consuming [86], and requires careful synchronization of data captured

from different sensors.

This section discusses the existing graph neural networks (GNNs) and atten-

tion mechanisms within the medical domain and explores their potential applic-

ation in human movement disease diagnosis. Considering the real-world clinical

applications, this section is focused on the interpretability and robustness within

the attention-informed GNNs.

2.3 Attention Mechanisms

This section introduces several typical attention mechanisms and discusses

their potential applications in diagnosing human movement diseases. Given the

importance of real-world clinical applications, the focus is on how various atten-

tion mechanisms can enhance interpretability of deep learning models and improve
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performance.

2.3.1 Spatial Attention Mechanism

. Spatial attention is a mechanism that adaptively selects specific spatial

feature regions to focus on [87]. The prevalent method for achieving spatial at-

tention in image data typically involves training a sub-network or constructing a

dot product between the query and key, aiming at generating a predictive attention

map for the features. [88, 89, 90, 91]. In the case of graph data, Velickovic et al. [92]

introduced this approach to the adjacency matrix by proposing the Graph Atten-

tion Network (GAT), which assigns varying weights to the relationships between

relevant nodes and provides a solution to achieve spatial attention calculation in

graph domain.

Recent researches [93, 94, 95] have applied spatial attention mechanisms to the

task of human action recognition by modeling skeleton information, demonstrating

superior performance in both improving accuracy and enhancing interpretability.

In our projects of CP prediction and PD analysis that involves the graph repres-

entation learning of the human pose, the attention mechanism in the adjacency

matrix can show the importance of different joints (nodes) or bones (edges) in the

task of current GNNs. This characteristic is aligns well with the real-world need for

interpretable deep learning models in medical research and applications. Despite

this, there has yet to be any exploration into the application of spatial mechanism

within the analysis of CP and PD video data.

2.3.2 Channel Attention Mechanism.

Channel attention is a channel feature recalibration method that adaptively

selects the most informative features while suppressing the less relevant ones. Such

a mechanism enables neural networks to identify and focus on the most relevant

features. Hu et al. [50] introduces the squeezing-and-excitation network (SENet),
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an effective approach for learning channel-wise attention weights, thereby enhan-

cing the generalization capabilities of DNNs. Due to its practicality and innovative

approach, the squeeze-and-excitation process pioneered by SENet is often referred

to as the foundational form of channel attention [96, 97, 98]. The channel attention

mechanism in SENet consists of three processes, squeeze, activation, and scale.

The squeeze process in the channel attention is achieved by applying the global

average pooling (GAP) on spatial dimension to capture the global representation

features. To capture the channel-wise relationship, the excitation process employs

an multilayer perceptron (MLP) with a gated sigmoid activation function. This

design learns the non-linear relationship between channels and ensures that the

learned relationships are not mutually exclusive. The scale process applies the

channel-wise multiplication (i.e., outer product) to obtain the final output.

Existing studies propose various techniques for different tasks in the squeeze

step and/or activation step to improve the performance of the model [96, 97, 98, 99].

Based on the channel attention in SENet, SKNet [100] introduced an adaptive ker-

nel selection approach to improve the object recognition performance. Given the

significance of joint-wise relationships in analyzing human movement diseases, we

have implemented and validated several channel attention designs. These designs

aim to enhance model interpretability regarding joint-wise relationships in move-

ments and to improve diagnostic accuracy.

2.3.3 Self-Attention Mechanism.

As one of the most popular and powerful deep learning models in recent years,

transformers [101] have achieved great success in the field of natural language

processing (NLP) due to their excellent ability to analyze sequential information

(especially long-distance information). After that, they significantly promoted the

development of computer vision [102]. Therefore, it is essential to explore the

application and development of transformers in human movement disease diagnosis
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projects.

The core of the initial Transformer architecture is the self-attention mechan-

ism, which computes representations for keys, queries, and values for each element

in the input sequence. The value is a matrix where each row represents the hidden

state corresponding to an input feature. The key is also a matrix with rows that

correspond to the hidden states used to compute attention scores. The query is

another matrix that interacts with the key matrix to derive attention scores, indic-

ating the relevance of each element in the sequence to the others. These attention

scores are then used to create a weighted combination of the value rows, resulting

in a contextually enriched representation for each input element. It implies that

the larger the dot product (scaled by the dimensionality of the keys), the larger

the attention score will be. A softmax function is applied to normalise the atten-

tion weights for each query. The value matrix, is multiplied by these normalized

attention scores to create a contextually enriched representation for each input

element.

Self-attention mechanisms have predominantly revolutionized Natural Lan-

guage Processing (NLP), yet their applicability extends to Computer Vision (CV)

with notable efficacy. Wang et al. introduced non-local neural networks that con-

ceptualise each pixel location as an individual token, analogous to how words are

treated in NLP. These tokens are then utilized to attend to other pixel locations,

effectively capturing long-range dependencies within the visual data. This integra-

tion of self-attention occurs interstitially between convolutional layers, enhancing

the network’s capacity to incorporate contextual information across the entirety of

the image, which is critical for complex visual understanding tasks.

Over the recent years, various transformer-based methods have presented an

exciting performance improvement in different research areas. Ramachandran et

al. [102] proposed a full attention model that only employs self-attention lay-

ers without any convolutions for image classification. Building upon this frame-

work, Wang et al.[103] introduced a model that adopts positional encodings at the
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pixel level and leverages axial attention to sequentially attend to image rows and

columns, enhancing the model’s ability to capture spatial hierarchies. Furthering

this paradigm, Vision Transformers (ViT) [104] had redefined image processing

within neural networks by partitioning images into a series of patches. ViT then

applied self-attention across these patches layer by layer, offering a more computa-

tionally efficient alternative to pixel-level attention calculations. Xing et al. [105]

presented a ViT-based model for accurate Alzheimer’s Disease diagnosis, incorpor-

ating a projection method that projects 3D PET images into 2D fusion images to

reduce computational costs.

2.4 Graph Neural Network

This section goes through the research trend of GNNs by introducing several

notable GNN methods. Additionally, we discuss the application of existing GNN

methods within the expansive field of disease diagnosis.

Whilst conventional deep neural networks (e.g., CNN, RNN and LSTM) have

achieved impressive performance in processing structured Euclidean data such as

images, videos, and time-series data, they face challenges in handling non-Euclidean

data like graphs and manifolds, which require different architectural approaches for

effective representation learning [106]. For example, CNNs face difficulties adapting

to the irregular and dynamic connectivity inherent in graph-structured data, due

to their reliance on fixed adjacency matrices that assume a regular, grid-like topo-

logy [107]. Unlike image data, which is represented on a regular grid, graph data

lacks this uniform structure. In a graph, each node can have a varying number of

neighbors, and the spatial arrangement of these neighbors does not adhere to a fixed

pattern. To this end, researches on applying machine learning to graph analysis

has been attracted increasing interest because of the significant expressive capabil-

ity of graphs. For example, graph structures can serve as effective representations

of numerous systems in different domains, such as social networks [108], physical
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systems [109], knowledge graphs [110], and various other research areas [111].

Figure 2.1: An example of image in Euclidean space (Left) and graph in non-
Euclidean space (Right).

Graph Neural Networks (GNNs) represent a category of deep learning based

methods designed specifically for processing data within a graph domain. Because

of their robust performance and solid theoretical foundation, GNNs have recently

emerged as a widely applied method for analyzing graph-structured data, especially

for classification, link prediction, and clustering tasks. The initial research motiv-

ation for the development of GNN came from its use in the 1990s, when Sperduti

and Starita [112] used recursive neural networks to analyze directed acyclic graphs.

Later, recurrent neural networks and feedforward neural networks were proposed

in the studies of [113] and [114] respectively to solve the circular dependency prob-

lem. Although these initial attempts were successful, they relied on a process of

building a state transition system in a graph and reaching convergence iteratively,

a mechanism that limited their scalability and expressive power. The rise of deep

learning, especially CNN [115], has promoted the re-exploration of GNNs. Key

factors for the success of CNNs include the application of local connections, weight

sharing, and multi-layer structures, which are also crucial for solving graph-related

problems. However, CNNs are essentially only applicable to regular Euclidean

data structures, such as images (2D grids) and text (1D sequences), which can

actually be regarded as special cases of graphs. Therefore, extending CNN con-

cepts to graph data should be intuitive. Nonetheless, as shown in Figure 2.1, there

are still challenges in defining local convolution filters and pooling operations on
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graph data, which limits the extension of CNNs from the Euclidean domain to the

non-Euclidean domain.

In recent years, various GNNs have been proposed based on CNN and graph

representation learning to model inputs and/or outputs composed of elements and

their dependencies. In the following sections, we introduce two primary classific-

ations of GNNs: spectral-based GNNs and spatial-based GNNs. Then, the dis-

cussion extends to advanced GNN frameworks that are specifically tailored for

applications in medical research.

2.4.1 Spectral-based GNNs

Spectral-based GNNs are founded on the solid spectral graph theory and graph

signal processing [116]. They process graph data by first transforming the data into

the spectral domain using the graph Fourier transform. Convolution is then applied

within the spectral domain, specifically utilizing the eigenvectors of the Laplacian

matrix. After convolution, the representations are transformed back to the original

domain using the inverse graph Fourier transform.

In the following paragraphs, we introduces several typical spectral-based GNNs

with distinct filter designs in the convolution process.

Spectral Network. Bruna et al. [117] proposed a non-spatially localized con-

volution filter based on a learnable diagonal matrix, but suffered from high com-

putational cost. Henaff et al. [118] further improved this filter to become spatially

localized by proposing a parameterization method.

ChebNet. Based on the Chebyshev polynomial based convolution filter approx-

imation theory [119], Defferrard et al. [120] proposed the ChebNet by defining the

convolution by multiple localized Chebyshev polynomial. Therefore, this method

did not require the computation of the Laplacian eigenvectors.
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GCN. Graph Convolution Network (GCN) [121] pioneered the widespread applic-

ation of convolution operations in the field of graph structure data modeling. This

work has primarily addressed two pivotal challenges in convolution-based graph

representation learning. Firstly, GCN had countered the issue of overfitting by

simplifying the convolution operation to a lower order. Then, they had tackled the

problem of vanishing gradients by introducing a novel renormalization technique.

It is noteworthy that, due to this renormalization technique, GCNs can also be

classified under spatial-based GNNs that would be discussed in the next subsection.

AGCN. Li et al. [122] proposed the Adaptive Graph Convolution Network (AGCN)

to learn implicit relationships between different nodes, which had not been modeled

effectively in previous GNNs. Specifically, it is achieved by learning the residuals

of graph Laplacian. Extensive experiments conducted on various graph-structured

datasets had validated the effectiveness of AGCN.

GWNN. Different from the above methods that focus on improving the convolu-

tion filter and graph Laplacian, Graph Wavelet Neural Network (GWNN) proposed

to replace Fourier transform by the graph wavelet transform. This design is motiv-

ated by the benefits of efficient computation of graph wavelet transforms without

relying on matrix factorization. Furthermore, due to its sparsity and locality, graph

wavelet transform can produce more accurate and interpretable results.

Herein, spectral-based GNNs have a solid theoretical foundation, and several

theoretical analyzes have been proposed recently. However, in almost all of the

spectral approaches mentioned above, the learned filters are dependent on the graph

structure, meaning the filters cannot yet be applied to a graph with a different

structure.
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2.4.2 Spatial-based GNNs

Different from the spectral-based GNNs that rely on transforming graph data

into the spectral domain, spatial-based GNNs leverage various graph topologies to

process the convolution operations directly on the graph domain. The main chal-

lenge of the spatial-based GNNs is how to effectively define convolution operations

with neighborhoods of different sizes and maintain the local invariance in the graph

domain.

In the following paragraphs, we introduces several typical spatial-based GNNs

with distinct graph topology and convolution designs.

GraphSAGE. GraphSAGE [123] is an inductive framework for generating node

embeddings by aggregating node features from their local neighborhoods. This

framework has significantly advanced research in spatial-based GNNs, inspiring de-

velopments in models such as GCN [121], LCN [124], ST-GCN [125], and GAT [92].

LCN. Ci et al. [124] proposed the Locally Connected Network (LCN) to address

the critical limitation of the aforementioned GCN: the fixed weight-sharing mech-

anism limits the model’s capacity for the 3D pose estimation task. In particular,

LCN allocates unique convolution filters for distinct nodes, offering a more flexible

node representation learning approach.

ST-GCN. Spatial Temporal Graph Convolutional Network (ST-GCN) [125] is

a representative graph convolutional neural network for human action recognition

task by using human skeleton data. It defines different spatial temporal graph to-

pologies and node partition strategies to achieve effective representation learning

via convolutions in both domains.

2S-AGCN. To enhance the utilization of multilevel semantic information for more
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informative representation learning, Shi et al. [126] proposed the Two-Stream Ad-

aptive Graph Convolutional Networks (2S-AGCN). This model introduces a two-

stream network architecture that integrates bone information (i.e, length and dir-

ection) with skeleton information.

GAT. The Graph Attention Network (GAT) [92] pioneered the integration of the

attention mechanism within the graph propagation stage. It calculates the hidden

states of each node by employing the self-attention mechanism [101] on its neigh-

bors. Additionally, GAT leverages multi-head attention [101] for the calculation

of hidden states, subsequently fusing their features to enhance the stability the

learning process.

Compared to spectral-based GNNs, spatial-based GNNs offer enhanced flexib-

ility in graph topology design and greater scalability, largely due to their avoidance

of expensive spectral-domain transformations or the decomposition of the Lapla-

cian matrix. These advantages have led to the broader application of spatial-based

GNNs across various research areas [123, 92, 126, 127]. However, despite these be-

nefits, the development of diverse graph topologies and convolution operations in

spatial-based GNNs often encounters challenges related to the lack of solid theor-

etical foundations. This can make it difficult to understand the underlying reasons

for model performance.

2.4.3 GNNs for Disease Diagnosis

In medical diagnostics, the objective is to interpret a patient’s symptoms by

identifying the underlying diseases [128]. However, according to data from the

U.S. healthcare system, patients with serious conditions are particularly prone to

misdiagnosis, with an estimated 20% misdiagnosed at the primary care level, and

one-third of these errors leading to serious harm [129, 130]. With the fast develop-

ment of machine learning techniques in divers domain, machine learning-assisted

diagnostic technologies are hoped to radically transform the healthcare industry by
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leveraging rich patient data to deliver precise and personalized diagnoses [131, 132].

In recent years, GNN-based deep learning systems have primarily been developed

and applied for disease diagnosis through medical imaging (MI) and electronic

medical records (EMR) data, rather than in analyzing human movement disorder

videos [133]. The reason for this preference may be that the former types of data

are generally easier to collect during the routine clinical care, have a larger data

size, and contain less noise than the latter. Therefore, in the following paragraphs,

we mainly introduce GNNs for MI-based disease diagnosis and EMR-based disease

diagnosis.

MI-based Diseases Diagnosis. Due to the theoretical support from the theory

of brain connectivity [134], GNNs are considered a better alternative to traditional

CNNs for brain map analysis. Specifically, GNNs can be designed not only to learn

the degree of activation of different brain areas (nodes) but also to understand the

connectivity (edges) between them [135, 136].

Parisot et al. [136] were the first to apply graph convolutional networks to the

analysis of large-scale brain data, modeling both medical imaging and non-imaging

data at the same time. They achieved state-of-the-art results at the time in predict-

ing autism spectrum disorders and Alzheimer’s disease across two major datasets.

Utilizing quantitative susceptibility mapping (QSM) data, Tang et al. introduced a

causality-informed GCN designed to facilitate robust PD diagnosis via the applic-

ation of the invariant prediction principle and causal interventions [137]. Notably,

the features identified by this method are consistent with previous medical research

on postural abnormalities associated with PD, indicating that the proposed method

is reliable. GNNs also have shown promising performance in diagnosing brain tu-

mors. For example, Song et al. proposed an interpretable structure-constrained

GNN (ISGNN) for diagnosing glioblastoma multiforme, showcasing superior in-

terpretability in diagnostic outcomes. By utilizing a metric-based meta-learning

approach, they aggregated class-specific graph nodes and concentrated on meta-
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tasks related to multiple small graphs, thereby enhancing classification efficacy on

small-scale datasets.

EMR-based Diseases Diagnosis. With the increasing prevalence of EMR, dis-

ease prediction has gained significant research attention. Various GNNs have been

developed to train accurate classifiers that map input predictive signals (e.g., symp-

toms, patient demographics) to the estimated diseases, aiming to forecast the onset

of diseases or diagnosis the diseases.

Sun et al. [138] proposed a GNN-based model for diverse disease prediction

that enhances limited EMR data with information from external knowledge bases.

Specifically, the proposed model aggregates neighbor node information to gener-

ate embeddings that combine both of medical concept and patient record data

sources, allowing for accurate disease predictions. Lu and Uddin [139] proposed a

GNN-based framework to predict chronic disease by classifying features from latent

relationship between patients. Experimental results show that the model achieved

approximately 90% accuracy in predicting cardiovascular disease and chronic lung

disease. Moreover, Golmaei and Luo [140] proposed DeepNote-GNN to integrate

clinical note information and patient network topology, achieving significant im-

provements in 30-day readmission prediction.

In the previous parts, we discussed the methodologies and characteristics of differ-

ent attention mechanisms, as well as the researches on GNNs in MI and EMR data

modeling for disease prediction, demonstrating the significant potential of these

deep learning techniques in the field of disease diagnosis. Although these advances

are encouraging, the researches to human movement disorders has been relatively

underexplored. Therefore, our study aims to bridge this research gap by focusing

on the development of attention-enhanced GNN models specifically tailored for CP

prediction and PD analysis.
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Chapter 3

Preliminaries

In this preliminary chapter, we cover the technical details of aforementioned

two major deep learning techniques in this thesis: the attention mechanism and

Graph Convolutional Networks (GCN).

3.1 Attention Mechanisms

Considering the feasibility of improving DNNs’ interpretability through differ-

ent attention mechanisms, we introduce three baseline attention methods in this

section: the basic attention mechanism, channel attention mechanism, and self-

attention mechanism.

3.1.1 The Basic Attention Mechanism

We follow [141] to present the concept of the basic attention mechanism, which

is also widely recognized as the MLP-based attention. Suppose h = [h1, ..., hc, ..., hC] ∈

RC is a feature map, where C is the number of channels. A basic attention on the

channel dimension is computed by:

uc = tanh(Whc + b), (3.1)

αc = softmax(vCuc), (3.2)
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s =
C∑

c=1
αchc, (3.3)

where W ∈ RC×C is the learnable parameter matrix, and v, b ∈ RC , then, αc ∈ R

denotes attention weight, s ∈ RC , uc ∈ RC . This attention mechanism can be

flexibly modified to learn attention maps of different dimensions.

3.1.2 Channel Attention Mechanism

In this subsection, we introduce the channel attention mechanism in SENet [50]

that consists of three processes, squeeze, activation, and scale. Suppose a feature

map h = [h1, h2, ..., hC] ∈ RH×W ×C , the global average pooling based squeeze

process calculate a static z ∈ RC and the c-th element zc in z is computed by:

zc = 1
H × W

H∑
i=1

W∑
j=1

uc(i, j). (3.4)

To capture the channel-wise relationship, the excitation process employs an

multilayer perceptron (MLP) with a gated sigmoid activation function (seen in

Eq.3.5). This design learns the non-linear relationship between channels and en-

sures that the learned relationships are not mutually exclusive.

s = sigmoid(W2ReLU(W1z)), (3.5)

where W1 ∈ R
C
r

×C , W2 ∈ RC× C
r , and r is a hyperparameter of reduction ratio.

The scale process applies the channel-wise multiplication to obtain the final

output X̃ = [x̃1, x̃2, ..., x̃C ]:

x̃c = scxc. (3.6)

3.1.3 Self-Attention Mechanism

The core of the self-attention mechanism involves the computation of rep-

resentations of keys, queries, and values for each element in the input sequence.
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Given a query qi, the attention score aij of all keys kj is calculated by the scaled

dot-product:

aij = qi · kj√
dk

(3.7)

where dk is the dimensionality of the keys and queries that remains constant,

ensuring that the dot products don’t get too large under the softmax function.

It implies that the larger the dot product (scaled by the dimensionality of the

keys), the larger the attention score aij will be. A softmax function is applied to

normalise the attention weights for each query. The value matrix, V , is multiplied

by these normalized attention scores to create a contextually enriched represent-

ation for each input element. The overall self-attention process is summarized as

follows:

Attention(K, Q, V ) = softmax(QKT

√
dk

)V, (3.8)

with K = WkX, Q = WqX and V = WvX, where Wk, Wq and Wv are learnable

weights matrices for keys, queries and values, respectively, and X is the input

matrix.

3.2 Graph Convolutional Network

In this subsection, we introduce the methodology of the representative GNN

model, GCN [121]. Suppose a set of graph structure data G = (V, E), where

V = {xi,j | 1 ≤ i ≤ D, 1 ≤ j ≤ N} is the set of nodes (or vertices) with N nodes

and D features in each node, and E is the set of edges. The propagation in a graph

convolution layer can be generalized into a non-linear function:

H l+1 = f(H l, A), (3.9)

where H l ∈ R is the activation matrix at layer l, A is the adjacency matrix and

f(·) is a non-linear function.

An intuitive implementation of Eq.(3.9) is:

H l+1 = σ(AH lW l), (3.10)
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where σ(·) is a non-linear activation function and W l is a trainable weight matrix

at layer l. This equation employs the multiplication of the adjacency matrix A

with the feature matrix H to denote the aggregation of a node’s neighbouring

features. Such that the stacking of several hidden layers enables the assimilation

of information from multiple levels of neighbouring nodes. However, such a design

overlooks the self-influence of a node on itself, and the adjacency matrix A is not

normalized, resulting in nodes with many neighbour nodes tending to have greater

influence.

To solve the aforementioned limitations, GCN [121] proposed the layer-wise

propagation rule Eq.(3.11) by involving the symmetric normalized Laplacian matrix

Lsym:

H l+1 = σ(LsymH lW l) with Lsym = D
1
2 ÂD− 1

2 = In − D− 1
2 AD− 1

2 , (3.11)

where Â = A + In is the adjacency matrix with self-connection by adding the

identity matrix In, and Di,j =
∑

j Âi,j such that Lsym achieves the required nor-

malization process.

3.3 Conclusion

In this chapter, we have introduced the mathematical foundations and tech-

nical details underlying three mainstream attention mechanisms, alongside the

baseline GNN model, the GCN. This preliminary introduction helps to understand

the specific methodologies and contributions of attention-enhanced GCNs in im-

proving DNNs’ interpretability, linking the existing attention and GNN methods to

our proposed novel methodologies in Chapters 4, 5, and 6, i.e., attention-informed

interpretable GNNs for CP prediction and PD analysis.
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Chapter 4

Pose-based Cerebral Palsy

Prediction

In this chapter, we provide the initial insights and research outcome of develop-

ing interpretable GNNs with attention mechanisms for CP prediction. In addition,

we highlight the importance of low-frequency components and redundancy of high-

frequency information in infant movements to support further research.

4.1 Introduction

General Movement Assessment (GMA) [15] is being widely used clinically for

the early prediction of cerebral palsy (CP). However, targeted GMA training for

clinicians is a time-consuming and resource-consuming task. As a result, only a

small but increasing number of clinicians have received this training in the UK

and Australia [142]. Furthermore, the process also requires manual inspection of

the infant movement and is prone to subjective assessment. Early studies applied

machine learning techniques (e.g. support vector machine, random forest) and

the optical flow-based video analysis method to propose the automated GMA sys-

tems [45, 48]. But these works still require manual labelling of infant joint positions.

Some later studies focus on the analysis of frequency domain data. Stahl et al. [54]
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used an optical flow-based approach to assess infant movements and then applied

wavelet frequency analysis to evaluate the time-dependent trajectory signals in op-

tical flow data. Rahmati et al. [24] applied a motion segmentation algorithm to

extract motion data from each limb in the infant video and then classified the

infants’ movements with features obtained by frequency analysis.

Recent deep learning-based systems achieved impressive performance in CP

infants movement prediction. McCay et al. [29] proposed a fully connected deep

learning network and four Convolutional Neural Network (CNN)-based deep learn-

ing architectures to classify the abnormal movements of CP infants by using the

histogram of joint orientation 2D and joint displacement 2D features, achieved the

highest prediction accuracy of 91.67% on the MINI-RGBD dataset [2]. Zhu [20]

further applied the channel attention mechanism on the 2D-CNN model to inter-

pret the CP prediction outcome on the same dataset. However, the robustness and

generality of their proposed method have not been fully evaluated since the results

are obtained from a single small dataset.

Aiming at the significant difference in joints movement frequency between the

cerebral palsy infants and the healthy group, in this article, we demonstrate a

frequency-based binning mechanism and a graph convolution network to improve

the performance of CP prediction with better interpretability. Firstly, we employ a

pose estimation algorithm, namely Openpose [1] to extract the human joint position

data from the RGB video sequences as the input to our system. Then we propose an

automatic frequency-binning module suitable for videos with different frame rates

to reduce data noise and the percentages of high-frequency movements information

in the whole video sequence for CP prediction. The idea is inspired by both the

frequency analysis-based infants CP prediction methods [24] and our observation.

Rahmati et al. [24] provided a result that comparing with very low or high-frequency

ranges, the middle-to-low frequency range data showed more differences between

the healthy group and the CP group. In addition, we found that the infants’ joint

position data in the high-frequency domain is mainly caused by data noise, such
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Figure 4.1: The overview of our proposed framework. Part I is the overall network
architecture, Part II is the design of each FAIGCN layer.

as the misdetected joint position by Openpose.

In this chapter, we present a phased results of automated CP prediction

method. We validate our system on the MINI-RGBD dataset [27] and the RVI-38

dataset [28]. The MINI-RGBD dataset has been widely used for CP classifica-

tion performance comparison in the previous work [29, 143, 144, 145], including

synthetic video sequences of 12 normal and CP infants. The RVI-38 is a recently

collected dataset for a more challenging CP prediction task, with a larger size of

data captured during routine clinical care. Experimental results show that our

system achieves state-of-the-art CP prediction performance on both of the dataset

and allows users to interpret the weights of movement frequencies of different joints

in our prediction system.

Our contributions are as follows:

• We interpret the Cerebral Palsy prediction in the joint movement frequency

domain by the attention module. In addition, we designed a new frequency-

binning module that can be applied to both deep learning and machine learn-

ing networks for videos with different frame rates to improve the CP predic-

tion performance.

• We propose a novel frequency attention informed graph convolutional network

(FAIGCN) for CP prediction from consumer-grade RGB videos. Our system

achieves state-of-the-art research on two datasets with strong robustness.
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Figure 4.2: An example frame of 18-joints Openpose [1] posture layout for infant
kicking in the MINI-RGBD dataset [2]. The size of the light point represents the
size of the attention value, that is, the importance of the movement frequency of
the joint to our network in CP prediction at that frame.

4.2 Methodology

4.2.1 System Overview

The proposed system consists of two parts (seen in Fig.4.1): (1) The frequency-

binning module transforms the input joint movement features into the frequency

domain, then filters high-frequency information to make our prediction network

focus on low-to-mid infants movement frequencies. (2) The proposed Frequency

Attention Informed GCN for CP prediction and interpretation. Fig. 4.2 shows an

example of attention visualization.

4.2.2 The Frequency-binning Module

Given the infants’ joint movement sequences as input, we propose using fre-

quency operations on joint position data for CP prediction. It is motivated by

two observations. Firstly, the body movement frequencies of healthy infants are

different from infants who suffered from CP [24], and the low-frequency range in-

formation of body movement is more critical for fidgety movements (FMs). FMs
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are moderate speed movement of the neck, trunk and limbs with different accel-

erations in various directions [146]. Previous work [146, 16] has shown that the

absence of FMs is an essential distinguishing feature of CP infants from healthy

infants. Frequency-binning can filter the high-frequency (e.g., above 6 HZ) in-

formation of joint position data after FFT, thus making the classification network

focused on low-to-mid (e.g., 0-5 HZ) frequency infant movements without elim-

inating raw data. Secondly, the infant movements frequencies are generally low,

and the high-frequency range from the joint position data is mainly due to data

noise, such as the misdetected joint position and the video capture error from the

datasets.

As a solution, we design a frequency-binning module that retains the critical

frequency of the joint position data while filtering the noise. The module employs

Fast Fourier Transform (FFT) to convert the time series of joint positions into the

frequency domain, then applies frequency-binning to obtain the motion frequency

information mainly distributed in the low-to-mid band. This module is adaptable

for videos with a frame rate between 24 FPS to 60 FPS and is suitable for both

DNN or machine learning-based classification models. The core of the module is

the binning strategy, in which we design a formula to use finer bins for the more

crucial low-to-mid frequency and coaster bins for higher frequency.

Fast Fourier Transform (FFT)

We apply Bluestein’s FFT algorithm [147], a discrete Fourier transform al-

gorithm, on all 2D joints movements time series to transform original joints position

features into the frequency domain and obtain the frequency components:

Xk =
N−1∑
n=0

xne
−i2πkn

N , k = 0, . . . , N − 1, (4.1)

where xn is a time series, e
i2π
N is a primitive N th root of 1.

The Binning Strategy

We propose a feature binning strategy to emphasize the importance of low-
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frequency information of the joint position data. Under the strategy, the width

of the bins are different - smaller width bins are used for low-frequency range and

increasingly larger-width bins for higher frequency range:

bn =


Round(b0 · cn), if bn · cn < 3;

Ceiling(b0 · cn), if bn · cn ≥ 3,
(4.2)

where bn is the width of the nth bin, b0 = 1, and c is a controllable hyperparameter

designed to maintain the bin width to its original width in low-frequency band,

and to increase exponentially when frequency becomes much larger. Note that the

width of each bin needs to be an integer as FFT is a discrete (i.e. integer-based)

system. This equation takes the round of the bin width when the width is less

than three units to increase the density of the bins in low-to-mid frequency. The

threshold of three units is based on our empirical experiments, which are related

to video length. According to the characteristics of rapid exponential growth,

this function distinguishes the density of the middle frequency band and the high-

frequency band for bins with a width greater than two units by rounding up the

value greater than three units. Empirically, as shown in Sec 4.4, we achieve the best

prediction accuracy when c = 1.00264 for the 25 FPS videos. The hyperparameter

c could be optimized automatically using grid search to achieve the best binning

results, as determined by the highest CP prediction performance across different

datasets.

As a result, after being processed by the frequency-binning module, input

joint position data are transformed into the frequency domain and endowed with an

important characteristic: low-to-mid frequency information occupies a significantly

more prominent emphasis.

4.2.3 The CP Prediction Network

As shown in Fig. 4.1, we propose a Frequency Attention Informed Graph

Convolutional Network (FAIGCN) for CP prediction by classifying low-to-mid fre-
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quency band infant movement frequency features with the attention mechanism.

Frequency Attention Informed Network

Most of the previous DNN-based studies on infants CP prediction are based on

traditional Convolutional Neural Networks (CNN). However, traditional discrete

convolution from CNN can only maintain translational invariance on Euclidean

data, which is not suitable for graph structure data such as the human skeletal

graph generated from OpenPose [1].

Therefore, we employ a GCN [121] to learn the infant joints dependencies from

the pose graph. Inspired by [125], we apply the pose graph which align with the

human skeletal graph G = (V, E) for interpreting which joint’s movement frequency

features are considered to be important in CP prediction task. In this graph,

{V = vb,i|b = 1, ..., B; i = 1, ..., N} denotes the frequencies of all joints, where vb,i

represents the b-th frequency bin of i-th joint. The edge set E includes: (1) the

intra-skeleton connection at each frequency band, {vb,ivb,j |(i, j) ∈ K}, where K is

designed by the natural connections of human joints. (2) the inter-frequency edges

which connect the frequency bins of a joint in the low-to-high frequency order,

{vb,iv(b+1),i}.

The graph convolutional operation of FAIGCN is followed by [121], where the

propagation rule between layers can be represented by Eq.(4.3).

Hl+1 = σ
(
D̃− 1

2 ÃD̃− 1
2 HlWl

)
, (4.3)

where Ã = A + IL is known as the adjacency matrix of an undirected graph. IL

is an L dimensions identity matrix. D̃ii =
∑

j Ãij and Wl is a learnable weight

matrix specified to the layer. The nonlinear activation function σ(·) is set as ReLU

in our network.

We propose the following frequency attention-informed mechanism to learn the

weight of frequency features. We aggregate the frequency features obtained from
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the frequency-binning module {h1,i, h2,i, . . . , hB,i} with attentions αb,i by Eq.(4.4):

vk =
B∑

b=1
αb,ihb,i, (4.4)

in which the frequency attention weight αb,i is defined as:

αb,i =
exp

(
σ

′
n

(
wT

α, zb,i

))
∑

b exp (σ′ (wT
α, zb,i))

, (4.5)

zb,i = tanh (Wzhb,i) , (4.6)

where σ
′
n is an adjustable activation function as follows:

σ
′
n =


1 +

(
wα

∥wα∥

)T (
zα

∥zα∥

)
, n = 1;

wT
αzα , n = 2,

(4.7)

where wα and Wz are learnable parameters.

Implementation Details

As can be seen from Fig.4.1, the input layer transforms the tensor format of in-

put frequency data to fit in the network. Then, we use two FAIGCN layers with

32, 64 output channel sizes, respectively. This shallow and narrow design is spe-

cifically chosen to mitigate the overfitting risk imposed by the limited sizes of the

datasets. Each FAIGCN, in turn, consists of a GCN layer, a batch normalization

layer, a dropout and a ReLU layer. The kernel sizes of FAIGCN layers K = 3, 3,

and stride = 1, 2, respectively. We put a global pooling layer after two FAIGCN

layers. We applied the average pooling as it provides the highest robustness. At

the last, we put a fully connected layer to classify features for CP prediction. We

adopt cross-entropy loss as the loss function because it is a commonly used and

effective loss in binary classification problems. The optimizer is chosen as Adams,

and we train the model with batch size = 1, learning rate = 0.0001 with 0.1 decay
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every 100 epoches, Max Epoch = 500 on the MINI-RGBD dataset; batch size = 4,

learning rate = 0.001 with 0.1 decay every 100 epoches, Max Epoch = 500 on the

RVI-38 dataset.

We release the implementation of our system in PyTorch due to the availability

of compatible open-source resources and its good coverage of the required deep

learning functionalities. Our code is publicity available for reproduce and further

development and the corresponding metadata is shown below:

Nr. Code metadata description Please fill in this column

C1 Current code version v1

C2 Permanent link to code/repository used for this code version https://github.com/zhz95/CP-AGCN

C3 Permanent link to Reproducible Capsule https://codeocean.com/capsule/6073072/tree/v1

C4 Legal Code License MIT License

C5 Code versioning system used git

C6 Software code languages, tools, and services used Python

C7 Compilation requirements, operating environments & dependencies Python 3.7, PyTorth 1.8.10, OpenPose 1.7.0

C8 If available Link to developer documentation/manual https://codeocean.com/capsule/6073072/tree/v1

C9 Support email for questions haozheng.zhang@durham.ac.uk

4.3 Dataset and Preprocessing

We verify our models on the Moving INfants In RGB-D synthetic dataset

(MINI-RGBD) [27] and RVI-38 dataset.

4.3.1 The MINI-RGBD Dataset

MINI-RGBD was generated by registering and rendering the synthetic Skinned

Multi-Infant (SMIL) model [2] to the RGB-D sequences of real-world moving infants

recorded in the hospital. All 12 RGB-D video sequences were captured when the

infants were half-year-old. The MINI-RGBD dataset is a popular open resource

relating to infants CP as it consists of realistic shape, texture and movement.

It also provides precise ground truth while anonymizing the data by replacing the

raw video frames with computer graphics rendered frames. We further obtained the
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4.3.2. The RVI-38 Dataset

annotation of each video sequence shared by [143], which indicates the presence (i.e.

labelled as “normal”) or absence (i.e. labelled as “abnormal”) of fidgety movements

in the video by an independent medical expert using the GMA method [15].

4.3.2 The RVI-38 Dataset

The RVI-38 dataset was collected from a part of routine clinical care at the

Royal Victoria Infirmary (RVI) in Newcastle upon Tyne, UK. There are 38 RGB

video sequences of different infants between 12-21 weeks in the RVI-38 dataset. All

videos were captured by a consumer-grade handheld camera (Sony DSC-RX100

with a resolution of 1980x1080 and the 25FPS frame rate). The length of videos

ranges between 40 seconds and 5 minutes, with an average length of 3 minutes

and 36 seconds. The camera was set above the baby, and the infant’s movement

was photographed from top to bottom. All videos were annotated using the GMA

method by two experienced assessors. The annotations indicate the presence (i.e.

labelled as “normal”) or absence (i.e. labelled as “abnormal”) of fidgety movements

in the video.

4.3.3 Compliance with Ethical Standards

The collection of the RVI-38 dataset has been ethically approved by the host

organisation (Ref: 9865), the Research Ethics Committee (REC), the Health Re-

search Authority (HRA), and Health and Care Research Wales (HCRW) (Ref:

19/LO/0606, IRAS project ID: 252317). The MINI-RGBD dataset used in this

study is made open access by Fraunhofer IOSB [2], which had ethical approval.

4.3.4 Data Preprocessing

For effective CP predictions, we extract 2D skeleton features from the video

sequences. In this chapter, we applied OpenPose [1] for pose estimation since it was

one of the most accurate methods for estimating the posture of infants at that time
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before the release of the latest version of AlphaPose [148], and it was less sensitive

to variations on the appearance [21]. OpenPose returns the 2D coordinates (x, y)

for 18 human joint landmarks and a confidence score C for each joint estimation.

However, for joints that are self-occluded or without clear visual features, OpenPose

would not be able to deduce their position, and zero values would be returned as

the joint positions. As this may impact the performance of the prediction system,

we propose to preprocess the data by replacing the zero values in frame f with the

linear interpolation of neighbouring non-zero frames.

In order to overcome the overfitting in small size dataset, we implement several

processes. (1) We calculate the global normalization of joint positions frame by

frame to reduces the infant’s global translation. To achieve this, we set the center

of the triangle of the neck and two hip joints as the global origin, then relocate each

joints by the relative distance between joints. (2) To normalize the x-direction and

y-direction pose features, we align the line between the global origin and the neck

joint with the y-axis and keep the neck joint above the global origin.

4.4 Experiments

Our experiments were run on a PC with Ubuntu 18.04 and an NVIDIA GeForce

RTX 3080. Regarding computational efficiency, our low-cost system can achieve

a training speed of around 4 frames/second with an NVIDIA GeForce RTX 3080,

with only 0.3 frames/second drop compared with our variant without the attention

module. It means the total system training time on a 12 video sequences (1000

frames each) dataset is only about 50 minutes, including OpenPose pose estimation.

This is considered to be very efficient in deep learning algorithms. During clinical

environment inference process, it only needs about 45s for the CP classification of

a 33.3s 30 FPS video with an Intel Core i7 CPU (i.e., no GPU needed). It shows

that our system is employable for interactive-time prediction in a daily hospital

environment with normal computer equipment setting, and is a feasible solution to
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support CP early prediction.

4.4.1 Experimental Settings

We conduct the leave-one-out cross-validation among two datasets to evaluate

our proposed system. This setting ensures that the prediction system is evaluated

on unseen data by utilizing the entire dataset, thereby reducing the risk of over-

fitting when training with a limited amount of data. The training process strictly

follows an early-stop criterion to prevent overfitting. Specifically, if the model’s

performance on the validation set does not improve for a predefined number of

consecutive epochs, the training is halted. Our evaluation metrics are introduced

in Sec 4.4.3. We report the best result for each method to be consistent with several

related works in literature [54, 16, 24, 145, 28].

4.4.2 Comparing with State-of-the-art Methods

In order to evaluate the effectiveness of our system, we compare FAIGCN with

the following methods:

• FCNet [29]: This method uses fully connected deep network architectures

to the Histogram of Joint Displacement 2D (HOJD2D) and Histogram of

Joint Orientation 2D (HOJO2D) calculated from human joint positions. For

the HOJD2D feature, the displacements of each joint are extracted every five

frames and segmented into 16 bins. The feature of HOJO2D represents the

joint orientation in 2D space, and the feature is also segmented into 16 bins.

• Conv1D-1, Conv1D-2 [29]: They are two 1D convolutional neural net-

works, each of them consists of two 1D convolutional layers with differences

in the output channel sizes. They are proposed to classify the abnormal infant

movements by feature HOJO2D or HOJD2D (HOJO/D2D).
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• Conv2D-1, Conv2D-2 [29]: They are two 2D convolutional neural net-

works, each of them consists of two 2D convolutional layers with differences

in the output channel sizes.

• CANet [20]: This method proposes a 2D convolutional neural network with

the squeeze-and-excitation channel attention module. The whole system is

proposed for the CP classification task on the MINI-RGBD dataset.

• ST-GCN (Spatial Temporal Graph Convolutional Network) [125]: This is

a graph convolutional neural network for human skeleton data (e.g. joint

position).

• STAM [22]: This is a spatial-temporal graph convolutional neural network

with the attention mechanism.

• Ens-1 [143]: This method uses an ensemble classifier on the fused feature of

HOJO2D + HOJD2D (HOJO+D2D) with eight bins.

• Ens-2 [28]: This method extends [143] by fusing four pose-related features

and three velocity-related features.

• Ens-3 [21]: This method extends [143] by extracting features at limb-level

from small video segments to locate abnormal movements spatiotemporally.

• MCI [144]: This method uses a threshold model to classify the infant CP via

Movement Complexity Index (MCI), where MCI is computed by extracting

the infant’s limb angle features.

4.4.3 Evaluation Metrics

We evaluate our system and other state-of-the-art methods by following five

metrics in Eq.(4.8): the prediction accuracy (AC) shows the percentage of cor-

rectly predicted individuals in the dataset; the sensitivity (SE) shows the percent-

age of correctly predicted positive individuals among the total number of positive
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individuals in the dataset; the specificity (SP) shows the percentage of correctly

predicted negative individuals among the total number of negative individuals in

the dataset; F1-Score evaluates the binary classification performance by calculating

the harmonic mean of the precision and recall; Matthews Correlation Coefficient

(MCC) [149] provides a reliable performance metric for imbalanced dataset [150].

The combination of these five metrics comprehensively evaluates the reliability and

robustness of the model with consideration for clinical applications [21].

AC = TP + TN

TP + FN + TN + FP
,

SE = TP

TP + FN
,

SP = TN

TN + FP
,

F1 = 2TP

2TP + FP + FN
,

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

,

(4.8)

where True Positive (TP) measures the cases where impaired infants are correctly

identified as impaired, while True Negative (TN) indicates unimpaired infants cor-

rectly identified as unimpaired. Conversely, False Positive (FP) denotes unimpaired

infants mistakenly classified as impaired, and False Negative (FN) refers to impaired

infants incorrectly classified as unimpaired. Based on these metrics.
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Method Feature AC SE SP F1 MCC
FCNet [29] HOJD2D 91.67 100.00 87.50 88.89 83.67
FCNet [29] HOJO2D 83.33 75.00 87.50 75.00 62.50

Conv1D [29] HOJO/D2D 83.33 75.00 87.50 75.00 62.50
Conv2D [29] HOJO/D2D 83.33 75.00 87.50 75.00 62.50
Conv2D [29] HOJO+D2D 91.67 100.00 87.50 88.89 83.67
Conv2D [29] Pose 83.33 75.00 87.50 75.00 62.50
CANet [20] Pose 91.67 100.00 87.50 88.89 83.67

ST-GCN[125] Pose 91.67 100.00 87.50 88.89 83.67
STAM [22] Pose 91.67 100.00 87.50 88.89 83.67
Ens-1 [143] HOJO+D2D 91.67 100.00 87.50 88.89 83.67
Ens-2 [28] Velocity 91.67 100.00 87.50 88.89 83.67
Ens-2 [28] Pose* 100.00 100.00 100.00 100.00 100.00
Ens-2 [28] Vel.+Pose* 100.00 100.00 100.00 100.00 100.00
Ens-3 [21] HOJO+D2D 100.00 100.00 100.00 100.00 100.00
MCI [144] Limb angle 91.67 100.00 87.50 88.989 83.67
FAIGCN Motion Freq. 100.00 100.00 100.00 100.00 100.00

* The Pose and velocity features here fuses several hand-crafted features including HOJOD2D.

Table 4.1: The comparison with state-of-the-arts on the MINI-RGBD

4.4.4 Comparison with the State-of-the-arts

We report the prediction results on MINI-RGBD and RVI-38 datasets on Table

4.1 and Table 4.2 respectively. From our evaluation, we propose the following

observations:

(1) Our FAIGCN system outperforms the state-of-the-art DNN based methods in

both datasets. Comparing with other non-DNN based methods, our system also

achieves state-of-the-art performance in two datasets.

(2) We can observe the advantage of the attention mechanism in DNNs as CANet

outperforms Conv2D-Pose from Table 4.1 and Table 4.2, and CANet outperforms

Conv1D/Conv2D, STAM outperforms ST-GCN from Table 4.2.

(3) From Table 4.2, it can be seen that ST-GCN, STAM and FAIGCN outperform

all CNN-based methods (i.e. Conv1D, Conv2D and CANet), which confirms the

advantage of using graph structure to analyze human pose data.

(4) We notice that the methods that use early fusion on features outperform
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those using only a single kind of feature. It can be seen by comparing Conv2D-

HOJO/D2D with Conv2D-HOJO+D2D, or comparing Ens-2-Velocity/Pose with

Ens-2-Velocity+Pose in both tables. Therefore, we consider fusing our movement

frequency features with other features in future work.

(5) An interesting finding is that Machine learning-based methods, such as Ens-1,

Ens-2, and Ens-3, outperform DNN-based methods with the exception of FAIGCN.

Notably, Ens-2 [21], which utilizes an ensemble of classification models (i.e., SVM,

LR, LDA, and DT) on the fused hand-crafted features [143, 21], shows perform-

ance equal to our FAIGCN on both datasets. On the one hand, this observation

shows the superiority of hand-craft features in the classification tasks; On the other

hand, it inspires us to explore comparisons of FAIGCN with machine learning-based

methods using the same features, seen in the Sec. 4.4.6 below.

Method Feature AC SE SP F1 MCC
Conv2D [29] Pose 81.58 33.33 90.63 36.36 25.85
CANet [20] Pose 86.84 66.67 90.63 61.54 53.89

ST-GCN [125] Pose 89.47 66.67 93.75 62.50 60.42
STAM [22] Pose 92.11 83.33 93.75 76.92 72.51
Ens-1 [143] HOJO+D2D 94.74 83.33 96.88 83.33 80.21
Ens-2 [28] Velocity 94.74 83.33 96.88 83.33 80.21
Ens-2 [28] Pose* 94.74 83.33 96.88 83.33 80.21
Ens-2 [28] Vel.+Pose* 97.37 83.33 100.00 90.91 89.89
FAIGCN Motion Freq. 97.37 83.33 100.00 90.91 89.89

* The Pose and velocity features here fuses several hand-crafted features including HO-
JOD2D

Table 4.2: The comparison with state-of-the-arts on the RVI-38

4.4.5 Ablation Study

We conduct an ablation study to evaluate whether there is any adverse effect

on prediction performance caused by the frequency-binning module (B.) or the

attention module (A.). The corresponding results are displayed in Table 4.3. It

is noticeable that the frequency-binning module improves the performance of the

AC, SP, F1 and MCC metrics in both datasets, showcasing that the frequency-
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binning strategy effectively captures and utilizes frequency-related information,

which is crucial for enhancing the prediction performance of the model. However,

due to the limited size of the MINI-RGND dataset, the contribution of the attention

mechanism is not significantly reflected. This result may indicate that the attention

module’s ability to reweight relevant features does not translate into significant

performance gains when the dataset is relatively small, possibly due to insufficient

diversity in the training data. Yet, from the larger RVI-38 dataset, it is evident

that applying both the attention module and the frequency-binning module leads to

significant improvement. These results may suggest that implementing appropriate

data augmentation strategies could further enhance the performance improvements

achieved by the proposed attention module and frequency-binning module.

4.4.6 Comparison with Machine Learning Methods

To further evaluate the effectiveness of the proposed frequency-binning module

and our full model, we employ four machine learning-based classifiers, enhanced

by the frequency-binning module, to predict the CP from movement frequency

features across both datasets. The methods are Support Vector Machine (SVM),

Decision Tree (Tree), Logistic Regression (LR) and Linear Discriminant Analysis

(LDA). The ensemble of classification models Ens-1 [143], Ens-2 [28] and Ens-3 [21]

are not included since the types of the ensemble classifier in Matlab was used which

consists of a wide range of classifiers and handles the late-fusion internally. Be-

sides, we validate the effectiveness and robustness of the frequency-binning module

by eliminating it from each method. The results are reported in Table 4.4. We

observe the effectiveness of using the proposed frequency-binning module as each

method outperforms its variant without frequency-binning module, except in the

case of SVM in the MINI-RGBD dataset. In addition, we notice that our system

outperforms the implemented machine learning-based methods, demonstrating the

effectiveness of graph convolutional neural network in dealing with the same fea-

tures.
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The MINI-RGBD dataset
Method AC SE SP F1 MCC

FAIGCN-full 100.00 100.00 100.00 100.00 100.00
w/o A. 100.00 100.00 100.00 100.00 100.00
w/o B. 91.67 100.00 87.50 88.89 83.67
w/o A. B. 91.67 100.00 87.50 88.89 83.67

The RVI-38 dataset
Method AC SE SP F1 MCC

FAIGCN-full 97.37 83.33 100.00 90.91 89.89
w/o A. 92.11 83.33 93.75 76.92 72.51
w/o B. 89.47 66.67 93.75 62.50 60.42
w/o A. B. 86.84 66.67 90.63 61.54 53.89

Table 4.3: The performance of FAIGCN and its simplified variants

The MINI-RGBD dataset
Methods AC SE SP F1 MCC

SVM 66.77 75.00 62.50 66.67 35.36
SVM w/o B. 66.77 75.00 62.50 66.67 35.36

Tree 75.00 75.00 75.00 66.67 47.81
Tree w/o B. 66.77 75.00 62.50 66.67 35.36

LDA 83.33 75.00 87.50 75.00 62.50
LDA w/o B. 75.00 75.00 75.00 66.67 47.81

LR 91.67 100.00 87.50 88.89 83.67
LR w/o B. 75.00 75.00 75.00 66.67 47.81

FAIGCN-full 100.00 100.00 100.00 100.00 100.00
FAIGCN w/o B. 91.67 100.00 87.50 88.89 83.67

The RVI-38 dataset
Methods AC SE SP F1 MCC

SVM 63.16 66.67 62.50 66.67 35.36
SVM w/o B. 55.26 50.00 56.25 26.09 4.58

Tree 81.58 66.67 84.38 53.33 43.78
Tree w/o B. 68.42 50.00 71.89 33.33 17.16

LDA 83.33 75.00 87.50 75.00 62.50
LDA w/o B. 65.79 66.67 65.63 38.10 24.09

LR 78.95 66.67 81.25 50.00 39.68
LR w/o B. 57.89 66.67 56.25 33.33 16.74

FAIGCN-full 97.37 83.33 100.00 90.91 89.89
FAIGCN w/o B. 89.47 66.67 93.75 62.50 60.42

Table 4.4: The comparison with machine learning based methods and their variant
without frequency-binning module
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Methods Bins AC SE SP
K-means cluster binning, K=300 300 0.917 1.000 0.875
K-means cluster binning, K=250 250 0.833 0.750 0.875
K-means cluster binning, K=200 200 0.833 0.750 0.875
Equal-width binning, width=3 333 0.917 1.000 0.875
Equal-width binning, width=4 250 0.833 0.750 0.875
Equal-width binning, width=5 200 0.833 0.750 0.875

Ours - Frequency binning 299 1.000 1.000 1.000

Table 4.5: Parameter analysis for the binning algorithm

4.4.7 Comparison with Different Binning Algorithms

To evaluate the effectiveness of the insight behind our proposed frequency-

binning strategy (i.e., reducing high-frequency noise while preserving low-to-mid

frequency information), we compare our method with two commonly-used binning

algorithms: K-means clustering binning and equal-width binning, as presented in

Table 4.5. The results support our insight and demonstrate the effectiveness of the

proposed frequency-binning strategy, since the other two binning algorithms cannot

filter out high-frequency noise while retaining low-to-mid frequency features.

4.4.8 Robustness Test

In order to evaluate the robustness of our system and other state-of-the-art

DNN-based methods [20, 125, 22], we simulate different datasets by adding different

levels of Gaussian noise to the infant joint pose data. The noise level is divided

into four levels from 15% standard deviation to 120% standard deviation of each

infant’s joint pose data. The tests results are displayed in Fig. 4.3. The accuracy

in the y-axis is the average accuracy among ten leave-one-out cross-validations with

ten different training seeds.

From Fig. 4.3, we observe that as the noise level increases, each method de-

creases more slowly on the RVI-38 dataset compared to the MINI-RGBD dataset,

reflecting the stronger robustness brought by training the model on a larger dataset.

In addition, we are seeing that the accuracy of our system shows a slower decreas-
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Figure 4.3: The robustness test compared with the state-of-the-art DNN methods.
The short vertical bar of each method in different noise-level denotes the accuracy
range between the first quartile and third quartile among all cross-validations. The
line between each bar is linked by the mean accuracy value.

ing trend under different noise levels, which represents the stronger stability and

robustness of our system.

4.4.9 Attention Analysis

Fig. 4.4 visualizes the interpretability of proposed attention module by present-

ing the attention value of each joint among all leave-one-out cross-validations on
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Figure 4.4: The visualization of attention weights of different joints among all
cross-validations on each dataset.

each dataset. We observe that the attention value of ‘Right Knee’,‘Left Knee’,‘Right

Wrist’ and ‘Left Wrist’ is significantly higher than other joints on both datasets. It

indicates our system pays more attention to the movement frequencies of infants’

knees and wrists, which is convincing since the movements of those joints have

the most significant frequency change in the video recordings. In addition, the

frequency range of ‘Right Eye’, ‘Left Eye’, ‘Right Ear’ and ‘Left Ear’ is lower than

other joints significantly. One possible reason is that the self-occlusion (e.g. infant

turns head) brings the noise to Openpose estimation of these joints, so that the

attention module of our system lowers the weights to filter the noisy data. Besides,

we notice that the attention weight range of most of the joints in the RVI-38 data-

set is larger than those in the MINI-RGBD dataset. It could be caused by more

information from the larger dataset.
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4.5 Discussions and Limitations

Clinical Significance. Our proposed system aims to provide undiagnosed CP

patients with low-cost, non-intrusive CP abnormal movement classification results

as a warning sign. This provides a way for supporting the early prediction of CP in

the clinical resource-limited areas, and relieving the labour stress of expert-based

GMA [15]. In addition, our system can provide clinicians with information about

the importance-ranking of joints’ movement and movement frequency in CP clas-

sification by visualizing the attention maps.

Limitation Discussions. During the research process of designing the data pre-

processing pipeline, we observed that our system’s performance depends on the

accuracy of the estimated pose features. Specifically, since infants’ movements

generally involve twisting and rolling of the limbs and torso, when processing cer-

tain video frames with severe self-occlusion, OpenPose still extracts incorrect joint

positions or positions with extremely low confidence scores. These low-quality pose

features reduce the accuracy of the classification model. To address this noise, we

have employed smoothing operations between frames; however, this cannot guar-

antee completely correct pose features. Therefore, improving the reliability of the

pose estimation process by adapting more advanced systems such as [151, 148]

is essential in future work. Additionally, while we have proposed a frequency-

binning strategy to reduce high-frequency noise, it might risk losing informative

subtle movements. This is because the inherent limitations of the binning strategy

theoretically led to a reduction in the sharp changes of joint positions, but it can-

not automatically distinguish whether these sharp changes are caused by noise

or are inherent features of the movement itself. Although the parameter analysis

for different binning algorithm experiment shows that reducing the percentage of

high-frequency bands in infant movements is effective for CP prediction, we still

believe that FAIGCN is only a preliminary but insightful CP prediction model
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for analyzing infant movement frequency. Future work may require more capable

modeling of frequency domain features and the introduction of modeling of spatial

features, thereby enabling the FAIGCN model not only to maintain its efficacy in

noise reduction but also to refine its sensitivity to the subtle dynamics of infant

movements. Moreover, the limited size of the dataset contributes to the risk of

overfitting during the network design process. An explainable and reliable data

augmentation method is recommended for future studies to mitigate this issue.

4.6 Conclusion

In this chapter, we propose a novel interpretable frequency attention informed

graph convolutional network to predict cerebral palsy infants. We design a binning

module for CP data to increase the weight of the low-to-mid frequency data to

improve the CP prediction performance, which is adaptable for the videos with

a frame rate between 24 FPS to 60 FPS and suitable for both DNN or machine

learning-based classification model. Furthermore, we propose a frequency attention

module to further improve the prediction performance and visualize the important

joints that the network considers in CP prediction. The system is developed in

PyTorch and fully released for future development. Experimental results show the

importance of low-to-mid frequency data and the effectiveness and robustness of

our system in supporting the prediction of CP non-intrusively, and provides a way

for supporting the early diagnosis of CP in the resource-limited regions where the

clinical resources are not abundant.
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Chapter 5

Improving Interpretable Cerebral

Palsy Prediction with

Spatial-Frequency Analysis

5.1 Introduction

In our CP prediction study in Chapter 4, we highlighted significant differences

in joint motion frequencies between CP infants and healthy groups, which can be

effectively learned by frequency-informed GCNs. In addition, we further identified

three limitations in existing CP prediction systems, which we propose to address

in this chapter. First, there is still a lack of a holistic framework to learn both

spatial and frequency information [26, 28], where each domain information could

be complementary to the other domain information, contributing to a more com-

prehensive understanding of CP. This is because analysis in the frequency domain

primarily focuses on identifying specific patterns, such as abnormal muscle contrac-

tions and rhythmic movements, whereas spatial domain analysis provides insights

into the general physical movements and postures of individuals. Second, while

interpretability is crucial for clinical validation and real-world application [23], ex-

isting work has limited focus on visualizing the decision process of complex deep
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learning [20, 26]. For example, our system in Chapter 4 only interprets the CP in

the frequency domain, but it lacks the explanation in the spatial-temporal domain.

Third, whilst the efficacy of pose-based methods is intrinsically linked to the qual-

ity of pose features, the de facto pose extraction method, OpenPose, results in less

accurate body joints particularly during self-occlusion [29, 26].

To address the above key challenges, in this chapter, we put forward a Spa-

tial and Frequency Attention-based Graph Convolutional Networks (SAFA-GCN)

to predict CP by fusing both spatial pose and movement frequency features. The

spatial-frequency fusion design leverages the strengths of both domains and provides

a holistic understanding of the underlying factors contributing to CP with enhanced

capacity. It is inspired by the clinical GMA criteria [152] and clinical observa-

tion [24] about the CP infants’ abnormal movement. These references emphasize

the significance of categorizing abnormal movements in CP infants based on both

posture appearance and movement fluency, which are respectively evident in the

spatial and frequency domains. Furthermore, to improve both the interpretabil-

ity and the prediction accuracy, we propose the spatial- and masked frequency-

attention mechanisms, along with a clipping-and-fusion method to interpret the

significance of which joints, frequency bands, and time slots contributes to the

CP prediction, allowing the results to be verified by clinicians. Note that the

masked frequency-attention mechanism is directly inspired and improved from the

frequency-binning design in Chapter 4. Finally, we improve the accuracy and ro-

bustness of the predominated pose extraction process [28, 20, 22, 51, 26] by estim-

ating pose features from RGB videos via AlphaPose [148], and conduct a dataset

supplement to establish a performance benchmark for leading methods.

We validate the accuracy and robustness of our system by introducing a ro-

bust evaluation protocol with two data splitting strategies, namely leave-one-out

cross-validation, 3-fold and 5-fold cross-validations. This new protocol particularly

evaluates the system robustness when training with decreasing training set size in

the same dataset. We compare our methods with the state-of-the-arts on the MINI-
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RGBD dataset [27] and the RVI-38 dataset [28]. MINI-RGBD is widely used for CP

classification performance comparison [29, 143, 144, 145]. RVI-38 is a comprehens-

ive dataset collected by our team [28] for a more challenging CP prediction task,

with a larger size of data captured during routine clinical care in daily situations.

Experimental results demonstrate that our system outperforms state-of-the-art CP

prediction methods on both datasets. Our interpretable system also visualizes the

significance of joints, frequency bands, and time periods in the prediction, aiding

clinicians in making more robust diagnostic decisions.

We open our code and the dataset supplement of the MINI-RGBD and RVI-

38 datasets for validation and further development: https://github.com/zhz95/

SAFA-GCN Comparing with our previous system in Chapter 4, our contributions are

as follows:

• We design a novel two-stream architecture to fuse complementary spatial

poses and movement frequency features for more robust and accurate CP

prediction, validated with MINI-RGBD and RVI-38 using a more robust eval-

uation protocol.

• We improve both the interpretability and prediction accuracy of the system

by proposing:

(1) Spatial-wise and frequency-wise attention modules, allowing the visualiz-

ations of which joints and frequency bands contribute to a prediction.

(2) A clipping-and-fusion method that analyzes individual temporal clips and

fuses the results for a final prediction, allowing the visualization of when the

movementis significant for making a prediction.

• We supplement the MINI-RGBD and RVI-38 datasets with new and more

accurately extracted posture features, and conduct a comprehensive bench-

mark analysis on leading methods, demonstrating a consistent performance

enhancement.

62

https://github.com/zhz95/SAFA-GCN
https://github.com/zhz95/SAFA-GCN
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5.2 SAFA-GCN: A Spatial and Frequency Attention

Based Graph Convolution Network

We use a CP prediction framework similar to Chapter 4, but the classification

network is different. As shown in Figure 5.1, the input is RGB videos of the

infants in a supine position, captured from a camera positioned above, as per the

GMA guidelines [28]. Then, we extract 2D coordinates pose features by AlphaPose

algorithm [148]. Each pose sequence is then divided into multiple clips with a

sliding overlapped window and assign positional encoding to each clip. The pose

features of each clip are passed to our novel Spatial and Frequency Attention based

GCN (SAFA-GCN), which leverages spatial pose and movement frequency features

for robust and interpretable CP prediction.

Our SAFA-GCN is a fully upgraded version of FAIGCN in Chapter 4. It not

only provides more comprehensive interpretability and attention visualization, but

also improves the accuracy of pose features and overall improves the robustness of

the CP system. Specifically, the spatial stream adopts the 2D Euclidean joint pos-

ition features based on a pose graph to model the spatial relationship between dif-

ferent joints. Meanwhile, the frequency stream employs the Fast Fourier Transform

(FFT) on each joint’s sequence to transform the spatial features to the frequency

domain, enabling us to model the relationship between different frequency bands.

In addition, the attention modules in each stream highlight and visualize the signi-

ficance of individual joints and frequencies, supporting clinicians with more precise

and robust decision-making. After that, the stream-level fusion module integrates

the contribution of each stream by concatenating the latent representations of each

stream. For the final CP prediction, a clip-level fusion is proposed to improve the

prediction accuracy by integrating local temporal information from multiple clips

and enhance the temporal interpretability by visualizing the significant time slot

in CP prediction.
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Figure 5.1: The overview of our proposed framework, where the input is the RGB
videos of each individual. We employ AlphaPose to extract pose features, and
obtain the pose sequence clips by pose sequence clipping. The clips of estimated
pose sequences are fed into our two-stream CP prediction model, SAFA-GCN.
Then, the SAFA-GCN fuses the prediction scores of each stream by the stream-
level fusion module to obtain clip-level scores. The clip-level fusion module outputs
the final prediction scores of each individual.

5.2.1 Spatial Attention Based GCNs

CP infants’ pose usually suffer spatial impairment [153], specifically, they

prefer to use only one side of their body with the presence of the fidgety move-

ment (FMs). FMs refer to the infant joint movement (i.e., neck, trunk and limbs) in

small amplitude and moderate speed with varying accelerations and directions [15].

Therefore, we introduce a spatial attention-based GCN stream to model the infant’s

pose information in the form of joint positions. Compared to our CP prediction

network in Chapter 4, which only used frequency-attention, such a spatial-attention

stream significantly improves the interpretability of the system by directly modeling

the infants’ spatial movements.

Spatial GCNs As shown in Fig. 5.2, each spatial GCN includes a GCN layer, an

MLP, a batch normalization layer, a dropout layer and an ReLu activation layer.

The input feature of the spatial stream is the set of the clipped 3D video sequences

{Xd,i|d ∈ D, i ∈ N
C }, Xd,i ∈ RT ×C×J , where D is the total number of clips in video

i, N is the batch size, N
C is the number of videos in the batch, T is the length
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Figure 5.2: The architecture detail of spatial attention-based GCNs.

of frames, C is the 2D Euclidean joint position estimated by AlphaPose, and J is

the total number of the joints. We apply a spatial pose graph G = (V, E) aligned

with the human skeletal graph to structure spatial domain pose data. In this graph,

V = {vp,q|p = 1, ..., T ; q = 1, ..., J} denotes the spatial domain node set represented

by the joints positions, and vp,q is the position of q-th joint at p-th frame. The

spatial edge set E depicts the natural connections of human joints at each frame.

The corresponding graph convolutional operation [121] is the same as the Eq.(4.3)

in Chapter 4.

Instead of employing the temporal convolution, we adopt the Multi-layer Per-

ceptron (MLP) to model the inter-frame features and aggregate the frame-level

representations to obtain spatial stream representations ŷs, since the MLP is suit-

able for our objective of learning global information related to FMs across feature

pairs [154] within a short 100 frames window.

The Spatial Attention Mechanism We propose to apply the following at-

tention mechanism for more informative and discriminative global representation

learning by its characteristics on adaptive feature selection. It also enhances the CP

prediction interpretability by quantifying the relative importance of human joints.

To achieve this, we aggregate the spatial representations at frame p obtained from

spatial GCN {hp,1, hp,2, . . . , hp,J} with attentions αp,q, by Eq.(5.1) to obtain the
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Figure 5.3: The architecture detail of frequency attention-based GCNs.

frame-level representation sp:

sp =
Q∑

q=1
αp,qhp,q, (5.1)

in which the spatial attention weight αp,q is defined as:

αp,q =
exp

(
wT

αtanh (Whhp,q)
)

∑
p exp (wT

αtanh (Whhp,q)) , (5.2)

where Wh, wα are learnable parameters.

5.2.2 Frequency Attention-based GCNs

We propose a second stream to model the CP prediction in the frequency do-

main. It is driven by our research insights of modeling frequency features with

filtering high-frequency noise in Chapter 4, and the clinical observation that high-

lights the disparity in body movement frequencies between healthy infants and

those who have experienced CP [24]. Integrating the frequency stream sensitive

to movement regularity, pace, and smoothness provides a comprehensive supple-

ment to coordination and appearance information from the single spatial stream.

Existing deep learning-based CP prediction networks [49, 51, 22] other than our

prior study [26] lack the important analysis of frequency-domain information [24],

thus limiting their performance and system interpretability. In Chapter 4, we in-

troduced a frequency-binning strategy that compresses frequency information into

different bins. However, that method results in some information loss in mid-to-

high frequency bands and reduces the system’s robustness. This limitation becomes
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particularly pronounced when modeling more diverse data distributions. To this

end, we propose a novel approach: a masking frequency attention mechanism to

restrict the attention to non-high frequency noise while preserving all frequency

information.

Frequency GCNs Similar to the frequency feature transform in Chapter 4, as

shown in Fig. 5.3, the frequency stream first obtains the frequency features by

transforming each joint’s 2D position sequence xn into the frequency domain via

Fast Fourier Transform (FFT) [147]:

Xk =
A−1∑
n=0

xne
−i2πbn

A , b = 0, . . . , N − 1, (5.3)

where e
i2π
A is a primitive Ath root of 1.

In frequency stream, we propose a frequency domain chain graph G′ = (V ′, E′),

where V ′ = {v′
q,c|q = 1, ..., J ; c = 1, ..., ⌈T +2

2 ⌉} denotes the frequency domain node

set represented by the FFT coefficients, and v′
q,c represents the vertex of the c-th

frequency band of q-th joint, note that the size of the frequency band is reduced to

⌈T +2
2 ⌉ due to the FFT symmetry. The edge set is defined by the inter-frequency

edge set E′ = {v′
q,cv

′
q,c+1}.

The Frequency Attention Mechanism We propose a masked attention to

learn the weight of different frequency bands while masking the high-frequency

representations. The aggregation function of the frequency representations

{fq,1, fq,2, . . . , fq,⌈ T +2
2 ⌉} of joint q with attention βq,c is formulated as:

uq =
C∑

c=1
βq,cfq,c, (5.4)

in which the frequency attention weights βq,c is defined as:

βq,c =
exp

(
(wT

β + M)tanh (Wf fq,c)
)

∑
j exp

(
(wT

β + M)tanh (Wf fq,c)
) , (5.5)
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where Wf , wβ are learnable parameters, and the attention mask M at location

(q, c) is:

M(q, c) =


0 if c < r⌈T +2

2 ⌉

−∞ otherwise
. (5.6)

Motivated by the clinical observation [24] and pilot study [26], the attention mask

M is designed to modulate the weights of features at the frequency bands below

or above r⌈T +2
2 ⌉ , where r is a constant ratio to define the high-frequency band.

We further aggregate the joint q’s frequency aggregation representation uq to

quantify the joint-wise importance γq and obtain the frequency stream prediction

score ŷf . This enables validating the frequency stream attention by intuitively

comparing the joint-wise importance with the spatial stream attention, such that

improves the system’s robustness.

ŷf =
Q∑

q=1
γquq, (5.7)

γq =
exp

(
wT

γ tanh (Wuuq)
)

∑
q exp

(
wT

γ tanh (Wuuq)
) , (5.8)

where Wu, wγ are learnable parameters.

5.2.3 Stream-Level Fusion

We apply stream-level late fusion to fuse scores from both the frequency and

spatial domains, which provides better prediction robustness as errors from two

models are dealt with independently [155].

To preserve the information from different streams, we fuse features from both

streams by concatenation and obtain the clip-level representations:

ŷl = concat(ŷs, ŷf ), (5.9)

We prefer the late fusion architecture to the early fusion [22], since the lat-

ter may force the model to learn redundant or irrelevant features in processing
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the heterogeneous frequency and spatial data [155], and constrain the model inter-

pretability in multiple domains. The rationale of our two-stream design is based

on the invariance between spatial and frequency domains from signal processing

theory [156].

5.2.4 Clipping-and-Fusion

We introduce a clipping-and-fusion method to improve system prediction per-

formance and temporal domain interpretability that was lacking in Chapter 4. Pose

sequence clipping enables better capturing of critical local temporal features during

CP prediction, which aligns with the clinical CP diagnosis of observing the FMs

patterns in GMA [15]. Clip-level fusion fuses individual clip results for the final

prediction, with an attention mechanism for visualizing clip importance.

Pose Sequence Clipping Despite working with relatively smaller datasets, most

existing CP prediction methods [29, 143, 28, 20, 26] use entire video sequences as

input. This approach presents a challenge as their models face the risk of overfitting

and may lack robustness when the train-test split is altered. A more effective

strategy is to clip the videos into small segments, which allows the model to better

capture crucial local features and increase the amount of data to reduce the risk of

overfitting [157].

To facilitate more robust CP predictions, we propose a pose sequence clipping

process to clip each 3D video pose sequence X ∈ RT ×C×J into multiple 100 frames

(3.3s) clips with a sliding overlapping window size of 50 frames, denoted by Xi =

[X1,i, ...Xd,i, ..., Xend,i], where Xd,i is the d-th 100-frame clip of the video i. The

overlapping window size value chosen to be half of the clip length (50 frames) is

considered by its temporal interpretability while reducing the impact of duplicated

information. In addition, to ensure that clips belonging to the same video are not

split into different training/testing sets, we apply positional encoding based on the

original temporal order to all clips originating from the same video.
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Clip-Level Fusion We propose a clip-level fusion to integrate the local temporal

information from multiple clips of the same individual for a comprehensive global

temporal representation. Compared with learning the temporal information from

the entire video sequence [28, 49, 26], our design better captures key local features

that may be overlooked in the full sequence, which is also consistent with the

clinical CP prediction of observing the FM patterns in GMA [15].

We propose a weighted average based aggregation to fuse the clip-level repres-

entations and make this process interpretable by introducing a temporal attention

mechanism:

ŷ = Softmax(
L∑

l=1
λlŷl), (5.10)

λl =
exp

(
wT

λ tanh (Wŷŷl)
)

∑
l exp

(
wT

λ tanh (Wŷŷl)
) , (5.11)

where Wŷ, wλ are learnable parameters.

5.3 The Data Processing Pipeline

We propose to employ an empirically more precise pose estimation method [148]

to enhance CP prediction accuracy and robustness. This is motivated by the ob-

servation from Chapter 4, in which the performance of existing automated CP

prediction systems relies heavily on the quality of input pose features, and inac-

curate pose features bring significant noise to the system.

5.3.1 Improved Feature Extraction for More Accurate Poses

In Chapter 4, we extract 2D coordinates pose features from videos for CP pre-

diction. Whist the pose features bring remarkable interpretability and robustness,

and avoid the background noise compared to using the image features directly, we

observed that performance of FAIGCN depends on the accuracy of the estimated

pose features by the de facto OpenPose pose estimation [1]. Similar arguments
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Figure 5.4: The comparison between OpenPose (left) and AlphaPose (right) on a
sample frame. Note AlphaPose’s higher neck and hips qualities.

are also proposed in [20, 28, 51, 22]. Specifically, since infants’ movements gen-

erally involve twisting and rolling of the limbs and torso, when processing certain

video frames with severe self-occlusion, OpenPose still extracts incorrect joint po-

sitions or positions with extremely low confidence scores. These low-quality pose

features reduce the accuracy of the classification model. One possbile reason is

that OpenPose has not theoretically minimised the quantization errors from its

heatmap representations calculation [158].

To improve the precise of extracted pose features for more accurate CP pre-

diction, we employ a state-of-the-art pose estimation algorithm, AlphaPose [148],

to extract more accurate 2D skeleton features. This module mimics the motion ob-

serving step of GMA assessors. As shown in Fig. 5.4, the AlphaPose joint positions

of shoulder-neck-hip area are significantly more precise than those of OpenPose.

In addition, AlphaPose successfully detects the left-ear keypoint while OpenPose

fails due to self-occlusion. Moreover, we keep the data pre-processing pipelines in

Chapter 4 to improve the feature quality and mitigate the overfitting risk.

5.4 Experiments

In this section, we evaluate the performance of our method and the other ten

models on two datasets by involving a robust evaluation protocol. We also conduct
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multiple experiments to validate the robustness and interpretability of our system.

5.4.1 Implementation Details

For spatial stream, we use two GCN blocks with two convolutional layers with

32, 64 output channels respectively. For frequency stream, the output channel

sizes of two corresponding convolutional layers are 16, 32. We adapt the focal-

loss [159] to tackle the class imbalance. The optimizer is Adams, and the training

hyperparameters are: (i) MINI-RGBD dataset, batch size = 2, learning rate =

0.0001 with 0.1 decay every 100 epoches, Max Epoch = 500; (ii) RVI-38 dataset,

batch size = 4, learning rate = 0.001 with 0.1 decay every 100 epoches, Max Epoch

= 500.

5.4.2 Computational Environment

We conducted the experiments on an Ubuntu 18.04 PC equipped with an

NVIDIA GeForce RTX 3080. The total model training time of SAFA-GCN on

MINI-RGBD is about 1.5 hour, encompassing the computation of the joints’ po-

sition from RGB videos. The average time cost for CP prediction on a video of

1000 frames (approximately 33 seconds) is around 70 seconds. This suggests our

system’s potential to be employed in real-time interactive diagnosis.

5.4.3 Dataset

We verify our models on the MINI-RGBD and the RVI-38 dataset, which are

described in Chapter 4.

5.4.4 Evaluations with a Robust Evaluation Protocol

To evaluate the effectiveness, robustness, and reliability of our proposed system

comprehensively, we propose a robust evaluation protocol by conducting different
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types of cross-validation settings among two datasets, and present a benchmark

study based on this new evaluation. This is motivated by our finding that most

existing methods [29, 28, 21, 20, 26] are negatively affected by the decreasing train-

ing set size, which means that the existing leave-one-out cross-validation (LOOCV)

based evaluation [29, 28, 21, 20, 26, 51] is not sufficient for validating the system

robustness.

We employ leave-one-out cross-validation (LOOCV), 5-fold CV, and 3-fold CV

for the RVI-38 dataset, and LOOCV and 3-fold CV for the MINI-RGBD dataset

due to data size constraints. The count of CP class in the training set decreases as

the size of each fold increases, posing a challenge for model training as it increases

the overfitting risk in a smaller, imbalanced training set. We further propose an

additional robustness analysis by adding different levels of Gaussian noise to the

pose features for evaluating the model’s sensitivity and resilience to perturbations,

ensuring its reliability in real-world scenarios with potential noise and variability.

In order to verify the effectiveness and robustness of our proposed method, we

compare SAFA-GCN with seven state-of-the-art DNN-based CP prediction meth-

ods FCNet [29], Conv1D [29], Conv2D [29], CANet [20], STAM [22], FAIGCN [26],

and WO-GMA [51], as well as machine learning based methods Ens-1 [143], Ens-

2 [28] with different hand-crafted features. We also follow [22, 26] to compare with

ST-GCN [125] as it is an effective GCN for human pose data classification task.

To the best of our knowledge, we compare our method with major existing vision-

based computer-aided CP prediction methods. Our evaluation uses four metrics:

prediction accuracy (AC), sensitivity (SE), specificity (SP), and the F1-Score (F1).
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5.4.5. Performance Test

5.4.5 Performance Test

We compare CP prediction performance of our SAFA-GCN with the state-of-

the-art methods in Table 5.1 and 5.2. We obtain the following observations: (1)

Comparing with the proposed FAIGCN in Chapter 4, our SAFA-GCN consistently

exhibits superior performance as its AC, SE, SP, and F1 achieve the highest score

across all data-splittings on two datasets, showcasing the robustness and reliability

of our new system. (2) Comparing the conventional evaluation protocol results in

Table 5.1, Table 5.2 shows that our new evaluation protocol effectively verifies the

performance and robustness of different methods and brings challenges to model

training. Specifically, We have identified a noticeable decrease in the metrics of

other methods, especially the AC, SP and F1, as we transition from LOOCV to

5-fold or 3-fold CV. This decline is largely ascribed to the class imbalance in both

datasets, wherein the CP class is underrepresented compared to the healthy class.

Such a result supports the motivation of our proposed new evaluation protocol. In

contrast, our method consistently preserves its performance. (3) We observe the

advantages of graph structure modeling for human pose features as ST-GCN [125],

STAM [22], FAIGCN [26], WO-GMA [51] and SAFA-GCN outperform other meth-

ods that rely on CNNs. (4) In addition to WO-GMA [51] which adopts weakly

supervised learning, the superiority of SAFA-GCN and FAIGCN over other super-

vised learning methods reflects the advantages of considering frequency analysis

in CP prediction. (5) An interesting finding is that the machine learning-based

method, Ens-2 [21], which utilizes an ensemble of classification models (i.e., SVM,

LR, LDA, and DT) on the fused hand-crafted features [143, 21], shows very close

performance to our SAFA-GCN on both datasets, except for the 5-fold and 3-fold

CV in RVI-38. On the one hand, this observation demonstrates the superiority

of handcrafted features in classification tasks; on the other hand, it highlights the

effectiveness and generalizability of our SAFA-GCN, which requires only raw pose

features without necessitating complex, manually-defined feature engineering.
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5.4.6. Additional Robustness Analysis

MINI-RGBD RVI-38
Method AC SE SP F1 AC SE SP F1

SAFA-GCN 100.00 100.00 100.00 100.00 97.37 83.33 100.00 90.91
FCNet [29] 91.67 100.00 87.50 88.89 - - - -

Conv1D [29] 83.33 75.00 87.50 75.00 - - - -
Conv2D [29] 91.67 100.00 87.50 88.89 81.58 33.33 90.63 36.36
CANet [20] 91.67 100.00 87.50 88.89 86.84 66.67 90.63 61.54

ST-GCN [125] 91.67 100.00 87.50 88.89 89.47 66.67 93.75 62.50
STAM [22] 91.67 100.00 87.50 88.89 92.11 83.33 93.75 76.92

FAIGCN [26] 100.00 100.00 100.00 100.00 97.37 83.33 100.00 90.91
WO-GMA [51] 100.00 100.00 100.00 100.00 97.37 83.33 100.00 90.91

Ens-1 [143] 91.67 100.00 87.50 88.89 94.74 83.33 96.88 83.33
Ens-2 [28] 100.00 100.00 100.00 100.00 97.37 83.33 100.00 90.91

Table 5.2: The LOOCV comparisons with the state-of-the-arts

5.4.6 Additional Robustness Analysis

To demonstrate that our proposed method helps improve the robustness, we

make the CP prediction task more challenging by adding different levels of Gaussian

noise to the estimated pose features (Fig. 5.5). The noise levels are divided into

different levels, ranging from 15% to 180% of the standard deviation of the raw pose

sequence. To visualize a more pronounced performance change in a larger dataset,

we utilize larger noise level ranges for RVI-38 dataset compared with MINI-RGBD

dataset. The average accuracy is reported among ten different training seeds based

on the LOOCV data-splitting strategy. We observe that as the noise level increases,

each method decreases more slowly on the RVI-38 dataset compared to the MINI-

RGBD dataset, reflecting the stronger robustness brought by training the model

on a larger dataset. In addition, the experimental evidence reveals that SAFA-

GCN suffers from the least performance drop as the noise level increases on both

datasets, reflecting the stronger robustness of our proposed system.

5.4.7 Model Interpretability

In this section, we make the decision of our system be able to justified by

clinicians to improve the reliability of the computer-aid decision-making. Motivated

by the clinical interests in understanding the CP prediction [52, 24, 29], we visualize
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5.4.7. Model Interpretability

Figure 5.5: The robustness analysis compared with the state-of-the-art DNN meth-
ods. The short vertical bar of each method in different noise-level denotes the
accuracy range between the first quartile and third quartile among all LOOCV
cross-validations. The line between each bar is linked by the mean accuracy value.

Figure 5.6: (a) The visualization of spatial attention weights of different joints
among all cross-validations; (b)The frequency attention map of top-5 joints with
highest joint-wise importance. The x-axis represents the spectrum, with frequencies
increasing from left to right.

the important infants joints, joint movements frequency bands and time slots by

our attention design.

Spatial Domain Interpretation Fig. 5.6 (a) visualizes the attention weights

of each joint among all cross-validations on each dataset. We observe that in both

datasets, the attention weight assigned to knees, wrists, and elbows significantly

exceeds that of other parts. This shows that our system emphasizes monitoring

the movements of infants’ knees and wrists, which aligns with the fact that these
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5.4.8. Component Analysis and Ablation Studies

joints exhibit the most pronounced movements and frequency changes in the video

recordings. Additionally, the attention weights for the eyes, ears, and heels are

notably lower than those for others. This may be attributed to self-occlusion issues

that introduce noise into the AlphaPose estimations of these joints.

Frequency Domain Interpretation Fig. 5.6 (b) visualizes the normalized av-

eraging attention value of the top-5 joints with the highest frequency stream spatial

attention on each dataset. We have observed that attention is primarily concen-

trated in the low-frequency range (i.e., the first 8 frequency bands), and the highest

attention values for each joint occur in the first frequency band. Considering the

physical meaning of the first frequency band, it represents the global offset or bias

of the original pose sequence. Therefore, this finding inspires us to consider that

the global offset or bias in spatial-temporal sequences may be a feature with pre-

dictive capabilities for CP prediction. Additionally, the concentration of attention

in the low-frequency range aligns with our hypothesis that high frequencies provide

minimal information. This result further supports the feasibility of using frequency

masking method.

Temporal Domain Interpretation Fig. 5.7 visualizes the temporal attention

weights and the corresponding infant frames in a MINI-RGBD video, with each

time slot referring to a clip. We find that infants’ movement amplitude and speed

are generally smaller in time slots (e.g., A and B) with high attention weight. In

contrast, infant presents pronounced limb movements in the time slots (e.g., C and

D) with low attention weights. This result is consistent with the GMA criteria [152],

showing the reliability of our proposed method.

5.4.8 Component Analysis and Ablation Studies

Comparison with Different Clip-Level Fusion Methods: Motivated by the

fusion strategy evaluation in [160], we compare our non-linear MLP-based temporal
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5.4.8. Component Analysis and Ablation Studies

Figure 5.7: A visualization example of temporal attention weights in a MINI-
RGBD video. The index letters A-D map the infant images to the corresponding
time periods and attention weights.

attention fusion with the linear fusion method using a hard margin linear SVM clas-

sifier. This comparison provides a robust evaluation, considering scenarios where

the boundaries of multiple clip representations are linear [161]. From Table 5.3,

we observe that the performance of our fusion method achieves the best perform-

ance across all metrics in all CVs. In addition, fusing by training a linear SVM

model yields inferior results compared to ours, which is pronounced in the 3-fold

CV data-splitting approach. This can be explained by the different distribution

of data in the 3-fold CV setting, emphasizing the adaptability of our MLP-based

temporal attention fusion method across various data distribution scenarios.
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5.4.8. Component Analysis and Ablation Studies

Method AC SE SP F1

LO
O

C
V (i) Late fusion

SAFA-GCN 97.37 83.33 100.00 90.91
Clip-level SVM fusion 97.37 83.33 100.00 90.91

(ii) Early-fusion 97.37 83.33 100.00 90.91
5-

fo
ld

C
V (i) Late fusion

SAFA-GCN 97.37 83.33 100.00 90.91
Clip-level SVM fusion 97.37 83.33 100.00 90.91

(ii) Early-fusion 97.37 83.33 100.00 90.91

3-
fo

ld
C

V (i) Late fusion
SAFA-GCN 97.37 83.33 100.00 90.91
Clip-level SVM fusion 94.74↓ 83.33 96.88↓ 83.33↓

(ii) Early-fusion 94.74↓ 83.33 96.88↓ 83.33↓

Table 5.3: Comparisons of Different Fusion Designs on the RVI-38

Comparing the Late-fusion with Early-fusion: We further investigate the

effectiveness of the early-fusion method instead of the late-fusion, as it is an altern-

ative common fusion method to fuse the information from two streams [28, 49]. We

implement an early-fusion system that fuses the pose features and FFT features

by concatenation. Then, we feed the fused features to our spatial attention-based

GCNs and generate the CP prediction score by the clip-fusion. The 3-fold CV

results in Table 5.3 show that our proposed late-fusion architecture have stronger

robustness than concatenating-based early-fusion method, demonstrating the ef-

fectiveness of developing different GCNs to model different domain features.

Effects on Pose Estimation Algorithms: We compare pose features from

AlphaPose with OpenPose in Table 5.4. AlphaPose features exhibit a remarkable

improvement of approximately 3% across all evaluated methods when compared

with OpenPose features. It demonstrates the efficacy of the AlphaPose algorithm

in pose feature quality improvements.

Ablation Study: An ablation is conducted to evaluate the effectiveness of the

proposed two-stream architecture, attention, and the clipping-and-fusion method,

as shown in Table 5.5.
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5.4.8. Component Analysis and Ablation Studies

Method AC SE SP F1

LO
O

C
V

OpenPose
SAFA-GCN 97.37 83.33 100.00 90.91
FAIGCN [26] 97.37 83.33 100.00 90.91
STAM [22] 92.11 83.33 93.75 76.92
Conv2D [29] 81.58 33.33 90.63 36.36
CANet [20] 86.84 66.67 90.63 61.54

AlphaPose
SAFA-GCN 97.37 83.33 100.00 90.91
FAIGCN [26] 97.37 83.33 100.00 90.91
STAM [22] 94.74↑ 83.33 96.88↑ 83.33↑
Conv2D [29] 84.21↑ 33.33 96.77↑ 44.44↑
CANet [20] 89.47↑ 66.67 93.75↑ 62.50↑

5-
fo

ld
C

V

OpenPose
SAFA-GCN 97.37 83.33 100.00 90.91
FAIGCN [26] 94.74 83.33 96.88 83.33
STAM [22] 92.11 83.33 93.75 76.92
Conv2D [29] 78.94 16.67 90.63 20.00
CANet [20] 84.21 33.33 96.77 44.44

AlphaPose
SAFA-GCN 97.37 83.33 100.00 90.91
FAIGCN [26] 94.74 83.33 96.88 83.33
STAM [22] 92.11 83.33 93.75 76.92
Conv2D [29] 84.21↑ 33.33↑ 96.77↑ 44.44↑
CANet [20] 86.84↑ 66.67↑ 90.63 61.54↑

3-
fo

ld
C

V

OpenPose
SAFA-GCN 94.74 83.33 96.88 83.33
FAIGCN [26] 92.11 83.33 93.75 76.92
STAM [22] 89.47 66.67 93.75 62.50
Conv2D [29] 76.32 16.67 87.50 18.18
CANet [20] 81.58 16.67 93.75 22.22

AlphaPose
SAFA-GCN 97.37↑ 83.33 100.00↑ 90.91↑
FAIGCN [26] 94.74↑ 83.33 96.88↑ 83.33↑
STAM [22] 92.11↑ 83.33↑ 93.75 76.92↑
Conv2D [29] 81.58↑ 16.67 93.75↑ 22.22↑
CANet [20] 86.84↑ 66.67↑ 90.63 61.54↑

Table 5.4: Comparing the AlphaPose with OpenPose on the RVI-38
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5.4.8. Component Analysis and Ablation Studies

(i) Effects of the attention mechanism: We compare our full model with a

variant without both attentions and taking the means instead, a variant with only

frequency attention and calculates the spatial stream representations by averaging,

and a variant with only spatial attention and calculates the frequency stream rep-

resentations by averaging. Removing each type of attention mechanism leads to

a significant drop in all metrics, especially the AC, SP, and F1. It shows the

effectiveness of the proposed attention mechanism.

(ii) Effects of the frequency attention mask: We compare SAFA-GCN and its

variant without the mask. The outcome shows that the frequency attention mask

enhances performance and robustness since the full model outperforms the variant

in 3-fold CV and achieves comparable results in LOOCV.

(iii) Effects of the stream-fusion: To validate whether any adverse effect exists

on the two-stream fusion, we compare SAFA-GCN with its single-stream variants.

It shows that the variants suffer a performance drop in some data-splitting meth-

ods, demonstrating that the complementary information provided by both streams

effectively enhances the predictive capabilities and robustness.

(iv) Effects of the clipping-and-fusion: We compare the SAFA-GCN with a

variant that utilizes solely the raw pose sequence as input, without incorporating

the clipping-and-fusion process. Although the performance remains the same in

LOOCV, it drops in the 3-fold CV in both datasets, indicating the efficacy of the

clipping-and-fusion method.
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5.5. Conclusion

Method LOOCV 3-fold CV
AC SE SP F1 AC SE SP F1

Ours-full 97.37 83.33 100.00 90.91 97.37 83.33 100.00 90.91
Attention

w/o both 94.74 83.33 96.88 83.33 89.47 66.67 93.75 62.50
w/o spatial 94.74 83.33 96.88 83.33 92.11 83.33 93.75 76.92

w/o frequency 94.74 83.33 96.88 83.33 89.47 66.67 93.75 62.50
Mask

w/o 97.37 83.33 100.00 90.91 94.74 83.33 96.88 83.33
Stream-fusion

w/o spatial 97.37 83.33 100.00 90.91 94.74 83.33 96.88 83.33
w/o frequency 94.74 83.33 96.88 83.33 94.74 83.33 96.88 83.33

Clippling-and-fusion
w/o 97.37 83.33 100.00 90.91 94.74 83.33 96.88 83.33

Table 5.5: The ablation study on the RVI-38

Parameter Analysis of Frequency Mask Table 5.6 shows the parameter ana-

lysis of frequency mask ratio. Although the frequency attention (seen in 5.4.7) is

dominated by the approximately first 15.7% of the frequency band, the mask ratio

of 1/3 leads to a drop compared with r = 1/2 or 2/3 in 3-fold CV. This suggests

that masking excessive features may hinder the system’s ability to learn attention

distributions. Whilst the ratios of 2/3 and 1/2 provide the same performance on all

data-splittings, we keep r = 2/3 in our final model since it provides more features

for investigating the CP.

r
LOOCV 3-fold CV

AC SE SP F1 AC SE SP F1
1 97.37 83.33 100.00 90.91 94.74 83.33 96.88 83.33

2/3 97.37 83.33 100.00 90.91 97.37 83.33 100.00 90.91
1/2 97.37 83.33 100.00 90.91 97.37 83.33 100.00 90.91
1/3 97.37 83.33 100.00 90.91 94.74 83.33 96.88 83.33

Table 5.6: Comparison with frequency mask ratios on the RVI-38

5.5 Conclusion

In this Chapter, we propose two-stream attention based GCNs to automatic-

ally predict CP from RGB videos. We propose to fuse the complementary spatial

and frequency features motivated by clinical observations for reliable CP prediction.
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5.6. Statements and Declarations

We propose the spatial attention, frequency attention, and a clipping-and-fusion

method to strengthen the prediction reliability and interpretability. Our system

visualizes important human joints, frequency bands and time ranges in CP pre-

diction to support clinicians in making accurate and robust decisions. We also

supplement two datasets with more accurate posture features and provide a per-

formance benchmark analysis of leading methods. In the future, focusing on the

challenge of collection medical data, we will use generative models (e.g., diffusion

models [162], VAE [163]) to obtain a large synthetic CP dataset.

5.6 Statements and Declarations

This research is supported in part by the EPSRC NortHFutures project (ref:

EP/X031012/1).
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Chapter 6

Pose-Based Tremor Type and

Level Analysis for PD from Videos

6.1 Introduction

To validate our research insights in Chapters 4 and 5, including the posed-

based human movement disorder diagnosis framework and the movement frequency

analysis, we transfer methodologies from the CP prediction project to analyze Par-

kinson’s disease (PD), a more common and significant human movement disorder.

By doing so, we also wish our research outcome can tackle different human move-

ment disorders and improve our understanding of the underlying mechanisms across

various conditions.

Parkinson’s disease (PD) is the second most common progressive neurological

disorder, affecting an estimated 10 million people globally [30]. It is characterized

by the loss of dopaminergic neurons within the substantia nigra region of the brain,

resulting in motor dysfunction [31]. Existing PD diagnosis is mainly based on the

clinical assessment of PD symptoms, medical history, l-dopa and dopamine re-

sponses [32]. The clinical diagnostic accuracy is approximately 73%-84% [33], and

may be affected by medical experts’ subjective opinions and experiences. An auto-

matic, efficient and interpretable PD assessment system would support clinicians
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6.1. Introduction

in making more robust diagnostic decisions.

Recent research in PD diagnosis with machine learning using human-centric

visual, audio and movement features has shown promising results. Models based

on neuroimaging [34] and cerebrospinal fluid biomarkers [35] provide an accur-

ate diagnosis but are costly and intrusive, making them unsuitable for large-scale

pre-diagnosis. Non-intrusive methods with speech [36] are limited by their general-

izability due to the significant difference in language and pronunciation for patients

from different geographical areas. Although gait disturbance is not typically the

primary symptom of early-onset PD [37, 38], over 70% of these patients exhibit

at least one form of tremor [38]. Hence, identifying Parkinson’s Tremor (PT) is

seen as a more generalizable approach for assisting in early PD diagnosis. To date,

hand tremors-based studies mostly rely on wearable sensor data [39]. However, the

use and set-up of wearable technology may be time and resource-consuming [39].

Video-based analysis with consumer-grade cameras is preferable as a more cost-

effective solution without disrupting the natural behavior of the participants.

Inspired by the frequency domain modeling and pose-based human modeling

discussed in Chapters 4 and 5, in this chapter, we first evaluated the performance of

FAIGCN and SAFA-GCN in the PT analysis task. This was achieved by directly

applying them with the minimal necessary modifications, such as changing the

output layer for multiclass classification and adjusting the number of GCN layers

along with the corresponding input and output channel sizes. However, the results

in Table 6.1 and 6.2 show that our previous frequency domain modeling methods

do not perform well in PT analysis. We hypothesize that this inadequacy is due to

the frequency of hand tremor being much higher than that of infants’ movements,

which prevents the models from effectively distinguishing between high-frequency

noise and high-frequency tremor. Additionally, FAIGCN and SAFA-GCN may lack

the capacity to accurately model the more complex tremor frequency patterns.

To this end, we shift our focus to analyze PT by modeling human movement

solely in the spatial domain. In this chapter, we propose a novel video-based deep
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6.2. Method
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Figure 6.1: The framework of our system: we use EVM to enhance the subtle
tremors in the original videos, then pass videos to the pose extraction process. We
classify the extracted pose features by SPA-PTA with a novel PCSF design.

learning system, the Spatial Pyramidal Attention network for PT type and level

Analysis (SPA-PTA), for PT classification and tremor severity estimation to as-

sist the pre-diagnosis of PD with PT symptoms. Unlike the predominant systems

that depend on wearable sensors [39], SPA-PTA utilizes consumer-grade cameras

to record human movements. This non-intrusive method aims to offer a low-cost

solution for PT classification, serving as an early warning sign for Parkinson’s Dis-

ease (PD) in undiagnosed individuals. For the first time, we propose to use a

novel attention module with a lightweight pyramidal channel-squeezing-fusion ar-

chitecture to extract relevant PT information and filter the noise efficiently. This

design aids in improving both classification performance and system interpretabil-

ity. Experimental results show that our system achieves 91.3% accuracy and 80.0%

F1-score in PT classification, 76.4% accuracy, and 76.7% F1-score in tremor rating

classification.

6.2 Method

Fig. 6.1 shows the overview of our system. Its input is a set of videos show-

casing a patient sitting in an upright posture, performing various actions such as

keeping arms parallel to the ground. The human joint position features are ex-

tracted from the videos using AlphaPose [148], a state-of-the-art pose-estimation

algorithm. These features are then fed into the Spatial Pyramidal Attention net-

work for PT type and level Analysis (SPA-PTA).
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6.2.1. Eulerian Video Magnification

6.2.1 Eulerian Video Magnification

We employ Eulerian Video Magnification (EVM) as a signal processing method

[164] to enhance the subtle tremors and reduce noise and artifacts in the videos.

This is motivated by previous research finding [127] that deep neural network mod-

els paid more attention to human wrists during PT classification, indicating that

magnifying subtle hand and wrist motions can be beneficial for tremor feature

learning. Before applying EVM, we checked the Nyquist limits [165] to examine

whether our video frequency is valid for tremor analysis. Specifically, the video

frame rate should be at least twice the highest frequency of tremor motions. As

existing research [166] has shown that PT typically occurs between 3 and 7Hz, our

video with 30Hz fulfills the requirement.

6.2.2 Pose Extraction

We extract the 2D pose features from the EVM-processed videos by Alpha-

Pose [148] since it is superior to OpenPose [1] as it demonstrates 25% improved

pose estimation performance on average precision and average recall metrics in

multiple datasets. We prefer 2D poses to 3D ones, as current 3D pose estimation

techniques are less mature and they generally introduce noise particularity in the

depth dimension [167], making them less suitable for sensitive features like tremors.

We use AlphaPose to estimate 17 COCO-format [148] body keypoints and extract

(x, y, c) features, where (x, y) represent the 2D coordinate and c is a confidence

score that reflects the estimation accuracy. Different from using all infant’s key-

points as in Chapters 4 and 5, we only utilize the top half of the body keypoints

(shown in Fig. 6.5) for PT analysis. Because this approach disregards less relevant

lower-body features to enhance model efficiency and reduce potential bias based on

the clinical observation that PT generally occurs on the upper body, specifically

on the hands and arms [168]. In addition, we omit the head joints as the parti-

cipants’ faces are generally obscured in medical videos to preserve their privacy.
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6.2.3. Classification Network

Furthermore, we normalize the pose to mitigate bias resulting from inherent video

differences. In order to mitigate global translations in the pose, we align the mean

location of the neck and two hip joints as the global origin. Subsequently, all joint

positions are expressed as relative values to this established origin.

6.2.3 Classification Network

We propose SPA-PTA for PT analysis by solving the PT classification task and

the tremor severity estimation task. SPA-PTA is composed of two GNN blocks with

a spatial attention mechanism, along with a novel pyramidal channel-squeezing-

fusion block designed to learn the joint-wise relevancy.

GNN Block with Spatial Attention Mechanism: Similar to Chapter 5, we

use using GNNs for PT analysis, which are effective in modeling relational data,

unlike images that are in a grid structure. We model human poses as a relational

graph structure G = (V, E) [125], with the nodes representing the joints, and

the edges representing the skeletal structure across time. Formally, {V = vp,q}

represents the set of joints positions, where vp,q is the p-th joint at q-th frame. The

set of edges, E, consists of (i) spatial edges connecting different joints in space, and

(ii) temporal edges connecting the same joint across consecutive frames.

Different from using GCN [121] as in Chapters 4 and 5, we adopt the locally

connected network (LCN) [124] to learn joint i’s attention weight from its rela-

tionship between other joints. This method provides a way to mitigate the vanilla

GCN’s [121] representation capacity limitation that different joints share the same

weight set. Specifically, it enables the system to learn joint i’s attention from its

relationship between other joints. The basic formulation is as follows:

hi = σ

 ∑
j∈N i

Wi
jxj âij

 , (6.1)

where σ is an activation function, Wi
j is the learnable attention weight between

the target node i and the related node j, âij is the corresponding element in the
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Short-range

Information Relevancy FusionSqueezing

Long-range
...

...

...
Self

Figure 6.2: The proposed Pyramidal Channel-Squeezing-Fusion architectures.

adjacency matrix, xj is the input features of node j, N i is the set of connected

nodes for node i, and hi is the updated features of node i.

Pyramidal Channel-Squeezing-Fusion Block (PCSF): As an extension of

the spatial attention module, we propose a novel inverted pyramid architecture,

Pyramidal Channel-Squeezing-Fusion Block (PCSF), consisting of a channel-squeezing

block and a channel-fusion block to extract relevant PT information and filter

noise. This is motivated by two findings: (i) Information Gain analysis [169] shows

that the information gain decreases exponentially with increasing distance between

graph nodes; (ii) clinical observation [170] shows that PT usually occurs only on one

side of the PD patient’s upper body, such that the information relevancy between

two arms should be reduced. Our proposed design does not require learnable para-

meters, such that it prevents overfitting problems. As shown in Fig. 6.2, the

output target node i’s attention weight W i is obtained from the joint-wise weights

{W i
d0

, ..., W i
dmax

} after the squeezing-and-fusion process, where dn is the shortest

distance between the target node i and the relevant node n, namely Hop-n. The

visualization of information relevancy in Fig.6.2 guides the squeezing ratio, such

that our method overcomes the limitation of the GCN [121] that each joint shares

the same weight.
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6.2.3. Classification Network

The Channel-Squeezing Block: We propose following squeezing operations

to enhance the learning of PT-specific relevant information while filtering noise,

based on our hypothesis motivated by [171, 172]. We distinguish nodes in different

graph-distance by defining hop-0 node to be the self node, Hop-1,2 nodes to be

the short-range nodes and Hop-3,...,Hop-max to be the long-range nodes. Suppose

the node i is the target node, and the node j is the relevant node of i, then node

j’s output channel size is formulated by Eq.6.2:

Cout,j =



Cin, |j − i| = 0 ,

pCin, 0 < |j − i| ≤ 2 ,

q|r−i|Cin, |j − i| > 2.

(6.2)

where p, q are channel-squeezing ratios for Hop-1,2 nodes and Hop-3,..., max

nodes, respectively. p, q ∈ [0, 1] and p ≫ q. Cout,j is the output channel size of

node j. |·| denotes the graph distance between nodes.

The Channel-Fusion Block: To hierarchically combine the different range in-

formation of the target node i, we fuse the long-range features by fl, and fuse all

features by fa:

hi = fa[hself , hshort, fl(hlong,k)]Wi (6.3)

where hlong,k is the feature of the long-range node k, hshort and hself are features

of short-range nodes and self-node, respectively. Wi is the final weight matrix of

target node i.

Implementation Details: As depicted in Fig. 6.1, our network employs two

GNN blocks with output channel sizes of 64 and 128, respectively. Each block

contains an LCN layer (Locally Connected Network [124]), a batch normalization

layer, a LeakyReLU layer with an alpha of 0.2, and a dropout layer with 0.2

rates. Following the two GNN blocks, we employ a PCSF block, a global average

pooling layer, and a fully connected layer. We adapt Cross-Entropy loss in binary
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classification. To address the class imbalance in multiclass classification, we use

the focal-loss [71] instead. Our optimizer of choice is Adam. The best performance

of the PT binary classification task is achieved by a learning rate of 0.01 (decays

by 0.1 ), a batch size of 8, and a dropout of 0.2, at 500 epochs.

6.3 Dataset

We test our system using the TIM-TREMOR dataset [173], which is an open

dataset consisting of 910 videos of 55 individuals performing 21 tasks and videos

range from 18 seconds to 112 seconds. The RGB video resolution is 1920 × 1080

with a sampling rate of 30 frames per second. Patients were recruited from the

outpatient clinic of the Department of Clinical Neurophysiology of the Leiden Uni-

versity Medical Center, Netherlands. Diagnostic labels about different tremors

were attributed by a neurologist in movement disorders on the basis of available

medical information. Tremor severity was evaluated by a experienced clinician us-

ing the Bain and Findley Tremor Clinical Rating Scale [174]. Specially, the tremor

severity of each arm was scored on a scale ranging from 0 to 7 (0: no tremor, 1-3:

mild tremor, 4-6: moderate tremor, 7: severe tremor).

There are 572 videos depicting various forms of tremors, including 105 for Par-

kinsonian Tremor (PT), 182 for Essential Tremor (ET), 88 for Functional Tremor

(FT), and 197 for Dystonic Tremor (DT). An additional 60 videos (NT) were recor-

ded without convincing tremors during the assessment. The test 278 videos have

inconclusive tremor classification results and have been labeled as ‘Other.’ For the

tremor rating labels, eight levels from level 0 to 7 are assigned to the individual’s

left and right hands. To ensure that there is only one label per video and preserve

the characteristics of the video, we combine the labels for individual left and right

hands by taking the maximum value of both hands.

92



6.4. Experiments

Ethical approval: Approval of the TIM-TREMOR dataset was obtained from

the University Leiden University Medical Center ethics committee. The procedures

used in this study adhere to the tenets of the Declaration of Helsinki.

6.4 Experiments

To assess the efficacy of our proposed method, we conducted validation testing

on two separate evaluation exams: the PT classification exam and the tremor rating

estimation exam. We carried out our experiments using a Ubuntu 18.04 PC with

an NVIDIA 3080. The GPU memory usage for training was minimal, averaging

just 1.46 gigabytes. The training process for the TIM-TREMOR dataset took

approximately ten hours for the PT classification task, and twelve hours for the

tremor rating estimation exam. They include the processes of EVM and extraction

of human pose features from RGB videos. In terms of real-time application, the PT

classification or tremor rating estimation of a 33 seconds video with 1000 frames

only took around 48 seconds each, which is a feasible time for interactive diagnosis.

Setup: We eliminate inconsistent videos to minimize data noise, specifically,

videos that only capture motion tasks for a limited number of participants. For the

tremor-type classification task only, we remove the videos with uncertain tremor-

type labels of ‘other’. Next, we follow the previous PD analysis work [175] to clipp

each video into 100-frame samples, and the number of samples is determined by

the duration of the consecutive frames in which the participant was visible and not

obscured. Each sample was assigned the label of the original video and treated

as an individual sample. To be consistent with the previous evaluation protocol

on PD analysis [56, 175], we use the same voting system rather than the clipping-

and-fusion technique in Chapter 5 to obtain the video-level classification results,

which increases the system’s robustness and augments the training sample size.

We evaluate our proposed system through individual-based leave-one-out cross-
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6.4.1. Tremor Type Classification

Binary Classification Multiclass Classification
Method AC SE SP F1 AC SE SP F1

ST-GCN[125] 84.6 71.4 87.5 62.5 64.1 64.8 90.7 64.1
CNN-Conv1D 76.9 57.1 81.3 47.1 56.4 54.2 88.3 53.1
Decision Tree 69.2 57.1 71.9 40.0 51.3 49.4 87.6 36.7

SVM [75] 64.1 57.1 65.6 36.4 46.2 44.6 86.2 44.3
FAIGCN [26] 82.1 71.4 84.4 58.8 61.5 64.0 90.1 63.8
SAFA-GCN 84.6 71.4 87.5 62.5 66.7 67.3 91.5 67.9
Ours - full 92.3 85.7 93.8 80.0 71.8 71.3 92.5 72.5
w/o PCSF 87.2 85.7 87.5 70.6 66.7 67.6 91.4 66.7

w/o Attention 82.1 71.4 84.4 58.8 61.5 63.1 90.0 62.4
w/o Attention & EVM 79.5 71.4 81.3 55.6 59.0 59.1 89.5 58.5

Table 6.1: The comparisons on the tremor type classification task.

validation. It means each subclips for a single individual is used for testing and

excluded from the training set for each iteration. The subclips for each individual

are never separated by the training or testing set.

Evaluation Metrics: We report the mean values calculated among all leave-one-

out cross-validations with the following metrics: accuracy (AC), sensitivity (SE),

specificity (SP), and F1-Score for the binary classification; AC, macro-averaged

F1-score, SE and SP for the multiclass classification.

6.4.1 Tremor Type Classification

For this experiment, we first evaluate our system on the binary classification

that distinguishes PT labels from non-PT labels, and achieve 91.3% accuracy and

80.0% F1-score. In addition, we validate our method on a more complex multiclass

classification task for classifying five types of tremors (PT, ET, DT, FT and NT).

Our final system’s per-class tremor type multiclass classification performance is

shown in Fig. 6.3. It shows a fairly balanced performance on classifying PT, ET,

DT and NT, while FT has a lower SE and F1-score, which may be caused by the

smallest number of samples in this class. Moreover, the corresponding confusion

matrices of the two tasks are displayed in Fig. 6.4.

94



6.4.1. Tremor Type Classification

Figure 6.3: Per-class multiclass tremor type classification results.

Figure 6.4: Confusion matrices for PT classifications: (Left) binary; (Right) mul-
ticlass.

Comparison with Baseline Methods: As this paper is the first work that

provides the individual-level evaluation results, we implemented the following video-

based PT classification baselines to evaluate the effectiveness of our system: (i)

ST-GCN [125]: a spatial-temporal GCNs for human pose data classification; (ii)

CNN with 1D convolutional layers (CNN-Conv1D) [75]; (iii) Decision Tree (DT);

(iv) Support Vector Machine (SVM) [75]; (v) FAIGCN [26] in Chapter 4; (vi)

SAFA-GCN in Chapter 5. Note that all baseline methods apply the same EVM

and pose extraction design. The results of our proposed SPA-PTA and baselines

are summarized in Table 6.1.

The binary classification result shows that our full system consistently out-

performs all other methods in all evaluation metrics. Our AC, SE, SP, and F1

achieve over 80% on leave-one-out cross-validation, demonstrating the effective-
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6.4.1. Tremor Type Classification

ness and stability of our system in this binary classification task. It is noticeable

that our system performs better with only spatial convolution instead of a deeper

spatial-temporal convolution design like ST-GCN [125]. In addition, our previous

model, FAIGCN, which relies solely on frequency domain modeling, exhibits a per-

formance decline compared to ST-GCN. We hypothesize that this limitation arises

because the frequency of hand tremor is significantly higher than that of infants’

movements, impeding the models’ ability to effectively differentiate between high-

frequency noise and high-frequency tremor. Furthermore, our SAFA-GCN, which

combines both spatial and frequency domain modeling, demonstrates only a mar-

ginal improvement in the multiclass classification task. These outcomes suggest

that our initial approaches to frequency domain modeling may not be directly ap-

plicable to modeling high-frequency movements. Moreover, our earlier models may

not have the capacity to accurately represent the more intricate tremor frequency

patterns. These results motivated us to propose a spatial domain model with more

capacities. The outcome of our full SPA-PTA supports that the suggested PCSF

block effectively enhances classification reliability and reduces the risk of overfitting

in small datasets.

While the full system is initially designed for binary classification, it presents

effectiveness and generalizability in the multiclass classification task, surpassing

existing methods. A small difference between AC, SE, and SP shows that our

system performs consistently and effectively at identifying the positive samples

and excluding the negative ones. The high macro-average SP exhibited trustworthy

effectiveness in correctly recognizing individuals who have a specific type of tremor

without wrongly recognizing it as other types of tremor.

Ablation Studies: We conduct an ablation analysis to assess the effectiveness

of the EVM, PCSF block and the entire attention module. From the lower parts

of Table 6.1, the positive effect of the PCSF block and attention module can be

illustrated by the decrease in metrics when either the PCSF block or the entire
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6.4.1. Tremor Type Classification

Figure 6.5: (a) The average skeleton joints attention across all cross-validations in
the PT classification experiment; (b) The attention visualization at a (b1) success-
fully classified frame, and (b2) unsuccessful classified frame. The joint labels in (b)
correspond to (a);

attention module is removed in the two classification tasks. Also, we find that the

basic GNN architecture without attention performs better than the CNN-Con1D

model for both classification tasks. It highlights the efficacy of learning human

pose features in the graph domain as opposed to the Euclidean domain. Besides,

the variant of ‘ours without attention’ performs slightly better than ‘ours without

attention and EVM preprocessing’, indicating that the use of EVM could effectively

enhance tremors.

Model Interpretation: We present the visualization for the average attention

value of each body keypoint in Fig. 6.5a. It is interpreted as the importance level

our system considers during the classification process. Our analysis reveals that

the attention value is significantly highest on the ‘Right Wrist’ and ‘Left Wrist’,

which suggests that our system prioritizes the wrists’ movements during the task

performance. Furthermore, the value associated with the ‘Neck’ is significantly

lower than other keypoints. It may be explained by the fact that the participants

remained seated during the video recording, resulting in a minimal global variance

of the neck joint throughout the experiment.

97
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Figure 6.6: Confusion matrices for tremor rating estimation: (Left) [0,1,2,3+];
(Right) [0,1,2,3].

6.4.2 Tremor Rating Estimation

For this experiment, we train SPA-PTA with different tremor rating labels

without any further implementation (e.g., converting the classification layer to a

regression layer) to validate our system performance in the tremor rating estimation

task. Since the data with tremor ratings 4 and above is insufficient for training via

leave-one-out cross-validation (i.e., only 5 individuals out of 55), we validate our

system on two different classification settings: (1) Classifying ratings [0,1,2,3] (2)

Classifying ratings [0,1,2,3+]. The latter is generally a more challenging task since

the imbalanced data of ‘3+’ rating brings bias, compared to the former which does

not contain such data.

Comparison with Baseline Methods: We compare our SPA-PTA to the same

baselines in the tremor-type classification task as shown in Table. 6.2. SPA-PTA

significantly outperforms the baselines by achieving a macro-average AC of 76.4%,

SE of 77.3%, SP of 91.6%, and F1-score of 76.7%. An interesting finding is that

the machine learning-based method Decision Tree achieves similar performance

to two deep learning-based baselines (i.e., ST-GCN and CNN-Conv1D). It may

inform us to further tackle the challenge of improving the deep learning models

in a relatively small dataset. In addition, although our current model does not
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6.4.2. Tremor Rating Estimation

Figure 6.7: Per-class tremor rating estimation results.

show strong robustness in the tremor rating estimation task, the ablation studies

from the rows of ‘Ours’ in Table 6.2 still demonstrate the effectiveness of our PCSF

layer and the attention mechanism design. It shows the potential of improving our

model and system performance with a more specific architecture design with a more

extensive dataset. Moreover, it is not surprising that our CP prediction models,

FAIGCN and SAFA-GCN, show similar performance rankings to the tremor type

classification task. This suggests that spatial modeling with a larger model capacity

might be a more effective approach for modeling high-frequency movements.

Classification labels [0, 1, 2, 3] [0, 1, 2, 3+]
Method AC SE SP F1 AC SE SP F1

ST-GCN[125] 67.3 68.1 89.0 66.5 68.0 67.7 90.5 65.7
CNN-Conv1D 60.0 59.8 86.5 58.7 60.0 60.5 87.9 58.3
Decision Tree 54.5 55.3 85.2 54.6 52.0 53.0 86.0 51.3

SVM [75] 49.1 41.1 81.5 43.8 48.0 49.5 85.2 47.1
FAIGCN [26] 63.6 64.5 87.4 64.7 64.0 64.1 87.0 63.0
SAFA-GCN 70.9 72.9 89.9 72.3 68.0 67.5 88.5 66.9
Ours - full 76.4 77.3 91.6 76.7 74.0 73.5 92.0 72.0
w/o PCSF 70.9 71.5 89.7 70.7 70.0 68.6 90.5 68.2

w/o Attention 65.5 65.6 88.2 64.8 66.0 65.2 89.5 63.9
w/o Attention & EVM 63.6 64.8 87.6 63.3 64.0 64.1 88.9 62.5

Table 6.2: The comparisons on the tremor rating task.
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Figure 6.8: The average skeleton joint attention across all cross-validations in
tremor rating estimation task

Ablation Studies: Consistent results at the bottom of Table 6.2 from the same

ablation design as for the PT classification task validate the effectiveness of each

system component.

Model Interpretation: We similarly visualize the average skeleton joints atten-

tion across all cross-validation sets in Fig. 6.8. Two different data preprocessing

approaches provide similar attention results, while the weights obtained by group-

ing [0,1,2,3] slightly more contribute to ‘Right Wrist’ and ‘Left Wrist’. This may

be due to the increased proportion of low tremor rating videos in this approach

compared to grouping [0,1,2,3+]. In addition, we notice that the attention weight

distribution of the tremor rating estimation exam is similar to that of the PT clas-

sification exam, while the former aggregates more attention on the ‘Right Wrist’

and ‘Left Wrist’ than other joints.

6.4.3 Pose Estimation Evaluation

To evaluate the effectiveness of AlphaPose and quantify the pose estimation

error, we conduct the following experiments:

Quantitative Comparison with Ground Truth Data: To quantify the pose

estimation error from different methods, we employ the Lagrangian hand-tremor
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Task AlphaPose OpenPose
Rest 0.812 0.881

Rest in supination 0.834 0.930
2 Hz higher 0.605 0.635
2 Hz lower 0.617 0.622
Counting 0.729 0.790

Finger tapping 0.576 0.687
Playing piano 0.752 0.906

Months backward 0.814 0.838
Top top 0.786 0.823

Thumbs up 0.844 0.960
Average MAE 0.737 0.807

Table 6.3: MAE comparison between AlphaPose features and OpenPose on the
top-10 best-performing tasks. Better performance with lower MAE is in bold.

frequency estimation method [173] to compare MAE (Mean Absolute Error) of the

hand tremor frequencies estimated by AlphaPose and conventional OpenPose fea-

tures [127] with Ground Truth (GT) frequency obtained from accelerometer data.

As suggested in [173], tremor frequency calculated from reliable estimated pose fea-

tures should be close to (i.e., ideally within 1 HZ difference) the GT accelerometer

data frequency. The MAE from Table 6.3 indicates that AlphaPose consistently

outperforms OpenPose on all listed tasks.

Qualitative Pose Visualization and Comparison: The visualizations in Fig.

6.9 and the reference video images in Figure 6.10 show that AlphaPose outper-

forms OpenPose in estimating joint positions. This is supported by the smoother

trajectory lines of AlphaPose, which are depicted by the transparent colored lines.

Sub-figures 1 to 5 in Fig. 6.9 demonstrate AlphaPose’s ability to track joint move-

ment fluidly. Specifically, in sub-figure 5, AlphaPose demonstrates a hand traject-

ory that aligns more closely with the anticipated tremor pattern, which contrasts

with OpenPose’s intermittent jumping trajectory. This consistency suggests that

AlphaPose may be more reliable for tasks related to PT classification. Further-

more, on the patient’s right side, particularly in sub-figures 1 and 2, AlphaPose

yields more consistent and stable outcomes, reflecting the patient’s condition of
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6.4.3. Pose Estimation Evaluation

resting with observable tremors only in the left hand, as corroborated by Figure

6.10. Finally, the neck joint position of OpenPose is estimated by the mean point

of both shoulders, which is less accurate than the estimated neck joint position of

AlphaPose [148].
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6.5. Generalizing to the CP Prediction Task

Method AC SE SP F1 AC SE SP F1
Tremor-type Binary Tremor-type Multiclass

AlphaPose 92.3 85.7 93.8 80.0 71.8 71.3 92.5 72.5
OpenPose 92.3 85.7 93.8 80.0 69.2 69.3 92.0 70.2

Tremor-level [0,1,2,3+] Tremor-level [0,1,2,3]
AlphaPose 76.4 77.3 91.6 76.7 74.0 73.5 92.0 72.0
OpenPose 72.7 74.0 90.4 73.6 72.0 72.5 90.4 70.1

Table 6.4: The comparisons on the influence of classification performance between
AlphaPose and OpenPose.

Classification Performance Comparison: We compare the effectiveness of

AlphaPose and OpenPose by evaluating their impacts on the system classification

performance. Table 6.4 demonstrates that using AlphaPose features results in a

remarkable and consistent improvement over OpenPose features of approximately

1−3% across the classification tasks except for the binary tremor-type classification.

These results highlight the precision of AlphaPose in delivering better pose-based

features for classification tasks.

In this study, we utilize the pre-trained AlphaPose model, opting not to retrain

it due to the absence of GT 2D pose position annotations within our dataset. The

robust generalization capability of the pre-trained AlphaPose model, as evidenced

by its superior performance across multiple diverse and complex benchmark data-

sets [148], affirms its suitability for our task. In the future, we are interested in

comparing the performance between pretrained and tremor-specific pose estimation

models. This will entail the collection of the necessary GT data to train a model

adept at detecting the subtle nuances characteristic of tremor movement patterns.

6.5 Generalizing to the CP Prediction Task

To further evaluate the generalization ability of SPA-PTA, we directly apply

it to the CP prediction task with the minimal necessary modifications, such as

utilizing all body keypoints rather than only upeer body keypoints, and optimizing

the number of GNN layers along with the corresponding input and output channel
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6.6. Limitations and Discussions

Method AC SE SP F1

LO
O

C
V

SPA-PTA 97.37 83.33 100.00 90.91
SAFA-GCN 97.37 83.33 100.00 90.91
FAIGCN [26] 97.37 83.33 100.00 90.91

5-
fo

ld
C

V

SPA-PTA 92.11 83.33 93.75 76.92
SAFA-GCN 97.37 83.33 100.00 90.91
FAIGCN [26] 94.74 83.33 96.88 83.33

3-
fo

ld
C

V

SPA-PTA 92.11 83.33 93.75 76.92
SAFA-GCN 94.74 83.33 96.88 83.33
FAIGCN [26] 92.11 83.33 93.75 76.92

Table 6.5: Comparing SPA-PTA with our previous CP prediction models on the
RVI-38

sizes, and validate the optimized SPA-PTA on the RVI-38 dataset. As shown in

Table 6.5, it is not surprising that our SPA-PTA obtains the lowest performance

among all three models. This is because the PCSF module, which is specifically

designed for PT analysis, does not theoretically align with CP movement analysis.

Specifically, the left side of infant’s body should be highly relevant to the right

side [152], but the PCSF module reduces such relevancy as PT typically occurs only

on one side of a patient’s upper body [170]. Therefore, this suggests that the design

of biomedical engineering models should fully incorporate clinical observations and

guidance, rather than focusing solely on improving model capacity.

6.6 Limitations and Discussions

Our findings about PT analysis are preliminary, and the limited number of

people with PT and the limited range of tremor levels included in this work may

affect the generalizability of the results. One of our future directions is to evalu-

ate our models using data collected from a larger and more diverse group of PD

patients, covering a more balanced tremor-type distribution and a wider range of

tremor severity ratings. Up-scaling the study is crucial for developing more robust

models and for enhancing the overall applicability and validity of the framework we

have presented. In addition, annotating the dataset based on PT severity estim-

ation performance by different scales, such as the MDS-UPDRS3, by experienced
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6.7. Conclusion

raters will enable us to improve the robustness of our model via more fine-grained

designs in the future. Besides, our current system performance is still challenged

by pose estimation algorithm error, such as depicted in Fig. 6.5b. The atten-

tion of our system is incorrectly influenced by the inaccurate position detection of

the right elbow and blurred right shoulder joints. Moreover, our SPA-PTA does

not employ the clipping-and-fusion technique described in Chapter 5 to interpret

the temporal characteristics of PT. In addition to following the existing PD ana-

lysis protocol [175], this decision is prompted by the concern that the overlapping

frame length might unevenly split some tremor cycles between subclips, potentially

compromising the accuracy of subsequent analyzes. In future studies, we plan to

explore alternative methods for capturing and analyzing the temporal dynamics

of PT without relying on overlapping frames. This may involve developing new

algorithms that can more accurately classify and quantify tremors throughout the

entire video.

6.7 Conclusion

Our method effectively identifies PT in PD patients from consumer-grade

videos. The validity of our proposed system on both PT classification and tremor

severity estimation tasks demonstrates that our method is extensible in PT-related

analysis. Our non-intrusive system only relies on consumer-grade videos as input,

so it offers a potential cost-effective solution for supporting the pre-diagnosis of

PD in regions with inadequate medical resources. This work also could be used for

remote PD supplementary assessment in special situations to reduce the stress of

the healthcare system (e.g., COVID-19 pandemic). Moreover, our system demon-

strates the potential to automatically monitor PT symptoms during daily activities

to support PD pre-diagnosis.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we applied and developed state-of-the-art GNNs with addi-

tional clinical guidance (e.g., HCSF, masked frequency-attention) for developing

automated disease diagnosis systems that are accurate, robust, and whose de-

cisions can be explained by humans. We proposed several attention mechanisms

to improve system interpretability and robustness. We demonstrated such auto-

mated diagnostic tools can not only be used to assist clinicians in making more

comprehensive and precise diagnoses, but also have the potential to offer low-cost

diagnostic support for regions with limited clinical resources.

For CP prediction, our final system integrates the spatial attention, frequency

attention, and a clipping-and-fusion method to strengthen the prediction reliability

and interpretability. Our system visualizes important human joints, frequency

bands and time ranges in CP prediction to support clinicians in making accurate

and robust decisions. We also supplement the MINI-RGBD dataset and RVI-38

dataset with more accurate posture features and provide a performance benchmark

analysis of leading methods.

For PD analysis, our method effectively identifies PT in PD patients from

consumer-grade videos. The validity of our proposed system on both PT classifica-
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tion and tremor severity estimation tasks demonstrates that our method is extens-

ible in PT-related analysis. Our non-intrusive system only relies on consumer-grade

videos as input, so it offers a potentially cost-effective solution for supporting the

pre-diagnosis of PD in regions with inadequate medical resources. This work could

also be used for remote PD supplementary assessment in special situations to reduce

the stress of the healthcare system (e.g., the COVID-19 pandemic). Moreover, our

system demonstrates the potential to automatically monitor PT symptoms during

daily activities to support PD pre-diagnosis.

7.2 Limitations and Future Directions

Firstly, the most significant limitation of our work on the dataset size of hu-

man movement disease videos, which is also an important future direction. The

conclusions drawn from our current analysis of CP prediction and PT are tentative

due to the narrow spectrum of tremor intensities examined, and the small sample

sizes of infants diagnosed with CP and individuals experiencing PT. These factors

may limit the generalizability of our findings. To overcome this limitation, we

highly recommend that researchers interested in this field participate in the data

collection and annotating process, which could significantly advance the develop-

ment of the research community. For example, annotating the dataset based on

PT severity estimation performance by different scales, such as the MDS-UPDRS3,

by experienced raters will enable researchers to improve the robustness of model in

the future via more fine-grained designs. In addition, an important future direction

involves augmenting the dataset with contributions from a wider range of clinical

practitioners, as well as developing effective and robust data augmentation tools

that are tailor-made for analyzing the specific human movement disorders.

Additionally, enhancing the interpretability of models for human movement

diseases analysis (e.g., CP prediction and PD analysis) is a critical aspect of future

research. Our experiments with spatial-attention and frequency-attention designs
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7.2. Limitations and Future Directions

demonstrate the effectiveness of the attention mechanism in improving both the

performance and interpretability of DNNs, which are particularly important for

diagnosing human movement diseases. Moreover, while we encountered challenges

in developing self-attention-based systems [92, 101] due to the limited size of our

dataset, we recommend that future research with adequate data explore clinical-

guided self-attention models, which offer greater capacity and flexibility in design-

ing attention maps. Besides, the exploration of more advanced mechanisms is

encouraged as they can replace or be used in conjunction with traditional atten-

tion mechanisms. For example, the newly proposed RetNet [176] claims that the

model can achieve parallel training, low inference cost and strong performance.

In addition, the concept of ‘chain of thought’ prompting [177, 178], where mod-

els exhibit their reasoning process transparently and improve problem-solving in

a zero-shot context, exemplifies the symbiotic relationship between interpretabil-

ity and performance. This may implicitly reveal the effectiveness of the attention

mechanism, but it is essential to build a solid and complete theoretical framework

to support these current explorations of attention mechanisms in various fields.

A rigorous theoretical foundation can enhance confidence in the universality of

attention mechanisms and promote their wider adoption in practical applications.

Besides, our research experience highlights the effectiveness of frequency do-

main modeling in analyzing infant movement. However, this frequency analysis

method does not yield ideal results in PT analysis tasks. We hypothesize that this

limitation stems from the significantly higher frequency of hand tremors compared

to infants’ movements, which hampers the models’ ability to effectively distin-

guish between high-frequency noise and high-frequency tremor. This hypothesis

is subjective and preliminary, future research exploring modeling tremors in the

frequency domain or in both spatial-temporal and frequency domains by consider-

ing the time-frequency consistency [25] could be a very interesting and significant

research direction for understanding the spatial and frequency characteristics of

different human movement disorders.
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Moreover, our experiment results in both CP prediction and PT analysis tasks

demonstrate the superiority of GNNs over CNNs in modeling non-Euclidean struc-

tured data, such as human pose. This is supported by the graph-based nature of

GNNs, which allows for a more flexible and accurate representation of complex re-

lationships inherent in human poses. By designing graph typologies in the spatial,

temporal, and frequency domains, GNNs can facilitate a deeper understanding

of the spatial relationships between different body parts, the temporal relation-

ships between different frames, and the frequency domain relationships between

different frequency bands, thus enhancing the accuracy of the classification system.

Moving forward, an interesting GNN research direction involves exploring the op-

timal design about integrating GNNs with MLPs, and/or State Space Models (e.g.,

Mamba [179]), and/or self-attention mechanisms [101]. This is because, theoretic-

ally, self-attention is a special case of GNN where every node is connected with oth-

ers [180]. In addition, designing GNNs to be more adaptable for other deep learning

techniques, such as Mamba [179]—a powerful challenger to self-attention—is ex-

pected to be a highly meaningful research topic in the future. Besides, we expect

that investigating the frequency domain GNNs with capabilities to reduce the com-

putational cost of frequency transformation (e.g., FFT) would also be a valuable

research direction. Because such designs could accommodate adequate expressive-

ness and achieves much lower complexity, effectively and efficiently accomplishing

classification and regression tasks. The corresponding theoretical proof can be

found in [181].

Furthermore, given that our human movement disease analysis framework re-

lies on the quality of pose estimation algorithms, such as OpenPose and AlphaPose,

which are trained using data from healthy adults, we aim to enhance this frame-

work through domain adaptation techniques [182] or the generation of synthetic

data to further improve pose quality. This is crucial, as the pose distributions of

patients with movement disorders inevitably differ from those of healthy individu-

als. Furthermore, we plan to upgrade the 2D pose estimation to a more accurate
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and robust 3D pose estimation method, which will be particularly beneficial for our

research, especially for the CP prediction task. The depth information provided

by 3D pose estimation can enhance the model’s capacity and pose interpretability,

making it more robust to occlusion issues.

Lastly, future research should involve clinical professionals more deeply in the

iterative refinement process of these models. By developing enhanced visualization

tools that integrate clinician feedback, we aim not only to make model predictions

more transparent but also to leverage expert insights for identifying additional

spatiotemporal features. Enhanced feature extraction, achieved through method-

ologies like active learning or weakly supervised learning, would allow for a more

detailed examination of the temporal dynamics present in physical assessments.

Such advancements are expected to improve the precision with which clinically

meaningful features are identified and applied within predictive frameworks.
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